
GWD-R.72 Tom Goodale, Cardiff University
SAGA-CORE-WG Shantenu Jha, University College London

Thilo Kielmann, Vrije Universiteit, Amsterdam
Andre Merzky, Vrije Universiteit, Amsterdam

John Shalf, Lawrence Berkeley National Laboratory
Christopher Smith, Platform Computing

Version: 1.0 RC.1 August 18, 2006

A Simple API for Grid Applications (SAGA)

Status of This Document

This document provides information to the grid community, proposing a stan-
dard for a simple API for grid applications. It is supposed to be used as input
to the definition of language specific bindings for this API, and by implementors
of these bindings. Distribution is unlimited.

Copyright Notice

Copyright c© Open Grid Forum (2006). All Rights Reserved.

Abstract

This document specifies the Simple API for Grid Applications (SAGA), a high
level, application-oriented API for grid application development. The scope of
this API is derived from the requirements specified in GFD.71 (”A Requirements
Analysis for a Simple API for Grid Applications”).

Contents

1 Introduction 4

1.1 How to read this Document . 4

1.2 Notational Conventions . 4

1.3 Security Considerations . 5

GWD-R.72 August 18, 2006

2 General Design Considerations 6

2.1 API Scope and Design Process 6

2.2 The SIDL Interface Definition Language 10

2.3 Language Binding Issues . 14

2.4 Compliant Implementations . 15

2.5 Object Management . 17

2.6 Asynchronous Operations and Concurrency 21

2.7 State Diagrams . 23

2.8 Execution Semantics and Consistency Model 23

2.9 Optimizing Implementations, Latency Hiding 25

2.10 Configuration Management . 25

2.11 The ’URL Problem’ . 26

2.12 Miscellaneous Issues . 28

3 SAGA API Specification 29

3.1 SAGA Error Handling . 31

3.2 SAGA Base Object . 41

3.3 SAGA Session Handling . 46

3.4 SAGA Context . 51

3.5 SAGA Attribute Interface . 56

3.6 SAGA Monitoring Model . 65

3.7 SAGA Task Model . 85

3.8 SAGA Job Management . 98

3.9 SAGA Name Spaces . 125

3.10 SAGA File Management . 153

3.11 SAGA Replica Management . 168

saga-core-wg@ogf.org 2

GWD-R.72 August 18, 2006

3.12 SAGA Streams . 178

3.13 SAGA Remote Procedure Call 194

4 Intellectual Property Issues 201

4.1 Contributors . 201

4.2 Intellectual Property Statement 202

4.3 Disclaimer . 202

4.4 Full Copyright Notice . 202

A SAGA Code Examples 204

B Known Issues & Feedback 211

References 213

saga-core-wg@ogf.org 3

GWD-R.72 Introduction August 18, 2006

1 Introduction

This document specifies SAGA CORE, the Core of the Simple API for Grid
Applications. SAGA has been defined as a high-level API that directly addresses
the needs of application developers. The purpose of SAGA is two-fold:

1. Provide a simple API that can be used with much less effort compared to
the vanilla interfaces of existing grid middleware. A guiding principle for
achieving this simplicity is the 80–20 rule: serve 80 % of the use cases with
20 % of the effort needed for serving 100 % of all possible requirements.

2. Provide a standardized, common interface across various grid middleware
systems and their versions.

1.1 How to read this Document

This document is an API specification, and as such targets at implementors of
the API , rather than its end users. In particular, this document should not be
confused with a SAGA Users’ Guide. This document might be useful as an API
reference, but, in general, the API users’ guide and reference should be published
as separate documents, and should accompany SAGA implementations.

An implementor of the SAGA API should read the complete document carefully.
It will very likely be insufficient to extract the embedded SIDL specification of
the API, and hope to implement a SAGA-compliant API. In particular, the
general design considerations in Section 2 give essential, additional informa-
tion to be taken into account for any implementation to be considered SAGA
compliant.

This document is structured as follows. This Section is focusses on the formal
aspects on an OGF recommendation document. Section 2 outlines the gen-
eral design considerations of the SAGA API. Section 3 contains the SAGA API
specification itself. Section 4 gives author contact information and provides dis-
claimers concerning intellectual property rights and copyright issues, according
to OGF policies. Finally, Appendix A gives illustrative, non-normative, code
examples of using the SAGA API.

1.2 Notational Conventions

The key words MUST , MUST NOT , REQUIRED , SHALL , SHALL NOT , SHOULD ,
SHOULD NOT , RECOMMENDED , MAY , and OPTIONAL are to be interpreted as
described in RFC 2119 [4].

saga-core-wg@ogf.org 4

GWD-R.72 Introduction August 18, 2006

1.3 Security Considerations

As the SAGA API is to be implemented on different types of Grid (and non-
Grid) middleware, it does not specify a single security model, but rather provides
hooks to interface to various security models – see the documentation of the
saga::context class in Section 3.4 for details.

A SAGA implementation is considered secure if and only if it fully supports
(i.e., implements) the security models of the middleware layers it builds upon,
and neither provides any (intentional or unintentional) means to by-pass these
security models, nor weakens these security models’ policies in any way.

saga-core-wg@ogf.org 5

GWD-R.72 General Design Considerations August 18, 2006

2 General Design Considerations

This section is addressing those aspects of the SAGA API specification that are
applicable to most or all of the SAGA packages as defined in Section 3.

2.1 API Scope and Design Process

The scope and requirements of the SAGA API have been defined by OGF’s
Simple API for Grid Applications Research Group (SAGA-RG). The SAGA-RG
has collected as broad as possible a set of use cases which has been published
as GFD.70 [11]. From these use cases, the requirements on a SAGA API have
been derived. The requirements analysis has been published as GFD.71 [12]. For
the actual API definition (this document), the SAGA-CORE Working Group
(SAGA-CORE-WG) has been established.

2.1.1 Requirements from the SAGA Requirement Analysis

The SAGA Requirement Analysis [12] lists the following, functional and non-
functional requirements on the SAGA API:

Functional Requirements

• Job submission and management should be supported by the SAGA API.

• Resource discovery should be supported by the SAGA API.

• Data management should be supported by the SAGA API.

• Efficient data access should be supported by the SAGA API.

• Data replication should be supported by the SAGA API.

• Persistent storage of application specific information should be supported
by the SAGA API.

• Streaming of data should be supported by the SAGA API.

• Asynchronous notification should be supported by the SAGA API.

• Support for messages on top of the streaming API should be considered
by the SAGA API.

• Asynchronous notification should be supported by the SAGA API.

saga-core-wg@ogf.org 6

GWD-R.72 General Design Considerations August 18, 2006

• Application level event generation and delivery should be supported by
the SAGA API.

• Application steering should be supported by the SAGA API, but more
use cases would be useful.

• GridRPC should be supported by the SAGA API.

• FIXME: Further communication schemes should be considered
as additional use cases are submitted to the group.

• Access to data-bases does not currently require explicit support in the
SAGA API.

Non-functional Requirements

• Asynchronous operations should be supported by the API.

• Bulk operations should be supported by the API.

• The error support of the API should allow for application level error re-
covery strategies.

• The SAGA API should be implementable on a variety of security infras-
tructures.

• The SAGA API should expose only a minimum of security details, if any
at all.

• Auditing, logging and accounting should not be exposed in the API.

• Workflows do not require explicit support on API level.

• QoS does not require explicit support on API level.

• Transactions do not require explicit support at the API level.

2.1.2 Requirement Adoption Strategy

The use cases expressed the above requirements with different levels of impor-
tance or urgency. This reflects the fact that some functionality is considered
more important or even vital (like file access and job submission) while other
functionality is seen as ”nice to have” by many use cases (like application steer-
ing). Also, the group of active people in the SAGA specification process con-
stitutes a specific set of expertise and interest – and this set is, to some extent,
reflected in the selection of SAGA packages specified in this document.

saga-core-wg@ogf.org 7

GWD-R.72 General Design Considerations August 18, 2006

For example, as we received no use cases from the enterprise user community,
and also had no active participation from that community in the SAGA stan-
dardization process, no enterprise specific API package is included here. This
does not imply that we consider them unnecessary, but rather reflects our wish
to orient the API on real use cases, and to avoid the creation of an API for
made up use cases, and from half-baked expertise.

