The 8th Workshop on Workflows in Support of Large-Scale Science in conjunction with SC 13 (Denver, Colorado, Nov. 17th 2013) http://works.cs.cardiff.ac.uk
Data Intensive Workflows (a.k.a. scientific workflows) are a key technology that enable the set up of large data sets analysis experiments in all scientific areas, exploiting capabilities of large-scale distributed and parallel computing infrastructures. Workflows enable scientists to design complex analysis that are composed of individual application components or services and often such components and services are designed, developed, and tested collaboratively. On large-scale computing infrastructures routinely used for e-Sciences today, workflow management systems provide both a formal description of distributed processes and an engine to enact applications composed of wealth of concurrent processes.
The size of the data and the scale of the data analysis flows often lead to complex and distributed data sets management. Workflow formalisms including adequate structures for data sets representation and concurrent processing are needed. Besides the magnitude of data processed by the workflow components, the intermediate and resulting data needs to be annotated with provenance and other information to evaluate the quality of the data and support the repeatability of the analysis.
The process of workflow design and execution in a distributed environment can be very complex and can involve multiple stages including their textual or graphical specification, the mapping of the high-level workflow descriptions onto the available resources, as well as monitoring and debugging of the subsequent execution. Further, since computations and data access operations are performed on shared resources, there is an increased interest in managing the fair allocation and management of those resources at the workflow level.
Data-driven computations are increasingly considered to tackle the wealth of data generated by scientific instruments. Yet, scientific experiments also require the description of complex control flows. Adequate workflow descriptions are needed to support the complex workflow management process, which includes workflow creation, workflow reuse, and modifications made to the workflow over time—for example modifications to the individual workflow components. Additional workflow annotations may provide guidelines and requirements for resource mapping and execution.
The Eighth Workshop on Workflows in Support of Large-Scale Science focuses on the entire workflow lifecycle including the workflow composition, mapping, robust execution and the recording of provenance information. The workshop also welcomes contributions in the applications area, where the requirements on the workflow management systems can be derived. The topics of the workshop include but are not limited to: - Data Intensive Workflows - Data-driven workflow processing - Workflow composition, tools and languages - Workflow execution in distributed environments - Workflows on the cloud - Exascale computing with workflows - Workflow refinement tools that can manage the workflow mapping process - Workflow fault-tolerance and recovery techniques - Workflow user environments, including portals - Workflow applications and their requirements - Adaptive workflows - Workflow monitoring - Workflow optimizations - Performance analysis of workflows - Workflow debugging - Workflow provenance - Interactive workflows - Workflow interoperability - Mashups and workflows
Important Dates: - Papers due August 15th, 2013 - Notifications of acceptance September 21st, 2013 - Final papers due October 6th, 2013
Program Committee Chairs: Johan Montagnat, CNRS, France Ian Taylor, Cardiff University, UK
Program Committee Members: Khalid BelhajjameUniversity of Manchester Adam BelloumUniversity of Amsterdam Ivona BrandicVienna University of Technology Marian BubakAGH Krakow & University of Amsterdam Nadia CerezoCNRS Ann ChervenakUniversity of Southern California Ewa DeelmanUSC Information Sciences Institute Yolanda GilUSC Information Sciences Institute Tristan GlatardCNRS Andrew HarrisonCardiff University Péter KacsukMTA SZTAKI Dimka KarastoyanovaStuttgart University Daniel S. KatzUniversity of Chicago & Argonne National Laboratory Tamas KissUniversity of Westminster Dagmar KreftingUniversity of Applied Sciences Berlin Maciej MalawskiAGH University of Science and Technology Stephen McGoughNewcastle University Cesare PautassoUniversity of Lugano Radu ProdanUniversity of Innsbruck Chase Qishi WuUniversity of Memphis Omer RanaCardiff University David De RoureOxford University Rizos SakellariouUniversity of Manchester Gabor TerstyanszkyUniversity of Westminster Michael WildeUniversity of Chicago & Argonne National Laboratory
Ian Taylor, Reader at Cardiff, and Software Consultant, USA