
GWD-I.91 Rosa Badia, IBM Barcelona
GridCPR-WG Robert Hood, NASA

Thilo Kielmann, Vrije Universiteit
Andre Merzky, Vrije Universiteit (editor)

Christine Morin, INRIA Rennes
Stephen Pickles, University of Manchester

Massimo Sgaravatto, INFN Padova
Paul Stodghill, Cornell University (editor)

Nathan Stone, Pittsburgh Supercomputing Center
Heon Y. Yeom, Seoul National University

Version: 1.0 RC.6 March 15, 2007

Use-Cases for Grid Checkpoint and Recovery

Status of This Document

This document provides information to the Grid community regarding use-case
scenarios for Grid Checkpointing and Recovery. It does not define any standards
or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright c© Open Grid Forum (2007). All Rights Reserved.

Abstract

This document describes use-cases to be addressed by the Grid Checkpoint
and Recovery Working Group (GridCPR WG). The scenarios are also used to
determine a set of requirements for these standards.

Contents

1 Introduction 2

2 Consumer Use-Cases Within Scope 3

2.1 C3 . 3

2.2 Cactus . 4

2.3 RealityGrid . 4

2.4 XCAT3 . 5

3 Producer Use-Cases Within Scope 6

GWD-I.91 Introduction March 15, 2007

3.1 SRS . 6

3.2 TCS . 7

3.3 European DataGrid . 7

3.4 GridLab . 9

4 Use-Cases Outside of Scope 9

4.1 Kerrighed. 10

4.2 MPICH-GF. 10

4.3 Dj Vu. 10

5 Summary and Requirements 10

6 Acknowledgements 12

7 Security Considerations 12

8 Intellectual Property Issues 13

8.1 Editor information . 13

8.2 Intellectual Property Statement 13

8.3 Disclaimer . 13

8.4 Full Copyright Notice . 14

References 14

1 Introduction

One of the goals of the Grid Checkpointing and RecoveryWorking Group (Grid-
CPR WG)

is to define a user-level API and associated layer of services that will
permit checkpointed jobs to be recovered and continued on the same
or on remote Grid resources [22].

In order to understand the requirements of these APIs and services, it is nec-
essary to understand the situations in which they will be used. The purpose
of this document is to enumerate usage scenarios that the GridCPR WG have
decided must be addressed by its specifications. These scenarios will be used to
derive a set of requirements for the GridCPR API and services.

gridcpr-wg@ogf.org 2

GWD-I.91 Consumer Use-Cases Within Scope March 15, 2007

There are two fundamental approaches to saving the state of a job, Application-
Level CPR (ALC) and SystemLevel CPR (SLC). In Application-Level CPR
(ALC), the checkpointing and recovery function is performed by the applica-
tion. That is, the applications source code contains explicit instructions for
performing the CPR. In this case, the critical program variables and data struc-
tures are saved. In System-Level CPR (SLC), checkpointing and recovery done
external to the application, i.e. on the applications behalf without modification
of the application itself. This may mean saving the processors registers, stack,
and memory at the point that the checkpoint is taken.

The current scope of GridCPR WG as described in its charter includes Grid
applications that implement ALC. The use-cases in Sections 2 and 3 rely on
ALC to various degrees. Use-cases based on SLC were judged to be outside the
WGs current scope and are discussed in Section 4.

The in scope use-cases can be further classified. Some of the use-cases describe
applications or libraries that could use GridCPR systems. We call these con-
sumers of GridCPR function and describe them in Section 2. Other use-cases
describe systems that implement CPR and could one day evolve to be GridCPR
systems. We call these producers of GridCPR function and describe them in
Section 3.

2 Consumer Use-Cases Within Scope

2.1 C3

The C3 system is a precompiler that can be used to add ALC to existing appli-
cation source code. The developer adds directives to the application source code
to indicate the points at which checkpoints can be taken, and C3 uses program
transformations to augment the application with code to save critical program
variables and data structures. C3 also uses compiler optimizations to reduce
the size and overhead of taking checkpoints.