Scope of the SAGA API

As various sides expressed their need for the availablity of a useful (i.e. imple-
mentable and usable) API specification as quickly as possible, the SAGA-CORE-
WG decided to follow a two-phase approach. The SAGA API, as described in
this document, covers all requirements that are considered both urgent and suf-
ficiently well understood to produce an API. Addressing the other requirements
is deferred to future versions, or extensions, of the SAGA API. Based upon this
reasoning, areas of functionality (from now referred to as packages) that are
included in SAGA API are the following:

• jobs
• files (and logical files)
• streams
• auxiliary API’s for
• GridRPC [13]

– session handle and security context
– asynchronous method calls (tasks)
– access control lists
– attributes
– monitoring
– error handling

Possible extensions to be included in future SAGA versions or extensions are:

• steering and extended monitoring
• possibly combining logical/physical files (read on logical files)
• persistent information storage (see, e.g., the GAT Advert Service [1])
• GridCPR [7]
• task dependencies (simple work flows and task batches)
• extensions to existing classes, based on new use cases

The packages as listed above do not imply a hierarchy of API interfaces: all
packages are motivated by their use cases, there is no split into ’lower level’
and ’higher level’ packages. The only exception is the group of auxiliary API’s,
which is considered orthogonal to the non-auxiliary SAGA packages.

saga-core-wg@ogf.org 8

GWD-R.72 General Design Considerations August 18, 2006

Dependencies between packages have been kept to a minimal level, to allow each
package to be used independently of any other; this also may allow partially
conformant API implementations (see below).

The term CORE in SAGA CORE refers to the fact that the scope of the API
encompasses an initial required set of API objects and methods, which is per-
cieved to be essential to the received use cases. The term, again, does not imply
any hierarchy of API packages, such as CORE and SHELL packages etc. We
will drop the use of the CORE when referring to the API and use the term in
the context of the Working Group.

2.1.3 Relation to OGSA

The SAGA API specification effort has often been compared to, and seen as
overlapping in scope and functionality to the OGSA standardization effort [6].
This is NOT correct. Reasons are the following:

• OGSA applies to service and middleware level.

SAGA applies to application level.

• OGSA aims at service and middleware developers.

SAGA aims at application developers.

• OGSA is an architecture.

SAGA is an API.

• OGSA strives to be complete, and to fully cover any potential Grid Service
in its architectural frame.

SAGA is by definition incomplete (80:20 rule), and aims for coverage of the
mostly used grid functionalities on application level, with NO ambition to
be complete in any sense.

• OGSA cannot sensibly interface to SAGA.

SAGA implementations can interface to (a subset of) OGSA compliant
services (and in fact usually will do so).

For these and more reasons we think that SAGA and OGSA are complementary,
but by no means competetive. The only commonality we are aware of is the
broadness of both approaches: both OGSA and SAGA strive to cover more than
one specific area of middleware and application functionality, respectively.

There have been discussions between the SAGA and OGSA groups in OGF,
which tried to ensure that the SAGA specification does not imply any specific

saga-core-wg@ogf.org 9

GWD-R.72 General Design Considerations August 18, 2006

middleware properties, and in particular does not imply any state management
which would contradict OGSA based middleware. Until now, we are not aware
of any such conflict, and will continue to ensure seemless implementability on
OGSA based middleware.

2.2 The SIDL Interface Definition Language

For the SAGA API, an object oriented (OO) approach was adopted, as it is
easier to produce a procedural API from an OO API than the converse, and
one of the goals of SAGA is to provide APIs which are as natural as possible in
each implementation language. Advanced OO features such as polymorphism
were avoided, both for simplicity and also to avoid complications when mapping
to procedural languages.

The design team chose to use SIDL, the Scientific Interface Definition Lan-
guage, [3] for specifying the API. This provides a programming-language neu-
tral represention of the API, but with well-defined syntax and clear mapping to
implementation languages.

This document, however, slightly deviates from the original SIDL language def-
inition. This section gives a brief introduction to SIDL, describes the respective
deviations we used, and also contains a number of notes to implementors on
how to interpret this specification.

SIDL, from the Babel project, is similar to COM and CORBA IDL, but has
an emphasis on scientific computing, with support of multi-dimensional arrays,
etc. Although the SAGA spec does not use these features extensively, the multi
language scope of Babel for mappings from SIDL to programming languages
appealed to the authors of this specification.

The key SIDL concepts used in this document are

package: specifies a name space (see note below)
interface: set of methods
class: stateful object and the associated set of methods
method: service that can be invoked on a object
type: constraint to value of method parameters

SIDL supports single inheritance of classes, and multiple inheritance of inter-
faces.

Method definitions have signatures, which define which parameters are accepted
on method invocation. These parameters can be

• in: input parameter, passed by value, assumed CONST

saga-core-wg@ogf.org 10

GWD-R.72 General Design Considerations August 18, 2006

• out: output parameter, passed by reference
• inout: input and output parameter, passed by reference

2.2.1 Deviations from SIDL in this Document

SIDL has the notion of packages, which are equivalent to Java packages or C++
name spaces. Packages are used in this specification, for the purpose of cross
referencing different API sections. The packages are not supposed to show up
in the implementations class names or name spaces, apart from the top level
’saga’ name space.

SIDL also has the notion of ’versions’, which are actually required on packages.
We do not use versions in this specification, as the specification itself is ver-
sioned, and we do not intend to introduce versioning on classes and interfaces.

SIDL allows multidimensional arrays, in the form array<type,dim>. As SAGA
uses only one-dimensional arrays, this document uses the simplified notation
array<type>.

SIDL defines a string to be a char*. We feel, however, that strings have more
powerful and native expressions in some languages (such as C++, Perl and
Java), and use string for these types. char*, conventionally used for binary
inout memory chunks, is expressed in this document as array<byte>.

This specification defines all method calls as void (or rather does not specify
any return type for method calls at all). Instead of explicit return values,
we define out parameters, which are in SIDL parameters which are passed by
reference. However, for this specification we expect language bindings to use
the first specified output parameter as return value to function calls where
appropriate, in particular for the synchronous versions of the function calls.
The asynchronous versions will, by their very nature, stick to the out parameter
scheme, as described in Section 3.7.

2.2.2 Default Parameter Values

This document, in several places, adds default values in the SIDL part of the API
specification. It is up to the language bindings to exploit any native means for
default parameter values. If this is not possible, the language binding CAN ab-
stain from default parameter values. Also, if asynchronous method calls require
additional parameters, which might affect the handling of default parameters
in languages such as C and C++, the language binding CAN deviate from this
document in that respect.

saga-core-wg@ogf.org 11

GWD-R.72 General Design Considerations August 18, 2006

2.2.3 Constness

SIDL method parameters specified as in parameters are considered to be const,
and MUST NOT be changed by the implementation. The SAGA language
bindings SHOULD utilize language mechanisms to enforce constness of these
parameters, if possible.

To our knowledge, SIDL does not allow the specification of constness on the
method level. This means, SIDL does not permit a specification of which meth-
ods must leave the state of the object unchanged. We considered the intro-
duction of const modifiers, to achieve consistent semantics over different im-
plementations. However, a short analysis of various implementation techniques
convinced us that requiring method constness would raise significant limitations
to SAGA implementors (e.g., for implementations with late binding), with no
immediately visible advantage to SAGA users. Hence, we waived any method
level constness requirements for now, but this topic might get picked up in fu-
ture versions of the API, e.g., with respect to object serialization (which implies
known and consistent object state on serialization points).

2.2.4 Attributes and Metrics

The SIDL sections in this specification contain additional normative informa-
tion which are inserted as SIDL comments. In particular these are definitions
for attributes and metrics. The format definitions for these specifications can
be found in section 3.5 ”SAGA Attribute Interface” and section 3.6 ”SAGA
Monitoring Model”, respectively.

