SAGA-RG design team meeting 12/13/2004
DK and SJ are taking minutes to post on the web

CL- We’re just making a straw man document, not final API
TG- minor timing details. Start 9AM CST each day; go 3 hrs
Hartmut- sick, will be here weds on.

SJ- everybody email shantenu

TG- style details. OO vs. C and fortran.

Discussion- target audience, how to make API which is OO for C and fortran.

Scripting interfaces vs. programming API

Chris smith: notification?

DK- low priority: asynch

CL- priority list.

Hrabri- similar issues in drmma. Some ops return right away. For synch ops, use timeouts.

Discussion around style/design of polling/async, callbacks, etc.

AM- Java CoG- simple API, synchronous. On top – task module.

TG- start w/ nonblocking calls & build blocking calls around it

CL- how much oo? No Multiple inheritance,
JS- c-style OO. Common ops across handles

Extensive discussion re: handle objects, which can point to different types of files

TG- How to support multiple backend file types?

SJ- how much of OO are we going to use- no simple inheritance?

DK- structured error handling. Error handle which can be queried to get all exception
Information

TG- error tree (since a single call can have “multiple errors” from different tplugins)

TG- style. Security.

CL—security mech as base part of api?

TG- cmplex if multiple security tokens have to be available

CL- features sppted by api will determine security features exposed

CS- frequent mode- get_auth_token(), provide token to api calls

TG- session handling must support more than one auth type

CL- do we have a style/approach to security?

Consensus: “session handle”

JS – explicit management of security via API, or implicitly (user runs grid-proxy-init in shell, then runs program)

TG- next step of agenda- use cases

First: Cover the “Related groups in GGF” document by Andre and Gab

TG- resource management vs. job startup
AM- document should have been more fine-grained?

Subcategorization of job reosources (job submission, job control, job monitoring, resource discovery, resource description)

What do we mean by data access?

Files

Databases

Remote file access

Data management—treat file as object to move around

Databases—information management/lookup. Remote access to DBs?

Genome sequences. Life science consortia working on this?

DAIS- unique interface to dbs. Exposed interface is not that complex

Extensive discussion of meaning of ‘data X’

Gregor- want to narrow down & focus

JS- data streaming underlying upper level features. Current apis to do authenticated sockets are crappy

SJ- logical files

Logical file (such as replica catalog)

CS- does steering mean checkpointing? Sept category?

Identifying “objects” we will be dealing with-

Files

Jobs

Databases

Applications

Stream

Logical files

Event

Advertisement(?)

Should visualization be *specifically* implemented in the API? No. App itself does all that; just uses API for things like streaming data

Information-

publish & search for info

Communication-

Messaging

Information encoding/organization (?)
Data access/streaming/events—flavors of communication
Bulk operations—one per each distinct section (job, file, etc)

Errors, Audits, transactions, workflows:

Error “objects”

Audit “objects”

Log function in api?

Extensive discussion on meaning of auditing and whether it belongs in the api

Maybe it should be low priority?

Still a standing issue

Enabling/disabling logging desirable

CS- Is there standard audit record format—and can we put hooks into api?

Transactions? Probably not

Workflow?

CS—workflow, bulk, task – how related?
Task = interface to define task, asynch run, notification callbacks

Task-> interfaces unique to type of operation

One job at a time; synch and asynch task
Cog kit- task specification, arb. Task, bind to resource

Cog kit- Event model. Being adopted by GT 4.

Task- when event changes in task, fire something back/throw exception

Workflow- built on top of task. Doesn’t need its own API. Just dependent tasks
QoS—lightpaths, LSPs, others (JS) and diffserve. Application Interfaces- “I want this much bandwidth”. Do we want an API for this set of actions?

CL—leave it till later, but make sure we don’t design ourselves into a corner so we can’t support it

Priorities/TODO:
Files/Data streaming

Jobs/Tasks
Simple hooks for resource discovery

Error handling
Set aside:

Events

Workflow

QoS

Auditing

Information advertising, search

Steering
Considerations

Bulk operations

Security

Eliminate:

Transaction

databases

Agenda for next session:

What objects in different areas?

After lunch

Job APIs

DRMAA

JSDL (language)

Globus (GRAM)

Ssh

Unicore (abstract job object)

Condor SOAP

GAT

CoGKits (python/java)

Gregor walked us through the CoG Task/Job interface

(globus-cog-api.pdf and javacog.pdf)

TG- Other APIs:
Extensive in-depth discussions about task/job interfaces, use cases.
CS- Platform’s “lsrun”

CS walked us through the Platform LSF SDK

Discussion of what people are going to do overnight

Jobs

Files

Posix-like I/O

Dec 14 2004

Jobs:
CS read over CoG, GAT API.

Job service object; job description option

Wants more direct mapping between job objects and JSDL

Discussion of relationship between

AM- what about DRMAA?

CS- very similar to our C api

What does job id mean across APIs? In ssh?
Job id—go to portal and reference your running

Data streams:

Need authentication, authorization; not so much call for explicit encryption

Opaque security token

IO handle: read, write, disconnect

Server side- must be able to connect/disconnect, without disturbing simulation

Don’t expose fine-grained stuff (socket options)

Iostream = open(sc, sd)

Send(iostream)

Receive(iostream)

Disconnect(iostream)

Service_open(sd, auth, enc, authorize), read, write, disconnect

Service description opaque in case impl has to deal with firewall, rather than just host and port

Associate ACLs with the service connection

Files:

AM- presented file and directory interfaces

Discussion around iterator vs. full list of files in directory calls

Discussion re: should “directory object” have state like current directory; does it belong in the service object?

Directory- cp, mv, rm (within and across namespace) etc

Files- read, write, seek, etc

Extended read/write calls for efficiency

Above is physical file/directory; extend this to logical files/directoryes

New directory methods: add_location, del_location, get_locations(), replicate()

(IE for a replica service)

Locking—should we have operations?

Jobs: where should the general property list for job descriptions come from
CS- JSDL

Extensive discussion of what JSDL is, what it isn’t, and how it maps to SAGA
Extensive discussion & hashing out of the job API
Extensive discussion &hashing out of the secure channel API

Weds December 15 2004
Discussing file interface. Keep POSIX semantics AMAP.

Discussion of various readdir, getdents, other calls

Long discussion on task interface, eventually stopped and

Went back to files

Discussion of async vs. sync routines, what are appropriate things to expose in things like stat() return value?