The C3 system also provides features to ensure that consistent checkpoints of
MPI jobs [9, 10]. Work is currently underway to extend this work to handle
truly automatic portable checkpointing within a Grid-environment. This will
be done using type-safe language (e.g., Java, C#) or type-safe dialects (CCured,
Cylone) and process over-decomposition.

The C3 system has several runtime subsystems that are responsible for providing
the checkpoint file and signal management. These subsystems could easily be
replaced with a GridCPR system. In this way, C3 is a user of GridCPR systems.

Functional requirements

• API for application state writing and reading.

gridcpr-wg@ogf.org 3

GWD-I.91 Consumer Use-Cases Within Scope March 15, 2007

• Services for failure notification.

• Services for checkpoint data transport.

• Services for checkpoint data management.

2.2 Cactus

[3, 7, 14] provides application level checkpointing for any codes written within
the framework. The functionality is transparent to the application developer
and user, and checkpointing and recovery is usually requested in the parameter
file at run time. Checkpointing may also be requested dynamically during a run
through a steering interface such as the HTTPD web interface, or the applica-
tion code can dynamically react to simulation data and request checkpointing
itself through the Cactus API. Checkpoints can be written and read in several
different architecture independent binary data formats, including HDF5 and
FlexIO. Parallel Cactus applications can be checkpointed on one machine and
then recovered on a different architecture machine using a different number of
processors.

Functional requirements

• API for application state writing and reading.

• Services for failure notification.

• Services for checkpoint data transport.

• Services for checkpoint data management.

2.3 RealityGrid

The RealityGrid [4, 18, 17] project provides limited support for jobs that con-
tain ALC functionality. RealityGrid does not provide a complete set of CPR
services. Rather, application developers are expected to instrument applications
to read and write checkpoint files in whatever format they want and Reality-
Grid provides functions for managing and transporting these files. RealityGrid
is able to provide transport within a heterogeneous computing environment, but
it is the developers responsibility to generate heterogeneous checkpoint files.

RealityGrids CPR support enables jobs to implement fault-tolerance and to
implement strategies for long running computations to save state at the end of
a fixed length batch run. In either case, jobs can be restarted from checkpoints
in subsequent batch allocations. This support also enables job migration in
heterogeneous computing environments.

gridcpr-wg@ogf.org 4

GWD-I.91 Consumer Use-Cases Within Scope March 15, 2007

RealityGrid also enables jobs to provide rewind capabilities that are based upon
the CPR system. Rewind can be used not only for debugging, but for compu-
tational steering as well [11, 12]. A common use involves the user running a
computationally intensive simulation in a mode that produces low-resolution
results. The user can then rewind the simulation to a point of interest and
rerun it with options to produce high-resolution results only in the region of
interest.

The RealityGrid project enables this sort of parametric exploration by support-
ing checkpoint trees [19]. That is, the RealityGrid system enables checkpoint
files to be linked together in a manner that encodes the causal relationship be-
tween them. This enables a user to construct and manage exploration trees.
Combined with the visualization tools rewind features discussed in the previous
section, these capabilities provide the computational scientist with very powerful
tools for scientific discovery.

Deleted: RealityGrid applications and the steering library have the following
functional requirements:

Functional requirements

• API for application state writing and reading.

• Services for checkpoint data transport.

• Services for checkpoint data management.

• Services for job management.

Technically, RealityGrid is also a provider of GridCPR functions. It provides
the following key functions:

• Services for checkpoint data transport.

2.4 XCAT3

XCAT3 [16] is a Common Component Architecture application framework based
on Grid standards. One of the functions that XCAT3 provides is checkpoint-
ing for CCA-based applications. Because these applications can be executed
on a number of distributed computing resources, consistency is a consideration
when checkpointing. XCAT3 handles this by providing Application Coordina-
tors. When a checkpoint is required, the user or some other agent notifies the
Application Coordinator, which then executes a blocking coordination protocol
between the distributed components.

In order to provide checkpointing within a heterogeneous computing environ-
ment, XCAT3 uses application-level checkpointing. Also, checkpoint data is
stored in XML to ensure maximum portability.

gridcpr-wg@ogf.org 5

GWD-I.91 Producer Use-Cases Within Scope March 15, 2007

In order to ensure the availability of checkpoint data in the event of processor
failure, XCAT3 assumes a Storage Service Federation, which can provide stable
storage for checkpoint data.