2.2.5 Method Specification Details

All methods defined in the SIDL specification sections are further explained in
the ’Details’ sections in this document. These details to method specifica-
tions are normative. They are formatted as follows (example taken from the
saga::ns_directory class:

- move
Purpose: rename source to target, or move source to

target if target is an directory.
Format: move (in string source,

in string target,
in int flags);

Inputs: source: name to move

saga-core-wg@ogf.org 12

GWD-R.72 General Design Considerations August 18, 2006

target: name to move to
flags: flags defining the operation

modus
Outputs: -
Throws: BadParameter

DoesNotExist
IncorrectState
AlreadyExists

Notes: - if the target already exists, it will be
overwritten if the ’Overwrite’ flag is set,
otherwise it an ’AlreadyExists’ exception is
thrown

- moving ’.’ is not allowed, and throws
a ’BadParameter’ exception

- default flag set is ’None’ (0)
- similar to ’mv’ as defined by POSIX

The following sections are used in these detailed specifications of class methods:

Purpose: the aim of the method
Format: the SIDL prototype of the method
Inputs: descriptions of in parameters
Outputs: descriptions of out parameters
InOuts: descriptions of inout parameters
Throws: list of exceptions the method can throw
PreCond: conditions for successful invocation
PostCond: effects of successful invocation
Notes: other details

PreCond’itions are often left out if there are none. An example for a precondition
is a specific object state.

PostCondtions are often left out, if these are deemed sufficiently covered in the
Purpose part. An example for a postcondition is a changed object state.

Exceptions listed under Throws are the only ones which can be thrown by the
method.

Notes can contain, for example, references to the origin and use of the method,
conditions on which which exceptions are to be raised, semantic details of invo-
cations, consistency implications of invocations, and more.

saga-core-wg@ogf.org 13

GWD-R.72 General Design Considerations August 18, 2006

2.2.6 Inheritance

The SAGA API specification limits class inheritance to single inheritance – a
class can, nevertheless, implement multiple interfaces. Similar to the original
SIDL syntax, this document uses the qualifiers extends to signal inheritance
relations of a class, and implements to signal an interface to be provided by a
class.

Almost all SAGA classes implement the saga::object interface (which pro-
vides, for example, a unique instance id and the saga::error_handler inter-
face), but the classes usually implement several other interfaces as well.

For inherited classes and implemented interfaced holds: if methods are over-
loaded (i.e. redefined with the same name), the semantics of the overloaded
methods still applies (i.e. all Notes given on the detailed method description
apply). That does also hold for CONSTRUCTORs and DESTRUCTORs, and also for
example for a close() which si implecitely called on the base class’ destruction.

2.3 Language Binding Issues

The abstract SAGA API specification, as provided by this document, is lan-
guage independent, object oriented, and specified in SIDL. Normative bindings
for specific languages, both object oriented and procedural, will be defined in
additional documents.

This document contains several examples illustrating the use of the API, and
these have naturally been shown in specific languages, such as C++. These
examples should not be taken as normative, but merely as illustrative of the use
of the API. When normative language bindings are available, these examples
may be revised to reflect these bindings. In order to give an impression of the
Look-and-Feel in other languages, Appendix A lists some of the examples in
different languages. Again, Appendix A is illustrative, not normative.

Language bindings of the SAGA API shall provide the typical look-and-feel
of the respective programming language. This comprises the syntax for the
entitities (objects, methods, classes, etc.), but also, to some degree, semantical
details for which it makes sense to vary them with the programming language.
We summarize the semantic-ddetails here.

• In this document, flags are denoted as bitfields (specifically, integer enums
which can be combined by logical AND and OR), this is for notational con-
venience, and a language binding should use the most natural mechanism
available.

saga-core-wg@ogf.org 14

GWD-R.72 General Design Considerations August 18, 2006

• Language bindings MAY want to express array style arguments as variable
argument lists, if that is appropriate.

• This document specifies file lengths, buffer lengths and offesets as int
types. We expect implementations to use suitable large native data types,
and to stick to language specific types where possible (such as size_t for
buffer lengths in C, and off_t for file lengths in C). The SAGA language
bindings MUST include the types to be used by the implementations. In
particular, 64bit types SHOULD be used if they are available.

• The SAGA attribute interface defines attribute keys to be strings. The
SAGA monitorable interface defines metric names to be strings. At the
same time, many attributes and metrics are predefined in this specifi-
cation. In order to avoid typos, and improve interoperability between
multiple implementations, we expect language bindings to exploit native
mechanisms to have these prefefined attributes and metric names speci-
fied as literal constants. For example, in C/C++ we would expect the
following defines for the stream package (amongst others):

#define SAGA_METRIC_STATE "state"
#define SAGA_STREAM_NODELAY "nodelay"

• Object life time management may be language-specific. See Section 2.5.3.

• Concurrency control may be language-specific. See Section 2.6.4.

• Thread safety may be language-specific. See Section 2.6.5.

2.4 Compliant Implementations

A SAGA implementation MUST follow the SAGA API specification, and the
language binding(s) for its respective programming language(s), both syntacti-
cally and semantically. This means that any method MUST be implemented
with the syntax and with the semantics specified in this document, or not be
implemented at all (i.e., MUST then throw the NotImplemented exception).

The NotImplemented exception MUST, however, be used only in necessary
cases, for example if an underlying Grid middleware does not provide some
capability, and if this capability can also not be emulated. The implementa-
tion MUST carefully document and motivate the use of the NotImplemented
exception.

A implementation of the SAGA API is “SAGA compliant” if it implements
all objects and methods of the SAGA API specification, possibly using the
NotImplemented exception, as outlined above.

A implementation of the SAGA API is “partially SAGA compliant” if it imple-
ments only some packages, but implements those completely. It is, however, still

saga-core-wg@ogf.org 15

GWD-R.72 General Design Considerations August 18, 2006

acceptable to have methods that are not implemented at all (and thus throw a
NotImplemented error) as with “SAGA compliant” implementations.

All other implementations of the SAGA API are “not SAGA compliant”.

Note that the support of additional (e.g. backend specific) classes, methods, or
attributes is considered to break SAGA compliance, unless explicitly allowed by
this specification, as this would bind applications to this specific implementa-
tion, and limit portability, which is a declared goal of the SAGA approach.

The SAGA CORE Working Group will strive to provide, along with the lan-
guage binding documents, complicance tests for implementors. It should also
be noted that the SAGA language binding documents MAY specify deviations
from the API syntax and semantics specified in this documents. In this case,
the language binding specification supersedes this language independent spec-
ification. The language binding specifications MUST, however, strive to keep
the set of differences to this specification as small as possible.

2.4.1 Early versus late binding

An implementation may choose to use late binding to middleware. This means
that the middleware binding might change between subsequent SAGA calls.
For example, a file.open() might be performed via the HTTP binding, but a
subsequent read() on this file might be performed with GridFTP.

Late binding has some advantages in terms of flexibility and error recovery.
However, it implies a certain amount of object state to be kept on client side,
which might have semantic consequences. For example, a read() operation
might fail on HTTP for some reasons, but might succeed via GridFTP. The
situation might be reversed for write(). In order to allow alternating access
via both protocols, the file pointer information (e.g. the file object state) must
be held on client side.

It is left to a later experience document about the SAGA API implementations
to discuss potential problems arising from early/late binding implementations,
with respect to semantic conformance to the SAGA API specification. It should
be noted here that method-level constness would represent a major obstacle for
late binding implementations.

Late binding MUST NOT delay the check of error conditions if this is seman-
tically required by the specification. For example, a file open should check for
the existence of the file, even if the implementation may bind to a different
middleware on subsequent operations on this file.

saga-core-wg@ogf.org 16

GWD-R.72 General Design Considerations August 18, 2006

2.5 Object Management

The API specification in Section 3 defines various kinds of objects. Here, we
describe generic design considerations about managing these objects.

2.5.1 Session Management

The specification introduces a saga::session object, which acts as session
handle. A session thereby identifies objects and operations which are sharing
information, such as security details. More important, objects and methods
from different sessions are guaranteed to not to share any information, and are
completely shielded from each other. This will allow application to communicate
with different Grids and VOs at the same time, or to assume different IDs at
the same time. Many applications, however, will have no need for explicit
session handling. For those cases, a default saga session is used if no explicit
saga::session object is created and used.

Any SAGA object is associated with a session at creation time, by using the
respective saga::session instance as first argument to the constructor. If the
session argument is ommitted, the object is associated with the default session.
SAGA objects created from other SAGA objects (such as a saga::file instance
created by calling open() on a saga::directory instance) inherit the parents
session. The remainder of the document refers to the default session instance
as theSession.

