
GWD-R.73 Andre Merzky
SAGA-RG Vrije Universiteit, Amsterdam

Version: 0.1 January 18, 2007

SAGA API Extension: Message API

Status of This Document

This document provides information to the grid community, proposing a stan-
dard for an extension to the Simple API for Grid Applications (SAGA). As such
it depends upon the SAGA Core API Specification [1]. This document is sup-
posed to be used as input to the definition of language specific bindings for this
API extension, and as reference for implementors of these language bindings.
Distribution of this document is unlimited.

Copyright Notice

Copyright c© Open Grid Forum (2006). All Rights Reserved.

Abstract

This document specifies a Message API extension to the Simple API for Grid
Applications (SAGA), a high level, application-oriented API for grid application
development. This Message API is motivated by a number of use cases collected
by the OGF SAGA Research Group in GFD.70 [2], and by requirements derived
from these use cases, as specified in GFD.71 [3]). It adds an additional layer
of abstraction to the SAGA Stream API, which is described in the SAGA Core
API specification [1].

Contents

1 Introduction 2

1.1 Notational Conventions . 2

1.2 Security Considerations . 3

2 SAGA Message API 4

GWD-R.73 Introduction January 18, 2007

2.1 Introduction . 4

2.2 Specification . 9

2.3 Specification Details . 12

2.4 Examples . 21

3 Intellectual Property Issues 22

3.1 Contributors . 22

3.2 Intellectual Property Statement 22

3.3 Disclaimer . 23

3.4 Full Copyright Notice . 23

References 24

1 Introduction

A significant number of SAGA use cases [2] covers data visualization systems.
The common communication mechanism for this set of use cases seems to be
the exchange of large messages between different applications. These applica-
tions are thereby often demand driven, i.e. require asynchronous notification of
incoming messages, and react on these messages independent from their origin.
Also, these use cases often include some form of pulish-subscriber mechanism,
where a server provides data messages to any number of interested consumers
(publish/subscribe).

This API extension is tailored to provide exactly this functionality, at the same
time keeping coherence with the SAGA Core API look & feel, and keeping other
Grid related boundary conditions (in particular middleware abstraction and
authentication/authorization) in mind.

1.1 Notational Conventions

In structure, notation and conventions, this documents follows those of the
SAGA Core API specification [1], unless noted otherwise.

saga-rg@ogf.org 2

GWD-R.73 Introduction January 18, 2007

1.2 Security Considerations

As the SAGA API is to be implemented on different types of Grid (and non-
Grid) middleware, it does not specify a single security model, but rather provides
hooks to interface to various security models – see the documentation of the
saga::context class in the SAGA Core API specification [1] for details.

A SAGA implementation is considered secure if and only if it fully supports
(i.e. implements) the security models of the middleware layers it builds upon,
and neither provides any (intentional or unintentional) means to by-pass these
security models, nor weakens these security models’ policies in any way.

saga-rg@ogf.org 3

GWD-R.73 SAGA Message API January 18, 2007

2 SAGA Message API

2.1 Introduction

The SAGA Message API provides a mechanism to communicate opaque mes-
sages between applications. The intent of the API package is to provide a higher
level abstraction on top of the SAGA Stream API: the exchange of opaque mes-
sages is in fact the main motivation for the SAGA Stream API, but it requires a
considerable amount of user level code in order to implement this use case with
the current SAGA Stream API. In contrast, this message API extension guar-
antees that message blocks of arbitrary size are delivered in order, and intact,
without the need for additional application level coordination or synchroniza-
tion.

Any compliant implementation of the SAGA Message API will imply the utiliza-
tion of a communication protocol – that may, in reality, limit the interoperability
of implementations of this API. This document will, however, not address pro-
tocol level interoperability – other documents outside the SAGA API scope may
address it separately.

This SAGA API extension inherits the object, async and monitorable inter-
faces from the SAGA Core API [1]. It CAN be implemented on top of the
SAGA Stream API [ibidem].

2.1.1 Endpoint URLs

The endpoint URLs used in the SAGA Message API follow the conventions
lay-ed out for the SAGA Stream API [1].

2.1.2 State Model

The state model for message endpoint instances is very simple: an endpoint
gets constructed in New state. A successful call to serve() or connect() moves
it into Open state, where it can send and receive messages. A call to close()
moves it into the only final state, Closed.