Functional requirements

• API for application state writing and reading.

• Services for checkpoint data management.

3 Producer Use-Cases Within Scope

3.1 SRS

The Stop Restart System (SRS) [24] provides a user-level checkpointing library
and a Runtime Support System (RSS) that manages the checkpointed data.
A unique feature of SRS is that it allows for reconfiguration of the executing
MPI application both in terms of the number of machines used for application
execution and the data distributions used in the application between check-
points and continuations. SRS is primarily intended for Grid scheduling and
resource management systems to migrate executing parallel application across
distributed heterogeneous sites that do not share common file systems. It also
provides fault-tolerance by enabling the application to withstand and recover
from non-deterministic errors caused during application execution.

SRS provides for the transport of checkpoint data between Grid computing
resources using IBP [20]. Applications register with an external agent, the RSS,
in order to transfer information about checkpoint locations and to coordinate
job management.

• API for application state writing and reading.

• Services for limited job management.

An external agent, the RSS, is used for maintaining configuration information
across job instances and for coordinating job stopping and resuming.

• Services for checkpoint data management and transport. The

RSS maintains information about a jobs checkpoint data and checkpoint data
is moved between computing resources using IBP.

gridcpr-wg@ogf.org 6

GWD-I.91 Producer Use-Cases Within Scope March 15, 2007

3.2 TCS

The checkpoint system for the Pittsburgh Supercomputer Centers Terascale
Computing System (TCS) [23] allows for the automated recovery of jobs fol-
lowing both machine failures and scheduled maintenance periods. When a node
failure is detected, the system determines whether that node was currently run-
ning a users job. If so, the user account is credited for the lost of time and the
job is rescheduled for further execution.

The system also provides for user termination and migration of jobs. The user is
provided with interfaces for checkpoint and halting a running job, for migrating
the applications checkpoint and data files to a different computational resource,
and for resuming the job on the new resource. There is also a means of querying
the CPR system about the state of jobs and checkpoint data.

This checkpointing system is not transparent to the application; the user must
modify their application to use the appropriate APIs. Also, if the user wished
to migrate a running job to a different cluster, then the user is responsible for
ensuring that the checkpoint data is written in a portable manner.

One of the novel features of TCS is that it allows the user to set the policy for
where checkpoint data should be stores. Currently supported policies include
on node-local disks, using a parity scheme over several nodes, and entirely off-
processor.

Key functions

• API for application state writing and reading.

• Services for failure notification.

• Services for job management.

• Services for checkpoint data transport.

• Services for checkpoint data management.

• Collaboration with accounting services.

3.3 European DataGrid

CPR in the European DataGrid (EDG) [13] Added: and EGEE [2], its successor
project, is used to provide some form of fault-tolerance to jobs, which is partic-
ularly important for long-running jobs, such as those in High Energy Physics.
In this system, the developer is responsible for determining the job state that
must be saved and restored. The system is responsible for noticing failures and
automatically resubmitting jobs for further execution.

gridcpr-wg@ogf.org 7

GWD-I.91 Producer Use-Cases Within Scope March 15, 2007

The primary purpose of Grid checkpointing within the EDG project [13] is for
fault-tolerance. In the event of a failure, it attempts to avoid having to re-
run jobs from the beginning. This provides better resource utilization, since
computations are only performed. This is in particular important for long run-
ning jobs, as is the case for many of the target HEP (High Energy Physics)
applications that can run for many hours or days.

In the EDG, the user is responsible for determining what part of the job state
must be saved in order to correctly restart. It is also up to the user to determine
the points in jobs execution at which the state must be saved. Furthermore,
the application Deleted: Also, the application must be instrumented to be able
to restart from a previously saved state. This is all done by instrumenting the
code with the proper EDG Grid Checkpointing APIs.