A saga::context instance is used to encapsulate a virtual identity, such as a
Globus certificate or an ssh key pair. Multiple context instances can be asso-
ciated with one session, and only those context information MUST be used to
perform any operation in this session (i.e., on objects associated with this ses-
sion). If no saga::context instances are explicitly added to a SAGA session,
the SAGA implementation MAY associate one or more default contexts with
any new session, including the default session. In fact, the default session can
ONLY use these default contexts.

2.5.2 Shallow versus Deep Copy

Copy operations of SAGA objects are, by default, shallow. This applies, for
example, when SAGA objects are passed by value, or by assignment operations.
Shallow copy means that the orginal object instance and the new (copied) in-
stance share state. For example, the following code snippet

saga-core-wg@ogf.org 17

GWD-R.72 General Design Considerations August 18, 2006

Code Example

1 saga::file f1 (url); // file pointer is at 0

2 saga::file f2 = f1; // shallow copy

3

4 cout << "f1 is at " << f1.seek (0, Current) << "\n";

5 cout << "f2 is at " << f2.seek (0, Current) << "\n";

6

7 f1.seek (10, Current); // change state

8

9 cout << "f1 is at " << f1.seek (0, Current) << "\n";

10 cout << "f2 is at " << f2.seek (0, Current) << "\n";

would yield the following output (comments added):

f1 is at 0

f2 is at 0 -> shallow copy of f1

f1 is at 10 -> state of f1 changes

f2 is at 10 -> state of f2 changes too, it is shared

The SAGA API allows, however, to perform deep copies on all SAGA objects,
by explicitly using the clone() method. The changed code snippet:

Code Example

1 saga::file f1 (url); // file pointer is at 0

2 saga::file f2 = f1.clone(); // deep copy

3

4 cout << "f1 is at " << f1.seek (0, Current) << "\n";

5 cout << "f2 is at " << f2.seek (0, Current) << "\n";

6

7 f1.seek (10, Current); // change state

8

9 cout << "f1 is at " << f1.seek (0, Current) << "\n";

10 cout << "f2 is at " << f2.seek (0, Current) << "\n";

would then yield the following output (comments added):

f1 is at 0

f2 is at 0 -> deep copy of f1

saga-core-wg@ogf.org 18

GWD-R.72 General Design Considerations August 18, 2006

f1 is at 10 -> state of f1 changes

f2 is at 0 -> state of f2 changes not, it is copied

SAGA language bindings MAY deviate from these semantics if (and only if)
these semantics would be non-intuitive in the target language.

If a SAGA object gets (deeply) copied by the clone method, its complete state
is copied, with the exception of

• information about previous error conditions (see Section 3.1)

• callbacks on metrics (see Section 3.6)

Not copying previous error conditions disambiguates error handling. Not copy-
ing registered callbacks is required to ensure proper functioning of the callback
invocation mechanism, as callbacks have an inherent mechanism to allow call-
backs to be called exactly once. Copying callbacks would undermine that mech-
anism, as callbacks could be called more than once (once on the original metric,
once on the copied metric).

Note that a copied object will, in general, point to the same remote instance.
For example, the copy of a saga::job instance will not cause the spawning
of a new remote job, but will merely create a new handle to the same remote
process the first instance pointed to. The new object instance is merely a new
handle which is in the same state as the original handle – from then on, the
two handles have a life of their own. Obviously, operations on one SAGA object
instance may still in fact influence the copied instance, e.g. if cancel() is called
on either one.

2.5.3 Object State Life Time

In general, the life time of SAGA object instances is defined as natively expected
in the respective languages, so is usually explicitly managed, or implicitly de-
fined by scoping, or in some languages implicitly managed by garbage collection
mechanisms.

The SAGA API semantics, in particular asynchronous operations, tasks, and
monitoring metrics require, however, that the state of certain objects must be
able to survive the life time of the context in which they have been created. As
state in these situations is shared with the original object instance, this may
imply in some languages that the respective objects must survive as well.

In particular, object state MUST be available in the following situations:

saga-core-wg@ogf.org 19

GWD-R.72 General Design Considerations August 18, 2006

• The state of a saga::object instance must be available to all tasks created
on this object instance.

• The state of a saga::object instance must be available to all metrics created
on this object instance.

• The state of a saga::session instance must be available to all objects created
in this session.

• The state of a saga::context instance must be available to all sessions this
context instance was added to.

Due to the diversity of life time management used in existing programming
languages, this document can not prescribe a single mechanism to implement
objects or object states that survive the context they were created in. It is
subject to individual language binding documents to prescribe such mechanisms,
and to define responsibilities for object creation and destruction, both for SAGA
implementations and for application programs, in order to match requirements
and common-sense in the respective languages.

The SAGA specification implies that object state is shared in the following
situations:

• a asynchronous operation is invoked on an object, creating a task instance,

• a SAGA object is passed as argument to a (synchronous or asynchronous)
method call.

Those method calls that deviate from these semantics denote that in their
PostCond’itions (e.g., prescribe that a deep copy of state occurs).

2.5.4 Freeing of Resources and Garbage Collection

The destruction of objects in distributed systems has its own subtle problems, as
has the interruption of remote operations. In particular it cannot be assumed
that a destructor can both return timely and ensure the de-allocation of all
(local and remote) resources. In particular, as a remote connection breaks, no
guarantees whatsoever can be made about the de-allocation of remote resources.

In particular for SAGA tasks, which represent asynchronous remote opera-
tions, we expect implementations to run into this problem space, for example
if cancel() is invoked on this task. To have common semantic guidelines for
resource de-allocation, we define:

saga-core-wg@ogf.org 20

GWD-R.72 General Design Considerations August 18, 2006

1. On explicit or implicit object destruction, and on explicit or implicit in-
terruption of synchronous and asynchronous method invocations, SAGA
implementations MUST make a best-effort attempt to free associated re-
sources immediately1.

2. If the immediate de-allocation of resources is not possible, for whichever
reasons, the methods MUST return immediately, but the resource de-
allocation MAY be delayed indefinitely. However, as of (1), the best effort
strategy to free these resources eventually MUST stay in place.

3. Methods whose semantics depend on successful or unsuccessful de-allo-
cation of resources (such as task.cancel() or file.close()) allow for
an optional float argument, which defines a timeout for this operation.
If resource de-allocation does not succeed within this timeout period, a
NoSuccess exception MUST be thrown. Negative values imply to wait
forever, a value of zero (the default) implies that the method can return
immediately, even if some resources could not be de-allocated. In any
case, the best-effort policy as described above applies.

FIXME: Chould close() cancel all outstanding async ops on the
object? – AM

SAGA implementations MUST motivate and document any deviation from this
behaviour. See also Section 2.4 on compliant implementations.

2.6 Asynchronous Operations and Concurrency

In this section, we describe the general design considerations related to asyn-
chronous operations, concurrency control, and multi threading.

2.6.1 Asynchronous Function Calls

The need for asynchronous calls was explicitly stated by the use cases, as reason-
able synchronous behaviour cannot always be expected from Grids. The SAGA
task interface allows the creation of an asynchronous version of each SAGA API
method call. The SIDL specification lists only the synchronous version of the
API methods, but all packages implementing the task interface MUST provide
the various asynchronous methods as well. Please see section 3.7 for details on
the task interface.

1Immediately in the description above means: within the expected response time of the
overall system, but not longer.

saga-core-wg@ogf.org 21

GWD-R.72 General Design Considerations August 18, 2006

2.6.2 Asynchronous Notification

Related to this topic, the group also discussed the merits of callback and polling
mechanisms and agreed that a callback mechanism should be used in SAGA to
allow for asynchronous notification. In particular, this mechanism should allow
for notification on the completion of asynchronous operations, i.e. task state
changes. However, polling for states and other events is also supported.

2.6.3 Timeouts

Several methods in the SAGA API support the synchronization of concurrent
operations. Often, those methods accept a float timeout parameter. The
semantics of that parameters is always as follows:

timeout < 0.0 – wait forever
timeout = 0.0 – return immediately
timeout > 0.0 – wait for this many seconds

These methods do not cause a TimeOut exception as the timeout period passes,
but return silently. For an description of the TimeOut exception, see section 3.1.