Note that the Open state does not imply any active connection. E.g., no client
may have connected yet after serve() has been called. Or a connection which
has been established with connect() may have been dropped by the remote side.
The Open state only signals that the methods send() and recv() can be called
on the endpoint instance. These methods will fail gracefully of no connection is
active: send() will silently discard the message to send, and recv() will block

saga-rg@ogf.org 4

GWD-R.73 SAGA Message API January 18, 2007

Final State

Open

New

Closed

endpoint::close()

CONSTRUCTOR()

Initial State

endpoint::connect()
endpoint::serve()

Figure 1: The SAGA Message endpoint state model

until a connection is (re-)established, and a new message arrives.

2.1.3 Classes

The SAGA Message API consists of two classes: a msg class, encapsulating an
opaque message to sent, or an opaque message received; and a endpoint class,
representing the sending and receiving end for a sequence of opaque messages.

A message sent by a endpoint is received by all endpoints which connect()ed
to that sending endpoint. A endpoint can test() for the availability of a mes-
sage, and can receive() it. A endpoint can also be notified of incoming mes-
sages, by using the asynchronous notification mechanisms of the monitorable
interface, as described in [1].

2.1.4 Memory Management

Sending Messages On sending messages, memory management (allocation
and deallocation) is always performed on application level. Depending on the

saga-rg@ogf.org 5

GWD-R.73 SAGA Message API January 18, 2007

actual language bindings, message data will be passed by-reference (preferred)
or by-value. If passed by-reference, the implementation MUST NOT access the
message data memory block before a send() operations starts, nor after the
send() operation finishes. The application MUST NOT change the size of a
message nor the content of a message while a send() operation with this message
is in progress – the methods would cause an IncorrectState exception then.
If the message data block is larger than the size of the given msg instance, the
message is truncated, and no error is returned. The Application MUST ensure
that the given message size is indeed the accessible size of the given message
block, otherwise the behavior of the send is undefined.

Receiving Messages When receiving messages, the application can choose
to perform memory management for the messages itself, or to leave memory
management to the implementation.

For application level memory management hold similar restrictions as listed
above for sending: the implementation MUST NOT access the memory block
before or after the recv() operation is active, and the application MUST NOT
change size or content of the message data block while the receive() operation
is active. If the received message is larger than the size of the given msg instance,
the message is truncated, and no error is returned. The Application MUST
ensure that the given message size is indeed the accessible size of the given
message block.

Memory is managed by the API implementation if the msg instance is created
with a negative size argument (e.g. -1). If the message is under implementation
management, the data block of the msg instance gets allocated by the implemen-
tation, and MUST NOT be accessed by the application before the receive()
operation completed successfully, nor after the msg instance has been deleted
(e.g. went out of scope).

An implementation managed msg instance MUST refuse to perform a set_size()
or set_data() operation, throwing an IncorrectState exception. A message
put under implementation memory management always remains under imple-
mentation memory management, and cannot be used for application level mem-
ory management anymore. Also, a message under application memory manage-
ment cannot be put under implementation management later, i.e. set_size()
cannot be called with negative arguments – that would raise a BadParameter
exception.

If an implementation runs out of memory while receiving a message into a
implementation managed msg instance, a NoSuccess exception with the error
message “insufficient memory” MUST be thrown.

saga-rg@ogf.org 6

GWD-R.73 SAGA Message API January 18, 2007

2.1.5 Asynchronous Notification and Connection Management

Event driven applications are a major use case for the SAGA Message API –
asynchronous notification is thus of some importance for this API extension. It
is, in general, provided via the monitoring interface defined in the SAGA Core
API Specification [1].

The available metrics on the endpoint class allow to monitor the endpoint
instance for connecting, disconnecting and dropping client connections, for state
changes, and for incoming messages. The last is probably the most important
metric, and allows to receive messages asynchronously.

The connection inspection metrics, RemoteConnect, RemoteDisConnect, and
RemoteDropped try to identify the respective remote party by its connection
URL. That URL is, however, not always always available, and the notification
mechanism may not allow the application to distinguish which client failed.
That is, at the moment, intentional: we imagine the main use case to be the
publisher/subscriber model, where a server serves any number of interested
clients, and where clients receive data from usually one service. Also, we think
that it is, in most use cases, unimportant from where a message originates.