Given this framework, EDG now supports two main use-cases:

• An instrumented job runs on a computing resource and periodically saves
its state. Lets suppose that a Grid failure, i.e. a failure external to the
job (e.g. a failure in the computing resource where the job was running)
occurs. If the Grid middleware is able to detect the failure, the EDG
Workload Management System automatically (assuming that the user has
enabled this option) reschedules the job and resubmits the job to a (possi-
bly different) compatible resource. When the job restart its execution, the
last saved state is retrieved, and the application restarts the computation
from that point.

• If some other undetected failure occurs while an instrumented job is run-
ning, EDG allows the user to manually restart the job from one of the
previously saved checkpoints. Although it is not possible to use this ap-
proach to recover from arbitrary failures (e.g., incorrect input data), it
is possible to correct certain failures before resuming (e.g., missing input
data file).

Another scenario where job checkpointing is used in the EDG environment is
called job partitioning. The idea is that a job can be partitioned in sub-jobs,
which can be executed in parallel. Then a job aggregator is responsible to collect
the results of these sub-jobs (represented by their final states) and provides the
overall results.

The EDG project also plans to exploit Grid Checkpointing for job preemption.
In this scenario, it might be necessary to migrate jobs from a computational
resources for a certain reason (e.g. because that machine must be used to run
an other job with higher priority), but this functionality is not yet supported.

Key functions

• API for application state writing and reading.

gridcpr-wg@ogf.org 8

GWD-I.91 Use-Cases Outside of Scope March 15, 2007

• Services for failure notification.

• Services for job management.

• Services for checkpoint data transport.

• Services for checkpoint data management.

• Services for sub-job result collection and aggregation.

• Services for priority-based scheduling and preemption (planned).

3.4 GridLab

In the GridLab project [21, 5], a job, consisting of one or more processes, is
running on a Grid machine. In the middle of the run, the job may be forced
to migrate to a different machine, possibly with a different architecture and/or
number of CPUs. The application program may either decide by itself to migrate
(e.g. poor performance on the current machine) or may be forced to do so, either
by the user (via an application manager) or by the local resource management
software that wishes to evict the job. The main purpose of GridCPR in GridLab
thus is the ability to interrupt and migrate a job until it finally terminates.
Fault-tolerance is only a secondary aspect.

An extension of the above use-case is dealing with jobs that run concurrently
at multiple Grid sites.

Applications save their state to regular files. Checkpoint meta data can be
stored in GridLabs ”advert service”, allowing the checkpoint file(s) to be found
and retrieved after restart. File transport is done via GridLabs data movement
service (or via GridFTP) [6].

Key functions

• Services for checkpoint data transport, via GridLabs data movement ser-
vice or GridGTP.

• Services for checkpoint data management, via Advert Service.

• Services to enable checkpoint of jobs at multiple Grid sites.

4 Use-Cases Outside of Scope

A number of SLC-based use-cases were submitted to this working group for
consideration. Since they do not allow application developers to write portable,
resource- independent code to handle checkpointing and recovery operations in

gridcpr-wg@ogf.org 9

GWD-I.91 Summary and Requirements March 15, 2007

a consistent manner across different Grid resources, SLC systems are outside of
the current scope of the GridCPR working group. We mention them here for
completeness1.

4.1 Kerrighed.

The Kerrighed system [8] provides a single system image OS than can be run
within and across clusters. Its goal is to provide SLC of sequential and parallel
jobs, and to enable transparent failover and migration of such jobs within a
cluster federation. Loosely-coupled distributed jobs are handled by forcing pro-
cesses to checkpoint when certain communication occurs and by affixing certain
causality information to messages.

4.2 MPICH-GF.

MPICH-GF [15] supports user-transparent SLC for fault tolerance of MPI jobs
running within a homogeneous computing environment. MPICH-GF is pro-
vided as a library that is linked with the unmodified application source code.
The system provides checkpointing and message logging and a job management
system that monitors the job, periodically sends checkpoint signals to the job,
and restart the job if a failure occurs.

4.3 Dj Vu.

Dj Vu [1] provides transparent SLC for stock native jobs. In addition to state-
saving, it also uses dynamic linking to provide alternative versions of certain
system libraries. This enables Dj Vuto support the execution of certain system
calls across checkpoints and to support reliable transport protocols for network
communication.