The various methods often define different default timeouts. For timeouts
on close() methods, the description of resource deallocation policies in sec-
tion 2.5.4 is also relevant.

2.6.4 Concurrency Control

Although limited, SAGA defines a de-facto concurrent programming model,
via the task model and the asynchronous notification mechanism. Sharing of
object state among concurrent units (e.g., tasks) is intentional and necessary
for addressing the needs of various use cases. Concurrent use of shared state,
however, requires concurrency control to avoid unpredictable behavior.

(Un)fortunately, a large variety of concurrency control mechanisms exist, with
different programming languages lending themselves to certain flavors, like ob-
ject locks and monitors in Java, or POSIX mutexes in C-like languages. For
some use cases of SAGA, enforced concurrency control mechanisms might be
both unnecessary and counter productive, leading to increased programming
complexity and runtime overheads.

Because of these constraints, SAGA does not enforce concurrency mechanisms
on its implementations. Instead, it is the responsibility of the application pro-
grammer to ensure that her program will execute correctly in all possible or-

saga-core-wg@ogf.org 22

GWD-R.72 General Design Considerations August 18, 2006

derings and interleavings of the concurrent units. The application programmer
is free to use any concurrency control scheme (like locks, mutexes, or monitors)
in addition to the SAGA API.

2.6.5 Thread Safety

We expect implementations of the SAGA API to be thread safe. Otherwise, the
SAGA task model would be difficult to implement, and would also be close to
useless. However, we acknowledge that specific languages might have trouble
with (a) expressing the task model as it stands, and (b) might actually be
successful to implement the API single threaded, and non-thread safe. Hence,
we expect the language bindings to define if compliant implementations in this
language MUST or CAN be thread safe – with MUST being the default, and
CAN requiring good motivation.

2.7 State Diagrams

Several objects in SAGA have a state attribute or metric, which implies a state
diagram for these objects. That means, that instances of these objects can
undergo well defined state transitions, which are either triggered by calling spe-
cific methods on these object instances, or by calling methods on other object
instances affecting these instances, or are triggered by internal events, for ex-
ample by backend activities. State diagrams as shown in figure 1 are used to
define the available states, and the allows state transitions. These diagrams are
normative.

2.8 Execution Semantics and Consistency Model

A topic related to concurrency control concerns execution semantics of the op-
erations invoked via SAGA’s API calls. Unlike Section 2.6, here we are dealing
with the complete execution “chain,” reaching from the client API to the server
side, based on whichever service or middleware layer is providing access to the
server itself.

SAGA API calls on a single service or server can occur concurrently with (a)
other tasks from the same SAGA application, (b) tasks from other SAGA ap-
plications, or also (c) calls from other, independently developed (non-SAGA)
applications. This means that the user of the SAGA API should not rely on
any specific execution order of concurrent API calls. However, implementa-
tions MUST guarantee that a synchronous method is indeed finished when the
method returns, and that an asynchronous method is indeed finished when the

saga-core-wg@ogf.org 23

GWD-R.72 General Design Considerations August 18, 2006

task::Async
construction

cancel()

CONSTRUCTOR()

run()
intern

intern

All states with transitions to ’Final State’ are

Final State

Initial State

State Diagram Legend:

Methods or actions causing a state transition.
typefaced words are methods.
italic words are descriptive.

into another state.
state, and have an immediate transition
All statefull objects start with an initial

Allowed state transition, directional.

State, named.

The last state transition any statefull

That state cannot be left until object destruction.

final states.

object can undergo is into a final state. Done

RunningNew

Figure 1: The SAGA state diagrams follow the notations shown here.

task instance representing this method is in Finished or Done state. Further
control of execution order, if needed, has to be enforced via separate concur-
rency control mechanisms, preferably provided by the services themselves, or on
application level.

Most SAGA calls will invoke services that are remote to the application pro-
gram, hence becoming vulnerable to errors caused by remote (network-based)
invocation. Therefore, implementors SHOULD strive to implement “At Most
Once” semantics, enforcing that, in case of failures, an API call either fails
(does not get executed), or succeeds, but never gets executed more than once.
This seems to be (a) generally supported by most Grid middleware, (b) im-
plementable in distributed systems with reasonable effort, and (c) useful and
intuitively expected by most end users. Any deviation from these semantics
MUST be carefully documented by the implementation.

Beyond this, the SAGA API specification does not prescribe any consistency
model for its operations, as we feel that this would be very hard to implement
across different middleware platforms. A SAGA implementation MAY specify
some consistency model, which MUST be documented. A SAGA implementa-
tion SHOULD always allow for application level consistency enforcement, for
example by use of of application level locks and mutexes.

saga-core-wg@ogf.org 24

GWD-R.72 General Design Considerations August 18, 2006

2.9 Optimizing Implementations, Latency Hiding

Distributed applications are usually very sensistive to communication latencies.
Several use cases in SAGA explicitly address this topic, and require the SAGA
API to support (a) asynchronous operations, and (b) bulk operations, as both
are commonly accepted latency hiding techniques. The SAGA task model (see
section 3.7) provides asynchronous operations for the SAGA API. Bulk opera-
tions have no explicit expression in SAGA. Instead, we think that implemen-
tations should be able to exploit the concurrency information available in the
SAGA task model to transparently support bulk optimizations. In particular,
the saga::task_container allows to run multiple asynchronous operations at
the same time – implementations are encouraged to apply bulk optimizations in
that situation. A proof-of-concept implementation in C++ demonstrates that
bulk optimizations for task containers are indeed implementable, and perform
very well. We feel that this leaves the SAGA API simple, and at the same time
allows for performance critical use cases.

Other optimizations are more explicit in the API, most notably the additional
I/O operations for the saga::file class – those are described in more detail in
section 3.10.

Implementations are encouraged to exploit further optimizations; these MUST
NOT change the semantics of the SAGA API though.

2.10 Configuration Management

The SAGA CORE WG spent a significant amount of discussion on deployment
and configuration issues, and could not, as of yet, come to a complete agreement
on these. More specifically we see the following problems related to the use of
SAGA API implementations:

• As different SAGA implementatins bind to different middleware, that mid-
dleware might need configuration information, such as the location of a
GridRPC config file (see [13]), or the location of a service endpoint.

• If such configuration information are to be provided by the end user,
the end user might face, eventually, a plethora of SAGA implementation
specific configuration files, or environment variables, or other configuration
mechanisms, which break the SAGA abstraction from the middleware for
the end user.

• Defining a SAGA configuration file format might succeed syntactically
(e.g., ini file format), but must fail semantically, as it will be impossible to
foresee on which middleware SAGA gets implemented, and to know which
configuration information that middleware requires.

saga-core-wg@ogf.org 25

GWD-R.72 General Design Considerations August 18, 2006

This leaves the dilemma that a configuration mechanism seems impossible to
define generically, but by leaving it undefined, we break the abstraction SAGA
is supposed to provide to the end user.

For the time being, we leave this problem to (a) the middleware developers,
(b) to the SAGA implementors, and (c) to the SAGA deployment (i.e. system
administrators). We hope that experience gathered by these groups will allow
us to revise this topic, and to define a generic, simple, and abstract approach
to the configuration problem.

2.11 The ’URL Problem’

The end user might expect the SAGA API, as a high level and simple API, to
handle protocol specific issues transparently. In particular, she might expect
that SAGA gracefully and intelligently handles a URL such as

http://host.net/tmp/file

even if HTTP as protocol is, in fact, not available at host.net, but for example
the FTP protocol is.

However, this innocently looking problem has far reaching consequences, and in
fact is, to the best of our knowledge, unresolved. Consider the following server
setup on host.net:

FTP Server: server root: /var/ftp/pub/
HTTP Server: server root: /var/http/htdocs/

The entities described by the two URLs

http://host.net/tmp/file
ftp://host.net/tmp/file

hence refer to different files on host.net! Even worse: it might be (and often is)
impossible to access the HTTP file space via the FTP service, and vice versa.