Harder requirements on connection management would imply, in our opinion, ei-
ther (a) a much more complex API, or (b) a point-to-point connection paradigm
(such as the SAGA Streams, i.e. without support for publish/subscriber).

2.1.6 Connection Topology

NEW
The message API as presented here allows for two different connection topolo-
gies: PointToPoint and MessageBus. The topology type is can be specified by
a flag on the creation of an endpoint instance. The topology level is therefor
constant for the lifetime of an endpoint, and for all connections on that end-
point. Two endpoints which communicate with each other MUST use the same
topology type – otherwise the connection setup with connect() will fail with
an NoSuccess exception. The topology defaults to PointToPoint.

In either topology, the number of clients connecting to a server (which called
serve() can be limited by an integer argument to serve(). This argument is
optional and defaults to -1 (no limit). A connect() always implies the setup
of a single connection.

PointToPoint Topology: PointToPoint topology means that two partici-
pating parties can interchange messages in both directions (both endpoints
can send() and recv() messages). However, messages sent to an endpoint

saga-rg@ogf.org 7

GWD-R.73 SAGA Message API January 18, 2007

are received only by that endpoint, and are not received by any other clients
connected to that endpoint.

MessageBus Topology: PointToPoint topology means that two participating
parties can interchange messages in both directions (both endpoints can send()
and recv() messages). However, messages sent to an endpoint are also received
by all other clients connected to that endpoint (this property is transitive).

In this topology, all endpoints which are (directly or indirectly) connected to
each other receive all messages sent from any of the connected endpoints to
any other one.

2.1.7 Reliability, Correctness and Order

NEW
The use cases addressed by the SAGA Message API cover a variety of reliable
and unreliable message transfers. The level of reliability required for the message
transfer can be specified by a flag on the creation of an endpoint instance. The
reliability level is therefor constant for the lifetime of an endpoint, and for all
connections on that endpoint. Two endpoints which communicate with each
other MUST use the same reliability level – otherwise the connection setup
with connect() will fail with an NoSuccess exception. The reliability level
defaults to Reliable.

The available realiability levels are:

Unreliable: messages MAY (or may not) reach the remote clients.
Atomic: Unreliable, but a message received by one client is

guaranteed to (MUST) arrive at all clients.
SemiReliable: messages are guaranteed to (MUST) arrive at all

clients, but may arrive more than once.
Reliable: all messages are guaranteed to (MUST) arrive at

all clients.

If a connection setup requires unreliable message transfer, the implementation
CAN be unreliable, atomic or reliable. If it requires atomic transfer, the
implementation CAN be atomic or reliable. If it requires reliable transfer,
the implementation MUST be reliable.

Message MUST be received at-most-once.

saga-rg@ogf.org 8

GWD-R.73 SAGA Message API January 18, 2007

A message MUST be received completely and correct, or not at all.

The order of sent messages MUST be preserved by the implementation. Global
ordering is, however, not guaranteed to be preserved:

Assume three endpoints A, B and C, all connected to each other. If A sends
two messages [a1, a2], in this order, it is guaranteed that both B and C

receive the messages in this order [a1, a2]. If, however, A sends a mes-
sage [a1] and then B sends a message [b1], C may receive the messages
in either order, [a1, b1] or [b1, a1].

2.2 Specification

package saga.message
{
enum state
{
New = 1,
Open = 2,
Closed = 3

}

enum reliability
{
Reliable = 1,
Atomic = 2,
SemiReliable = 3,
Unreliable = 4

}

enum topology
{
PointToPoint = 1,
MessageBus = 2

}

class msg : implements saga::object
// from object saga::error_handler

{
CONSTRUCTOR (in int size = 0,

out msg obj);
DESTRUCTOR (in msg obj);

set_size (in int size);

saga-rg@ogf.org 9

GWD-R.73 SAGA Message API January 18, 2007

get_size (out int size);

set_data (inout array<byte> buffer);
get_data (out array<byte> buffer);

}

class endpoint : implements saga::object
implements saga::async
implements saga::monitorable

// from object saga::error_handler
{
CONSTRUCTOR (in session session,

in int reliable = 1,
in int topology = 1,
out sender obj);

DESTRUCTOR (in sender obj);