5 Summary and Requirements

There are a minimum set of APIs and services that are required in order to
implement the use-cases described above. In this section, we discuss these, vis-
a-vis the use-cases. In the Architecture document that will also be developed by
this working group, these APIs and services will be described in much greater
detail.

Figure 1 shows the relationship between an application and the various APIs
and services. The first thing to notice is that the box labelled Application

1One can envision SLC systems leveraging functions of GridCPR systems (e.g., checkpoint
data reading/writing, transport and management). Nevertheless, since they are fundamentally
system-level, homogeneous or not Grid related, as applications, they are outside of scope.

gridcpr-wg@ogf.org 10

GWD-I.91 Summary and Requirements March 15, 2007

contains a box labelled Computation. Some of the use-cases envisions an existing
computation being directly modified to interact with a GridCPR system. This
could be done via an automatic program transformation tool, like C3 or by
changes to an application framework, like Cactus or XCAT3. In other use-cases,
there is an agent that is external to the core computation that is responsible
for ensuring the continuation of the computation. EDG and RealityGrid are
examples of this.

State

Reading/

Writing

Chkpt.

Mgt.

Failure

Notific.
Job

Mgt.

Computation

Application

TransportAAA

Figure 1: Architecture from Application point-of-view

Whatever the configuration, the Application interacts with the GridCPR system
via a set of four APIs2. In addition to the APIs, several of the use-cases also
presupposed the existence of certain services. These are shown as disconnected
components of the archicture in Figure 1. That is, the services are necessary for
the use-cases to be implemented, but the Applications do not necessarily need
to directly interact with these services.

The APIs shown in Figure 1 are as follows:

Application state writing and reading. Functions must be provided for
writing and reading the application variables to the checkpoint data that is
managed by the GridCPR system.

Checkpoint data management. Once the checkpoint data has been cre-
ated, it needs to be Added: stored and managed. For example, there needs to
functions for deleting checkpoint data that is no longer needed. Also, this API
should provide a mechanism for querying the meta-data that is associated with
checkpoint data.

Failure/event notification. Some of the use-cases provide agents that

2None of the use-cases clearly required accessing the GridCPR system by, for instance,
command-line or GUI tools, but these tools are clearly desirable and implementable using
these APIs.

gridcpr-wg@ogf.org 11

GWD-I.91 Intellectual Property Issues March 15, 2007

reschedule jobs that fail during their execution. In order to do this, there must
be a mechanism for the agents to discover that failures have occurred.

Job management. In order for an agent to reschedule a failed job, these
must be functions for interacting with a scheduling service.

It is assumed that there are services associated with the APIs described above.
In addition to these, the following services are shown in Figure1:

Checkpoint data transport. In order for a job to be started on a different
Grid computing resource than the one on which its checkpoint data was cre-
ated, there must be a mechanism for transferring checkpoint data between Grid
computing resources. Several of the use-cases, such as SRS and TCS, currently
provide such transport mechanism for checkpoint data.

Authentication, authorization, and accounting. None of the use-cases
explicitly discussed security, but data integrity is clearly a necessary require-
ment for Grid computing. There must be associated services to support these
functions. One of the use-cases mentioned crediting a users account for time
lost when a computing resource fails.

6 Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. 0085969. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not
necessarily reect the views of the National Science Foundation.

7 Security Considerations

Added: As stated at the end of Section 5, none of the use-cases explicitly
discussed security, but data integrity is an obvious requirement for Grid com-
puting.

Added: Apart from that specific requirement, any implementation of a Grid-
CPR system should strive to ensure secure communication, data (i.e. check-
point) management etc, as ususal. These requirements are, however, not specific
for CPR systems, bu apply to Grid service infrsatructures in general, and are
hence out of scope for this document.

gridcpr-wg@ogf.org 12

GWD-I.91 Intellectual Property Issues March 15, 2007

8 Intellectual Property Issues

8.1 Editor information

This document is the result of the joint efforts of several authors, listed on
the title page. The editors listed here are those committed to taking permanent
stewardship for this document. They can be contacted in the future for inquiries
about this document.