Similar considerations hold for absolute file names, and for file names relative
to the users home directory. Consider:

http://host.net/~user/tmp/file

This URL may point to

file:////home/user/public_html/tmp/file

and not, as could have been expected, to

saga-core-wg@ogf.org 26

GWD-R.72 General Design Considerations August 18, 2006

file:////home/user/tmp/file

Hence, a reliable translation of URL’s between different protocols (schemes) is
only possible, if the exact server setup of all affected protocol serving services
is known. This knowledge is often not available.

Further, even if a correct translation of protocols and hence URL’s suceeds,
there is no guarantee that the referred file is actually available via this protocol,
with the same permissions – this again depends on the service configuration.

SAGA ’solution’ to the ’URL Problem’

1. A SAGA compliant implementation MAY be able to transparently trans-
late URLs, but is not required to do so. Further, this behaviour CAN vary
during the runtime of the program.

2. The SAGA API specification allows the use of the placeholder ’any’ (as in
any://host.net/tmp/file). A SAGA compliant implementation MAY
be able to choose a suitable protocol automatically, but CAN decline the
URL with an IncorrectURL exception.

3. Abstract name spaces, such as the name space used by replica systems, or
by grid file systems, hide this problem efficiently and transparently from
the end user. We encourage implementations to use such name spaces.

4. A URL which cannot be handled for the stated reasons MUST cause the
exception IncorrectURL to be thrown. Note that this holds only for
those cases where a given URL cannot be handled as such, e.g. because
the protocol is unsupported, any:// cannot be handled, or a necessary
URL translation failed. The detailed error message SHOULD give advice
to the end user which protocols are supported, and which types of URL
translations can or can’t be expected to work.

5. Any other error related to the URL (e.g. file at service is not available)
MUST be indicated by the exceptions as listed in the method specifications
in this document.

We are aware that this ’solution’ is sub-optimal, but we also think that, if
cleverly implemented with the help of information services, service level setup
information, and global name spaces, this approach can simplify the use of
the SAGA API significantly. We will carefully watch the work of related OGF
groups, such as the global naming efforts in the Grid FileSystem Working Group
(GFS-WG), and will revise this specification if any standard proposal is put
forward to address the described problem.

saga-core-wg@ogf.org 27

GWD-R.72 General Design Considerations August 18, 2006

2.12 Miscellaneous Issues

2.12.1 File Open Flags

For files, flags are used to specify if an open is truncating, creating, and/or
appending to an existing entity. For jobs, and in particular for file staging, the
LSF scheme is used (e.g. ’url >> local_file’ for appending a remote file to a
local one after staging). We are aware of this seeming inconsistency. However,
we think that a forceful unification of both schemes would be more awkward to
use, and at the same time less useful.

saga-core-wg@ogf.org 28

GWD-R.72 SAGA API Specification August 18, 2006

3 SAGA API Specification

The SAGA API consists of a number of interface and class specifications. The
relation between these is shown in Figure 2 on Page 30. This figure also marks
which interfaces are dominating the SAGA look-and-feel, and which classes are
combined to packages.

The remainder of this section forms the main normative part of the SAGA API
specification. It has one subsection for each package, starting with those inter-
faces that define the SAGA look-and-feel (top level interfaces first), followed by
the various capability providing packages: job management, name space man-
agement, file management, replica management, stream, and remote procedure
call.

saga-core-wg@ogf.org 29

GWD-R.72 SAGA API Specification August 18, 2006

RP
C

St
re

am
s

Au
xi

lli
ar

y
Cl

as
se

s
/ L

oo
k

&
Fe

el

Au
xi

lli
ar

y
Cl

as
se

s
/ L

oo
k

&
Fe

el

Fi
le

 M
an

ag
em

en
t

Re
pl

ic
a

M
an

ag
em

en
t

Na
m

e
Sp

ac
e

M
ng

m
t.

M
on

ito
rin

g
/ L

oo
k

&
Fe

el

Lo
ok

 &
 F

ee
l

Jo
b

M
an

ag
em

en
t

e
x
c
e
p
t
i
o
n

lo
g
ic
a
l_
fi
l
e

m
e
tr
i
c

rp
c

st
re
am

jo
b

ta
s
k

t
as
k_
co
n
t.

j
ob
_d
e
sc

j
ob
_s
er
vi
ce

st
re
am
_s
er
v.

ns
_d
ir
e
ct
o
ry

fi
le

c
on
t
ex
t

s
es
si
o
n

ns
_e
nt
r
y

s
t
e
e
r
a
b
l
e

di
re
ct
or
y

l
og
ic
a
l_
d
i
r.

jo
b
_s
e
lf

m
o
n
i
t
o
r
a
b
l
e

c
a
l
l
b
a
c
k

a
s
y
n
c

o
b
j
e
c
t

e
r
r
o
r
_
h
a
n
d
l
e
r

a
t
t
r
i
b
u
t
e

c
l
a
ss

i
n
t
e
r
f
a
c
ei
m
p
le
m
e
nt
s

i
n
h
er
i
t
s

Figure 2: The SAGA class and interface hierarchy.

saga-core-wg@ogf.org 30

GWD-R.72 SAGA Error Handling August 18, 2006

3.1 SAGA Error Handling

Each SAGA API call has an associated list of exceptions it may throw. These
exceptions all extend the saga::exception class described below.

All objects in SAGA implement the error_handler, which allows a user of the
API to query for the latest error associated with a saga object. In languages
with exception facilities, such as Java, C++ and Perl, the language binding
may allow exceptions to be thrown instead . Bindings for languages without
exception handling capabilities MUST stick to the error_handler interface
described here, but MAY define additional language native means for error
reporting.

For asynchronous operations, the error handler interface is provided by the task
instance performing the operation, and not by the object which created the
task.

For objects implementing the error_handler interface, each method invocation
on that object resets any error caused by a previous method invocation on that
object.

Some API methods return POSIX errno codes for errors. This is true in partic-
ular for read(), write() and seek(); the method descriptions provide explicit
details of how errno error codes are utilized. FIXME: TODO!

Any other details of the error handling mechanisms will be defined in the re-
spective language bindings, if required.

3.1.1 Specification

FIXME: Add all errno definitions used through the spec.

package saga.error
{
enum error
{
// add ERRNO as defined in POSIX here

}

class exception
{
CONSTRUCTOR (in Object object,

saga-core-wg@ogf.org 31

GWD-R.72 SAGA Error Handling August 18, 2006

in string message);
DESTRUCTOR (void);

what (out string message);
get_message (out string message);
get_object (out Object object);

}

interface error_handler
{
get_error (out exception error);
has_error (out boolean has_error);

}
}

3.1.2 Details

SAGA provides a set of well defined error states (exceptions) which MUST be
supported by the implementation. As to wether these error states are critical,
non-critical or fatal depends on, (A) the specific implementation (one imple-
mentation might be able to recover from an error while another implementation
might not), and (B) the specific application use case (e.g., the error ’file does
not exist’ may or may not be fatal, depending if the application really needs
information from that file).

Several SAGA methods do not raise exceptions on certain error conditions, but
return an error code. For example file.read(), might return an error code
indicating that a non-blocking I/O does not have any data available right now.
The error codes used in SAGA are based on the definitions for errno as defined
by POSIX, and MUST be used in a semantically identical manner.

The exceptions available in SAGA are listed below, with a number of explicit
examples on when exceptions should be thrown. These examples are not nor-
mative, but merely illustrative. This specification defines the set of allowed
exceptions for each method explicitly – that set is normative.

The SAGA specification defines which exceptions can be thrown by which
method. Depending on the implementation however, other exceptions can be
thrown as well. For example, a certain implementation might have authorization
as an attribute setting, and could throw an AuthorizationFailed exception on
attempts to write that attribute – even though it is not specified in the SAGA
specification. New SAGA exception types however, SHOULD NOT be defined
by the implementation.

saga-core-wg@ogf.org 32

GWD-R.72 SAGA Error Handling August 18, 2006

Listed exceptions are either derived from the base SAGA exception types or,
are error codes with that specific name etc. These are language binding specific;
for details, see the language bindings. FIXME: Jha: please check I’ve not
altered the intended meaning.

The string returned by what() and get_message() MUST be formatted as
follows: "ExceptionName: message", where ExceptionName MUST match the
literal exception names as defined in this document, and message SHOULD be
a detailed, human readable description of the cause of the exception.