// inspection methods
get_url (out string url);
get_receivers (out array<string> urls);

// management methods
serve (in string url = "",

in int n = -1);
connect (in float timeout = -1.0,

in string url);
close (void);

// I/O methods
send (in float timeout = -1.0,

in msg msg);
test (in float timeout = -1.0,

out int size);
recv (in float timeout = -1.0,

inout msg msg);

// Attributes:
// name: Reliability
// desc: informs about the reliability level
// of the endpoint
// mode: ReadOnly
// type: Enum
// value: "Reliable"
//
// name: Topology
// desc: informs about the connection topology

saga-rg@ogf.org 10

GWD-R.73 SAGA Message API January 18, 2007

// of the endpoint
// mode: ReadOnly
// type: Enum
// value: "PointToPoint"
//
//
// Metrics:
// name: State
// desc: fires if the sender state changes
// mode: Read
// unit: 1
// type: Enum
// value: "New"
//
// name: RemoteConnect
// desc: fires if a receiver connects
// mode: Read
// unit: 1
// type: String
// value: ""
// notes: - this metric can be used to perform
// authorization on the connecting receivers.
// - the value is the endpoint URL of the
// remote party, if known.
//
// name: RemoteDisConnect
// desc: fires if a receiver disconnects or the
// connection dropped
// mode: Read
// unit: 1
// type: String
// value: ""
// notes: - the value is the endpoint URL of the
// remote party, if known.
//
// name: RemoteDropped
// desc: fires if the connection gets dropped by
// the remote sender
// mode: Read
// unit: 1
// type: String
// value: ""
// notes: - the value is the endpoint URL of the
// remote party, if known.
//
// name: Message

saga-rg@ogf.org 11

GWD-R.73 SAGA Message API January 18, 2007

// desc: fires if a message arrives
// mode: Read
// unit: 1
// type: String
// value: ""
// notes: - the value is the endpoint URL of the
// sending party, if known.

}
}

2.3 Specification Details

class msg

The msg object encapsulates a sequence of bytes to be communicated between
applications. A msg instance can be sent (by an endpoint calling send()), or
received (by an endpoint calling recv()). A message does not belong to a
session, and a msg object instance can thus be used in multiple sessions, for
multiple endpoints.

- CONSTRUCTOR
Purpose: create a new message object
Format: CONSTRUCTOR (in int size = 0,

out sender obj);
Inputs: size: the size of the message
Outputs: obj: new message object
Throws: NotImplemented

NoSuccess
Notes: - see notes to memory management

- DESTRUCTOR
Purpose: Destructor for sender object.
Format: DESTRUCTOR (in sender obj)
Inputs: sender: object to be destroyed
Outputs: -
Throws: -
PostCond: - the connection is closed.
Notes: - see notes to memory management.

saga-rg@ogf.org 12

GWD-R.73 SAGA Message API January 18, 2007

- set_size
Purpose: set the size of the message data buffer
Format: set_size (in int size);
Inputs: size: size of data buffer
Outputs: -
Throws: NotImplemented

BadParameter
IncorrectState
NoSuccess

Notes: - see notes to memory management.
- size must be positive, otherwise a
’BadParameter’ exception is thrown.

- set_size() cannot be called on an
implementation managed msg instance.
That raises a ’IncorrectState’ exception.

- the method does not cause a memory resize etc,
but merely informs the implementation on the
size to be used for the data buffer on send()
or recv().

- get_size
Purpose: get the size of the message data buffer
Format: get_size (out int size);
Inputs: -
Outputs: size: size of data buffer
Throws: NotImplemented

NoSuccess
Notes: - see notes to memory management.

- on application managed messages, the call
returns exactly the value which was set during
construction, or via set_size().

- on implementation managed buffers, the call
returns the currently allocated buffer size.
That size can reliably be used to access the
data buffer.

- set_data
Purpose: set the data buffer for the message
Format: set_data (inout array<byte> buffer);
Inputs: -
InOuts: buffer data buffer for message
Outputs: -
Throws: NotImplemented

IncorrectState

saga-rg@ogf.org 13

GWD-R.73 SAGA Message API January 18, 2007

NoSuccess
Notes: - see notes to memory management.

- set_data() cannot be called on an
implementation managed msg instance.
That raises a ’IncorrectState’ exception.