Paul Stodghill Andre Merzky
stodghil@cs.cornell.edu andre@merzky.net
Upson Hall, Cornell University Vrije Universiteit
Department of Computer Science Dept. of Computer Science
Ithaca, NY, 14853 De Boelelaan 1083
United States 1081HV Amsterdam
USA Phone: 607-254-8838 The Netherlands

8.2 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover tech-
nology that may be required to practice this recommendation. Please address
the information to the OGF Executive Director.

8.3 Disclaimer

This document and the information contained herein is provided on an ”As
Is” basis and the OGF disclaims all warranties, express or implied, including
but not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

gridcpr-wg@ogf.org 13

GWD-I.91 References March 15, 2007

8.4 Full Copyright Notice

Copyright (C) Open Grid Forum (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the OGF Document process must
be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

References

[1] FIXME: Missing DejaVu Reference.

[2] Enabling Grids for E-sciencE (EGEE). http://public.eu-egee.org/.

[3] The Cactus Code Server. http://www.cactuscode.org/.

[4] The RealityGrid Project. http://www.realitygrid.org/.

[5] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann,
A. Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schütt, E. Sei-
del, and B. Ullmer. The Grid Application Toolkit: Towards Generic and
Easy Application Programming Interfaces for the Grid. Proceedings of the
IEEE, 93(3):534–550, 2005.

[6] G. Allen, T. Goodale, H. Kaiser, T. Kielmann, A. Kulshrestha, and R. v. N.
Andre Merzky. A Day in the Life of a Grid-Enabled Application: Counting
on the Grid. In Proceedings of the Workshop on Grid Application Program-
ming Interfaces September 20, 2004, Brussels, Belgium In conjunction with
GGF12, 2004.

[7] G. Allen, T. Goodale, G. Lanfermann, T. Radke, D. Rideout, and J. Thorn-
burg. Cactus Users Guide, 2004.

[8] R. Badrinath, C. Morin, and G. Valle. Checkpointing and recovery of
shared memory parallel applications in a cluster. In Proc. Intl. Workshop
on Distributed Shared Memory on Clusters (DSM 2003, Held in conjunction
with CCGrid 2003.), page 471477, May 2003.
http://www.inria.fr/rrrt/rr4806.html.

gridcpr-wg@ogf.org 14

http://public.eu-egee.org/
http://www.cactuscode.org/
http://www.realitygrid.org/
http://www.inria.fr/rrrt/rr4806.html

GWD-I.91 References March 15, 2007

[9] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Automated
application-level checkpointing of MPI programs. In ACM Symposium on
Principles and Practice of Parallel Programming (PPoPP 2003), 2002.

[10] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Collective Oper-
ations in an Applicationlevel Fault Tolerant MPI System. In International
Conference on Supercomputing (ICS) 2003, San Francisco, CA, June 2326,
2003.

[11] J. M. Brooke, P. V. Coveney, J. Harting, S. Jha, S. M. Pickles, R. L.
Pinning, and A. R. Porter. Computational Steering in RealityGrid. In
Proceedings of the UK e-Science All Hands Meeting, September 2-4 2003.
http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/179.pdf.

[12] J. Chin, J. Harting, S. Jha, P. V. Coveney, A. R. Porter, and
S. M. Pickles. Steering in Computational Science: Mesoscale
Modelling and Simulation. Contemporary Physics, 44:417 – 434,
2003. http://taylorandfrancis.metapress.com/openurl.asp?genre=
article&eissn=13665812&volume=44&issue=5&spage=417.

[13] A. Gianelle, R. Peluso, and M. Sgaravatto. Datagrid: Job Partitioning and
Checkpointing, June 3 2002. https://edms.cern.ch/document/347730.

[14] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, and
J. Shalf. The Cactus framework and toolkit: Design and applications. In
5th International Conference on Vector and Parallel Processing - VEC-
PAR2002, Lecture Notes in Computer Science, Berlin, 2003. Springer.

[15] S. Kim, N. Woo, H. Y. Yeom, T. Park, and H. Park. Design and Im-
plementation of Dynamic Process Management for Grid-enabled MPICH.
In Proceedings of the 10th European PVM/MPI Users Group Conference,
Venice, Italy, September 2003.