The exception types defined in SAGA are listed below. This list is sorted,
with the most specific exceptions are listed first and least specific last. The
most specific exception possible (i.e., applicable) MUST be thrown on all error
conditions. FIXME: Jha: please check the last sentence I’ve not altered
the intended meaning.

NotImplemented:

If a method is specified in the SAGA API, but cannot be provided by
a specific SAGA implementation, this exception MUST be thrown. See
also the notes about compliant implementations in the instruction.

Example:
- An implementation based on Unicore might not be
able to provide streams. The saga::stream_server
constructor should throw a NotImplemented exception
for that implementation.

IncorrectURL:

This exception is thrown if a method is invoked with an URL argument
that could not be handled. This error specifically indicates that an
implementation can not handle the specified protocol, or access to
the specified entity via the given protocol is impossible. The
exception MUST NOT be used to indicate any other error condition.
See also notes to ’The URL Problem’ in the introducton.

Example:
- An implementation based on gridftp might be unable to handle
http based URLs sensibly, and might be unable to translate them
into ftp based URLs internally. The implementation should then

saga-core-wg@ogf.org 33

GWD-R.72 SAGA Error Handling August 18, 2006

throw an IncorrectURL exception if it encounters an http based
URL.

IncorrectSession:

A method was invoked which effects two object instances which belong
to different SAGA sessions. Currently, the SAGA API does not
provide any method which could potentially have colliding sessions;
that exception is defined for future SAGA extensions, e.g., work
flows. \F{Jha: Why not remove, if this can not occur?}

AuthenticationFailed:

An operation failed because none of the available session contexts
could be used for successful authentication. \F{Should it be ‘‘none
of the available’’ or do ‘‘the available session context’’ could
not be used for successful authentication?}

Example:
- a remote host does not accept a X509 certificate
because the respective CA is unknown there. A call to
file.copy() should then throw an AuthenticationFailed
exception.

AuthorizationFailed:

An operation failed because none of the available contexts
of the used session could be used for successful
Authorization. That error indicates that the resource could
not be accessed at all, and not that an operation was not
available due to restricted permissions. The
authentication step has been completed successfully.

Example:
- although a certificate was valid on a remote GridFTP
server, the distinguished name could not be mapped to a
valid local user id. A call to file.copy() should then
throw an AuthorizationFailed exception.

saga-core-wg@ogf.org 34

GWD-R.72 SAGA Error Handling August 18, 2006

PermissionDenied:

A operation failed because the identity used for the
operation did not have sufficient permissions to perform
the operation successfully. The authentication and
authorization steps have been completed successfully.

Example:
- although a user could login to a remote host via
GridFTP and could be mapped to a local user, the write
on /etc/passwd failed.

Notes:

- The differences between AuthorizationFailed and
PermissionDenied are, admittedly, subtle. Our intention
for introducing both exceptions was to allow to
distinguish between administrative authorization
failures (on VO and DN level), and on backend related
authorization failures (which can often be resolved on
user level).

- The AuthorizationFailed exception SHOULD be thrown when
the the backend does not allow the execution of the
requested operation at all, whereas the PermissionDenied
exception SHOULD be thrown if the operation was
executed, but failed due to insufficient privileges.

BadParameter:

This exception indicates that at least one of the parameters
of the method call is ill-formed, invalid, out of bound or
otherwise not usable. The error message MUST give specific
information on what parameter caused that exception, and
why.

Examples:
- a specified context type is not supported by the
implementation

- a file name specified is invalid, e.g. too long, or
contains characters which are not allowed

- an ivec for scattered read/write is invalid, e.g. has
offsets which are out of bound, or non-allocated

saga-core-wg@ogf.org 35

GWD-R.72 SAGA Error Handling August 18, 2006

buffers
- a buffer to be written and the specified lengths are
incompatible

- an enum specified is not known
- flags specified are incompatible (ReadOnly | Truncate)

IncorrectState:

This exception indicates that the object a method was
called on is in a state where that method cannot possibly
succeed. A change of state might allow the method to
succeed with the same set of parameters.

Examples:
- calling read on a stream which is not connected
- calling write on a file which is opened read only
- calling run on a task which was canceled
- calling resume on a job which is not suspended

AlreadyExists:

This exception indicates that an operation cannot succeed
because an entity to be created or registered already
exists or is already registered, and cannot be overwritten.
Explicit flags on the method invocation may allow the
operation to succeed, e.g. if they indicate that Overwrite
is allowed.

Examples:
- a target for a file move already exists
- a file to be created already exists
- a name to be added to a logical file is already known
- a metric to be added to a object has the same name as

an existing metric on that object

DoesNotExist:

This exception indicates that an operation cannot succeed
because a required entity is missing. Explicit flags on
the method invocation may allow the operation to succeed,

saga-core-wg@ogf.org 36

GWD-R.72 SAGA Error Handling August 18, 2006

e.g. if they indicate that Create is allowed.

Examples:
- a file to be moved does not exist
- a directory to be listed does not exist
- a name to be deleted is not in a replica set
- a metric asked for is not known to the object
- a context asked for is not known to the session
- a task asked for is not in a task_container
- a attribute asked for is not supported
- a job asked for is not known by the backend

ReadOnly:

A attribute or metric was attempted to be changed but is
read-only, e.g. is provided only for informational purposes.
That exception does NOT apply for files or streams which are
in incorrect state (i.e. not readable or writable) - that
would cause an IncorrectState exception.

Examples:
- attempt to change or set a ReadOnly attribute
- attempt to change or update a ReadOnly metric

FIXME: Revise the ReadError and WriteError exceptions based on
the mailing list discussion to that topic!

ReadError:

This exception indicates that a read operation on a file,
directory or stream failed, although the object in
question has been in the correct state (i.e. readable).
On NonBlocking objects, reads might frequently fail but
might succeed in a later call (EAGAIN) - in such cases
this exception MUST NOT be thrown, as that situation does
not indicate an error.

saga-core-wg@ogf.org 37

GWD-R.72 SAGA Error Handling August 18, 2006

Examples:
- a non blocking read on a stream failed because no data
are available

WriteError:

This exception indicates that a write operation on a file,
directory or stream failed, although the object in question
has been in the correct state (i.e. writable). On
NonBlocking objects, writes might frequently fail but might
succeed in a later call (EAGAIN) - in such cases this
exception MUST NOT be thrown, as that situation does not
indicate an error.

Timeout:

This exception indicates that a remote operation did not
complete successfully because the network communication or
the remote service timed out. That exception MUST NOT be
thrown if a timed wait() or similar methods time out - that
is indicated by the methods return value, and does not pose
an error condition. The time waited before a implementation
raises a Timeout exception depends on implementation and
backend details, and SHOULD be documented by the
implementation.

Examples:
- a remote file authorization request timed out
- a remote file read operation times out
- a host name resolution timed out
- a started file transfer stalled and timed out
- a asynchroneous file transfer stalled and timed out

NoSuccess:

This exception indicates that an operation failed
semantically, e.g. the operation was not successfully
performed. This exception is the least specific
exception defined in SAGA, and CAN be used for all error
conditions which do not indicate a more specific

saga-core-wg@ogf.org 38

GWD-R.72 SAGA Error Handling August 18, 2006

exception specified above

Examples:
- a once open file is not available right now
- a backend response cannot be parsed
- a file copy was interrupted mid-stream, due to shortage
of disk space

class exception:

This is the exception base class inherited by all exceptions
thrown by a SAGA object implementation.

Note that saga::exception does not implement the
saga::object interface.

- CONSTRUCTOR
Purpose: create the exception
Format: CONSTRUCTOR (in object object,

out exception e);
Inputs: object: the object associated with the

exception.
Outputs: e: the newly created exception
Throws: -

- DESTRUCTOR
Purpose: destroy the exception
Format: DESTRUCTOR (in exception e);
Inputs: e the exception to destroy
Outputs: -
Throws: -

- what
what is an alias for get_message.

- get_message
Purpose: gets the message associated with an exception
Format: get_message (out string message);
Inputs: -

saga-core-wg@ogf.org 39

GWD-R.72 SAGA Error Handling August 18, 2006

Outputs: message the error message
Throws: -
Notes: - the returned string MUST be formatted as

described above.