- the given data buffer will not be resized, or
reallocated, or deallocated by the
implementation, but only read from or written
to. In can thus be, for example, a mmapped
memory segment.

- get_data
Purpose: get the data buffer for the message
Format: get_data (out array<byte> buffer);
Inputs: -
Outputs: buffer data buffer for message
Throws: NotImplemented

NoSuccess
Notes: - see notes to memory management.

- get_data() returns the current message buffer.
Depending on the language binding, that can be
a reference to the actual buffer (which avoids
memcopies, preferred), or a copy of the
message buffer.

- if a reference is returned for a implementation
managed msg instance, that reference MUST NOT
be changed by the application, and MUST NOT be
accessed after the msg instance is destroyed,
e.g. goes out of scope.

- the returned buffer may be empty or NULL.

class endpoint

The endpoint object represents a connection endpoint for the message exchange,
and can send() and recv() messages. It can be connected to other endpoints
(connect()), and can be contacted by other endpoints (serve()). All other
endpoints connected to the endpoint instance will receive the messages sent
on that endpoint instance. The endpoint instance will also receive all mes-
sages sent by any of the other endpoints (global order is not guaranteed to be
preserved!).

saga-rg@ogf.org 14

GWD-R.73 SAGA Message API January 18, 2007

- CONSTRUCTOR
Purpose: create a new endpoint object
Format: CONSTRUCTOR (in session session,

in int reliable = 1,
in int topology = 1,
out endpoint obj);

Inputs: session: session to be used for
object creation

reliable: flag defining transfer
reliability

topology: flag defining connection
topology

Outputs: obj: new endpoint object
Throws: NotImplemented

NoSuccess
PostCond: - the endpoint is in ’New’ state, and can now

serve client connections (see serve()), or
connect to other endpoints (see connect()).

- DESTRUCTOR
Purpose: Destructor for sender object.
Format: DESTRUCTOR (in sender obj)
Inputs: sender: object to be destroyed
Outputs: -
Notes: -

inspection methods:

- get_url
Purpose: get URL to be used to connect to this server
Format: get_url (out string url);
Inputs: -
Outputs: url: string containing the

contact URL of this
endpoint.

Throws: NotImplemented
IncorrectState

Notes: - returns a URL which can be passed to the
receiver constructor to create a client
connection to this endpoint.

- this method can only be called after serve()

saga-rg@ogf.org 15

GWD-R.73 SAGA Message API January 18, 2007

has been called - otherwise an
’IncorrectState’ exception is thrown. The
return of a URL does not imply a guarantee
that a endpoint can successfully connect with
this URL (e.g. the URL may be outdated on
’Closed’ endpoints).

- get_receivers
Purpose: get the endpoint URLs of connected clients
Format: get_url (out array<string> urls);
Inputs: -
Outputs: urls: endpoint URLs of connected

clients.
PreCond: - the sender is in ’Open’ state.
Throws: NotImplemented

IncorrectState
Notes: - the method causes an ’IncorrectState’

exception if the sender instance is not in
’Open’ state.

- the returned list can be empty
- if a remote endpoint does not has a URL (e.g.
if it did not yet call serve()), the
returned array element is an empty string.
That allows to count the connected clients.

management methods:

- serve
Purpose: start to serve incoming client connections
Format: serve (in string url = "",

in int n = -1);
Inputs: url: specification for

connection setup
n: number of clients to

accept
Outputs: -
Throws: IncorrectState

IncorrectURL
AuthorizationFailed
AuthenticationFailed
PermissionDenied
NoSuccess

PreCond: - the endpoint is in ’New’ or ’Open’ state, but
did not yet call serve().

saga-rg@ogf.org 16

GWD-R.73 SAGA Message API January 18, 2007

PostCond: - the endpoint is in ’Open’ state, and accepts
client connections.

Notes: - if the endpoint is not in ’New’ or ’Open’ state
when this method is called, or if serve() was
called on this instance before, an
’IncorrectState’ exception is thrown.

- a close()’d endpoints cannot serve() again
(it is in ’Closed’ state).

- ’n’ defines the number of clients to accept.
If that many clients have been accepted
successfully (e.g. messages could have been
sent to / received from these clients), the
serve call finishes.