[16] S. Krishnan and D. Gannon. Checkpoint and Restart for Distributed Com-
ponents in XCAT3. Grid 2004, 5th IEEE/ACM International Workshop
on Grid Computing, 2004.

[17] S. Pickles. On the Use of Checkpoint/Recovery in RealityGrid, January
2004.
http://gridcpr.psc.edu/GGF/docs/ReG-GridCPR-use-cases.pdf.

[18] S. Pickles, R. Pinning, A. Porter, G. Riley, R. Ford, K. Mayes, D. Snelling,
J. Stanton, S. Kenny, and S. Jha. The RealityGrid Computational Steering
API – Version 1.0. Technical report, July 2003. unpublished.

[19] S. M. Pickles, P. V. Coveney, and B. M. Boghosian. Transcontinental
RealityGrids for Interactive Collaborative Exploration of Parameter Space
(TRICEPS). Winner of SC03 HPC Challenge competition in the category
Most Innovative Data-Intensive Application, http://www.scconference.
org/sc2003/inter cal/inter cal detail.php?eventid=10701#5.

gridcpr-wg@ogf.org 15

http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/179.pdf
http://taylorandfrancis.metapress.com/openurl.asp?genre=article&eissn=13665812&volume=44&issue=5&spage=417
http://taylorandfrancis.metapress.com/openurl.asp?genre=article&eissn=13665812&volume=44&issue=5&spage=417
https://edms.cern.ch/document/347730
http://gridcpr.psc.edu/GGF/docs/ReG-GridCPR-use-cases.pdf
http://www.scconference.org/sc2003/inter_cal/inter_cal_detail.php?eventid=10701#5
http://www.scconference.org/sc2003/inter_cal/inter_cal_detail.php?eventid=10701#5

GWD-I.91 References March 15, 2007

[20] J. S. Plank, M. Beck, W. R. Elwasif, T. Moore, M. Swany, and R. Wolski.
The Internet Backplane Protocol: Storage in the Network. In NetStore99:
The Network Storage Symposium, Seattle, WA, USA, 1999.

[21] E. Seidel, G. Allen, A. Merzky, and J. Nabrzyski. GridLab - a Grid Appli-
cation Toolkit and TestBed. Future Generation Computer Systems – Grid
Computing: Towards a new Computing Infrastructure, 18(8):1143–1153,
October 2002.

[22] D. Simmel, T. Kielmann, and N. Stone. Charter, Grid Checkpoint Recovery
Working Group (GridCPR). Technical report, Global Grid Forum, January
2004.
http://gridcpr.psc.edu/GGF/charter/GridCPR-WG-charter.1.2.txt.

[23] N. Stone, J. Kochmar, R. Reddy, J. R. Scott, J. Sommer-
field, and C. Vizino. A Checkpoint and Recovery System for
the Pittsburgh Supercomputing Center Terascale Computing System.
Technical report, Pittsburgh Supercomputing Center, December 3
2003. http://www.psc.edu/publications/tech reports/chkpt rcvry/
checkpoint-recovery-1.0.html.

[24] S. Vadhiyar and J. Dongarra. SRS: A Framework for Developing Malleable
and Migratable Parallel Applications for Distributed Systems. Parallel
Processing Letters, 13(2):291–312, 2003.

gridcpr-wg@ogf.org 16

http://gridcpr.psc.edu/GGF/charter/GridCPR-WG-charter.1.2.txt
http://www.psc.edu/publications/tech_reports/chkpt_rcvry/checkpoint-recovery-1.0.html
http://www.psc.edu/publications/tech_reports/chkpt_rcvry/checkpoint-recovery-1.0.html

	Introduction
	Consumer Use-Cases Within Scope
	C3
	Cactus
	RealityGrid
	XCAT3

	Producer Use-Cases Within Scope
	SRS
	TCS
	European DataGrid
	GridLab

	Use-Cases Outside of Scope
	Kerrighed.
	MPICH-GF.
	DÃ©jÃ€ Vu.

	Summary and Requirements
	Acknowledgements
	Security Considerations
	Intellectual Property Issues
	Editor information
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice

	References