- if ’n’ is set tp ’-1’, the default, no limit
on the accepted clients is applied.

- the given URL can be used to specify the
protocol, network interface, port number etc,
but could also be empty - the implementation
will then use a default value. That default
MUST be documented by the implementation.

- the URL error semantics as defined in the SAGA
Core API specification applies.

- connect
Purpose: connect to another endpoint
Format: serve (in float timeout = -1.0,

in string url);
Inputs: timeout: seconds to wait

url: specification for
connection setup

Outputs: -
Throws: IncorrectState

IncorrectURL
AuthorizationFailed
AuthenticationFailed
PermissionDenied
Timeout
NoSuccess

PreCond: - the endpoint is in ’New’ or ’Open’ state.
PostCond: - the endpoint is in ’Open’ state, and can

send and receive messages.
Notes: - if the endpoint is not in ’New’ or ’Open’

state when this method is called, an
’IncorrectState’ exception is thrown.

- a close()’d endpoint cannot be connect()ed

saga-rg@ogf.org 17

GWD-R.73 SAGA Message API January 18, 2007

again (it is in ’Closed’ state).
- if the reliability level of the connecting
and connected endpoint do not match, the
method fails with a ’NoSuccess’ exception,
and a descriptive error message.

- if the connection topology of the connecting
and connected endpoint do not match, the
method fails with a ’NoSuccess’ exception,
and a descriptive error message.

- the URL error semantics as defined in the
SAGA Core API specification applies.

- the timeout semantics as defined in the
SAGA Core API specification applies.

- close
Purpose: close the endpoint, and release all

resources
Format: close (in float timeout = -1.0);
Inputs: timeout: seconds to wait
Outputs: -
Throws: NotImplemented

IncorrectState
Timeout
NoSuccess

PreCond: - the endpoint is in ’Open’ state.
PostCond: - the endpoint is in ’Closed’ state.
Notes: - if the endpoint is not in ’Open’ state when

this method is called, an ’IncorrectState’
exception is thrown.

- the timeout semantics as defined in the
SAGA Core API specification applies.

- a close()’d endpoint cannot serve() or
connect() again.

I/O methods:

- send
Purpose: send a message to all connected endpoints
Format: serve (in float timeout = -1.0,

in msg msg);
Inputs: timeout: seconds to wait

msg: message to send
Outputs: -

saga-rg@ogf.org 18

GWD-R.73 SAGA Message API January 18, 2007

Throws: NotImplemented
IncorrectState
Timeout
NoSuccess

Notes: - if the endpoint is not in ’Open’ state when
this method is called, an ’IncorrectState’
exception is thrown.

- error reporting is non-trivial, as some
message transfer may succeed for some clients,
and not for others. For reliable transfers,
the method MUST raise a ’NoSuccess’ exception
with detailed information about the clients
the transport failed for. For unreliable
transfer, the method MAY raise such an
exception if the implementation deems the
error condition severe enough to disrupt the
communication altogether (i.e. future messages
are unlikely to get through). Again, the
exception must then give detailed information
on the client(s) which failed.

- a timeout can happen for all or for one
client - the returned error MUST indicate
which is the case, and which clients failed.

- the implementation MUST carefully document its
possible error conditions.

- if the endpoint reached the ’Open’ state by
calling serve(), and did not call connect(),
no client endpoint may be connected to this
endpoint instance. That does not cause an
error, but the message is silently discarded.

- the timeout semantics as defined in the
SAGA Core API specification applies.

- test
Purpose: test if a message is available for receive
Format: test (in float timeout = -1.0,

out int size);
Inputs: timeout: seconds to wait

size: size of incoming message
Outputs: -
Throws: NotImplemented

IncorrectState
NoSuccess

Notes: - if the endpoint is not in ’Open’ state when
this method is called, an ’IncorrectState’
exception is thrown.

saga-rg@ogf.org 19

GWD-R.73 SAGA Message API January 18, 2007

- if the endpoint reached the ’Open’ state by
calling serve(), and did not call connect(),
no client endpoint may be connected to this
endpoint instance. That does not cause an
error -- the method will wait for the
specified timeout. The implementation MUST
respect messages originating from connections
which have been established during the timeout
waiting time.

- if no message is available for recv() after
the timeout, the method returns (it does not
throw a ’Timeout’ exception). The returned
size is set to -1.

- if a message is available for recv(), the
returned size is set to the size of the
incoming messages data buffer. The size MUST
be a valid value to be used to construct a new
msg object instance. The message for which
the size was returned MUST be the message
which is returned on the next initiated recv()
call.

- if any (synchronous or asynchronous) recv()
calls are in operation while test is called,
they MUST NOT be served with the incoming
message if size is returned as positive value.
Instead, the next initiated recv() call get
served.

- the timeout semantics as defined in the
SAGA Core API specification applies.

- recv
Purpose: receive a message from remote endpoints
Format: test (in float timeout = -1.0,

inout msg msg);
Inputs: timeout: seconds to wait
InOuts: msg: received message
Outputs: -
Throws: NotImplemented

IncorrectState
Timeout
NoSuccess

Notes: - if the endpoint is not in ’Open’ state when
this method is called, an ’IncorrectState’
exception is thrown.

- if the endpoint reached the ’Open’ state by
calling serve(), and did not call connect(),

saga-rg@ogf.org 20

GWD-R.73 SAGA Message API January 18, 2007

no client endpoint may be connected to this
endpoint instance. That does not cause an
error -- the method will wait for the
specified timeout. The implementation MUST
respect messages originating from connections
which have been established during the timeout
waiting time.

- error reporting is non-trivial, as some
message transfer may succeed for some clients,
and not for others. For reliable transfers,
the method MUST raise a ’NoSuccess’ exception
with detailed information about the clients
the transport failed for. For unreliable
transfer, the method MAY raise such an
exception if the implementation deems the
error condition severe enough to disrupt the
communication altogether (i.e. future messages
are unlikely to get through). Again, the
exception must then give detailed information
on the client(s) which failed.

- if no message is available for recv() after
the timeout, the method throws a ’Timeout’
exception. The application must use test() to
avoid this.

- the timeout semantics as defined in the
SAGA Core API specification applies.

2.4 Examples

TO BE DONE

saga-rg@ogf.org 21

GWD-R.73 Intellectual Property Issues January 18, 2007

3 Intellectual Property Issues

3.1 Contributors

This document is the result of the joint efforts of several contributors. The au-
thors listed here and on the title page are those committed to taking permanent
stewardship for this document. They can be contacted in the future for inquiries
about this document.

Andre Merzky
andre@merzky.net
Vrije Universiteit
Dept. of Computer Science
De Boelelaan 1083
1081HV Amsterdam
The Netherlands

The initial version of the presented SAGA API was drafted by members of the
SAGA Research Group. Members of this group did not necessarily contribute
text to the document, but did contribute to its current state. Additional to the
authors listed above, we acknowledge the contribution of the following people,
in alphabetical order:

Andrei Hutanu (LSU), Hartmut Kaiser (LSU), Pascal Kleijer (NEC), Thilo
Kielmann (VU), Gregor von Laszewski (ANL), Shantenu Jha (LSU), and John
Shalf (LBNL).

3.2 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover tech-
nology that may be required to practice this recommendation. Please address
the information to the OGF Executive Director.

saga-rg@ogf.org 22

GWD-R.73 Intellectual Property Issues January 18, 2007

3.3 Disclaimer

This document and the information contained herein is provided on an ”As
Is” basis and the OGF disclaims all warranties, express or implied, including
but not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

3.4 Full Copyright Notice

Copyright (C) Open Grid Forum (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the OGF Document process must
be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

saga-rg@ogf.org 23

GWD-R.73 Intellectual Property Issues January 18, 2007

References

[1] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, A. Merzky, J. Shalf,
and C. Smith. A Simple API for Grid Applications (SAGA). Grid Forum
Document GFD.xx, 2007. Global Grid Forum.

[2] A. Merzky and S. Jha. A Collection of Use Cases for a Simple API for Grid
Applications. Grid Forum Document GFD.70, 2006. Global Grid Forum.

[3] A. Merzky and S. Jha. A Requirements Analysis for a Simple API for Grid
Applications. Grid Forum Document GFD.71, 2006. Global Grid Forum.

saga-rg@ogf.org 24

	Introduction
	Notational Conventions
	Security Considerations

	SAGA Message API
	Introduction
	Specification
	Specification Details
	Examples

	Intellectual Property Issues
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice

	References