- get_object
Purpose: gets the SAGA object associated with exception
Format: get_object (out object o);
Inputs: -
Outputs: o: the object associated with the

exception
Throws: -
Notes: - the returned object is that object which was

used to call the method which caused the
exception.

- if the exception is raised in a task, or on
task.rethrow(), the object is the one which the
task was created from.

3.1.3 Examples

Code Example

1 // c++ example

2 int main ()

3 {

4 try

5 {

6 saga::file f ("file://localhost/etc/passwd");

7 f.copy ("file:///usr/tmp/passwd.bak");

8 }

9

10 catch (const saga::exception::PermissionDenied & e)

11 {

12 std::cerr << "SAGA error: No Permissions!" << std::endl;

13 }

14

15 catch (const saga::exception & e)

16 {

17 std::cerr << "SAGA error: " << e.what () << std::endl;

18 }

19

20 return (0);

21 }

saga-core-wg@ogf.org 40

GWD-R.72 SAGA Base Object August 18, 2006

3.2 SAGA Base Object

The SAGA object interface provides methods which are essential for all SAGA
objects. It provides a unique ID which helps maintain a list of SAGA objects
at the application level as well as allowing for inspection of objects type and its
associated session.

The object id MUST be formatted as uuid, as standardized by the Open Soft-
ware Foundation (OSF) as part of the Distributed Computing Environment
(DCE). The UUID format is also described in the IETF RFC-4122 [10].

3.2.1 Specification

package saga.object
{
enum object_type
{
Unknown = -1,
Exception = 1,
Session = 2,
Context = 3,
Task = 4,
TaskContainer = 5,
Metric = 6,
NSEntry = 7,
NSDirectory = 8,
File = 9,
Directory = 10,
LogicalFile = 11,
LogicalDirectory = 12,
JobDescription = 13,
JobServer = 14,
Job = 15,
StreamServer = 16,
Stream = 17,
Multiplexer = 18

}

interface object : implements-all saga::error-handler
{
get_id (out string id);
get_type (out object_type type);

saga-core-wg@ogf.org 41

GWD-R.72 SAGA Base Object August 18, 2006

get_session (out session session);

// deep copy
clone (out object clone);

}
}

3.2.2 Details

class object:

- get_id:
Purpose: query the object ID
Format: get_id (out string id);
Inputs: -
Outputs: id uuid for the object
Throws: -

- get_type:
Purpose: query the object type
Format: get_type (out object_type type);
Inputs: -
Outputs: type type of object
Throws: -

- get_session:
Purpose: query the objects session
Format: get_session (out session s);
Inputs: -
Outputs: s session of object
Throws: IncorrectState if object has no session
Notes - if no specific session was attached to the

object on creation time, the default SAGA
session is returned.

- some objects don’t have sessions attached,
such as job_description, task, metric, and the
session object itself. For such objects, the
method raises an IncorrectState exception.

// deep copy:

saga-core-wg@ogf.org 42

GWD-R.72 SAGA Base Object August 18, 2006

- clone:
Purpose: deep copy the object
Format: clone (out object clone);
Inputs: -
Outputs: clone the deep copied object
Throws: -
Notes - that method is overloaded by all classes

which inherit saga::object, and returns the
respective class type (the method is only
listed here though).

- for deep copy semantics, see Intreduction

3.2.3 Examples

Code Example

1 // c++ example

2

3 // have 2 objects, streams and files, and do:

4 // - read 100 bytes

5 // - skip 100 bytes

6 // - read 100 bytes

7

8 int out;

9 char buf1[100];

10 char buf2[100];

11 char buf[100];

12

13 // create map

14 std::map <saga::task, saga::object> tmap;

15

16 // create objects, and map

17 saga::file f (url[1]);

18 saga::stream s (url[2]);

19

20 s.connect ();

21

22 // create tasks for reading first 100 bytes ...

23 saga::task t1 = f.read <saga::task> (100, buf1, &out);

24 saga::task t2 = s.read <saga::task> (100, buf2, &out);

25

26 // ... and store in map

27 tmap[t1] = f;

28 tmap[t2] = s;

29

saga-core-wg@ogf.org 43

GWD-R.72 SAGA Base Object August 18, 2006

30 // create and fill the task container ...

31 saga::task_container tc;

32

33 tc.add (t1);

34 tc.add (t2);

35

36 // ... and wait who gets done first

37 while (saga::task t = tc.wait ())

38 {

39 // depending on type, skip 100 byte then create a

40 // new task for the next read, and re-add to the tc

41

42 // store result

43

44

45 switch (tmap[t].get_type ())

46 {

47 case saga::object::File :

48 // store result

49 buf = buf1;

50

51 // skip for file type (sync seek)

52 saga::file (tmap[t]).seek (100, SEEK_SET);

53

54 // create a new read task

55 tc.add (saga::file (tmap[t]).read <saga::task>

56 (100, buf1, &out))

57

58 break;

59

60

61 case saga::object::Stream :

62 // store result

63 buf = buf2;

64

65 // skip for stream type (sync read and ignore)

66 saga::stream (tmap[t]).read (100, NULL);

67

68 // create a new read task

69 tc.add (saga::stream (tmap[t]).read <saga::task>

70 (100, buf2, &out))

71

72 break;

73

74

75 default:

76 throw saga::exception ("Something is terribly wrong!");

77 }

78

79 std::cout << "found: ’" << out << "’\n’";

saga-core-wg@ogf.org 44

GWD-R.72 SAGA Base Object August 18, 2006

80

81 // tc is filled again, we run forever, read/seeking from

82 // whoever we find after the wait.

83 }

saga-core-wg@ogf.org 45

GWD-R.72 SAGA Session Handling August 18, 2006

3.3 SAGA Session Handling

The session object provides the functionality of a session handle, which isolates
independent sets of SAGA objects from each other. Sessions also support the
management of security information (see saga::context in section 3.4).

3.3.1 Specification

package saga.session
{
class session : implements saga::object

// from object saga::error_handler
{
CONSTRUCTOR (out session obj);
DESTRUCTOR (in session obj);

add_context (in context context);
remove_context (in context context);
list_contexts (out array<context,1> contexts);

}
}

3.3.2 Details

class session:

Almost all saga objects are created in a SAGA session, and
are associated with that (and only that) session for their
whole life time.

A session instance to be used on object instanciation can
explicitely be given as first parameter to the SAGA object
instantiation call (Constructor).

If the session handle is omitted as first parameter, a
default session handle is used, with default security
context(s) attached.

saga-core-wg@ogf.org 46

GWD-R.72 SAGA Session Handling August 18, 2006

Example (c++):

// create a file object in a specific session:
saga::file f (session, url);

// create a file object in the default session:
saga::file f (url);

SAGA objects created from other SAGA objects inherit its
session, such as for example saga::streams from
saga::stream_server. Only some objects do not need a
session handle on creation time, and can hence be shared
between sessions. These include:

- saga::context
- saga::job_description
- saga::metric
- saga::exception
- saga::tasks
- saga::task_container

Note that tasks have n o explicit session attached. The
saga::object the task was created from, however, has a
saga::session attached, and, as that object can be retrieved
from a saga::task instance, the saga::session instance is
inderictly available.

Multiple sessions can co-exist. A single session can be
shared between threads.

If a saga::session object instance gets destroyed, or goes
out of scope, the objects associated with that session
survive. The implementation MUST ensure that the session is
internally kept alive until the last of that sessions
objects gets destroyed.

If the session object instance itself gest destroyed, the
resources associated with that session MUST be freed
immediately as the last object associated with that session
gets destroyed.

Objects associated with different sessions MUST NOT
influence each other in any way - for all practical
purposes, they can be considered to be running in different
application instances.

saga-core-wg@ogf.org 47

GWD-R.72 SAGA Session Handling August 18, 2006

Any SAGA operation CAN throw a IncorrectSession exception if
involves two different session handles.

Instances of the saga::context class (which encapsulates
security information in SAGA) can be attached to a
saga::session instance. The context instances are to be
used by that session for authentication and authorization to
the used backends.

If a saga::context gets removed from a session, but that
context is already/still used by any object created in that
session, the context MAY continue to be used by these
objects, and by objects which inherit the session from these
objects, but not by any other objects. However, a call to
list_contexts MUST NOT list the removed context after it
gets removed.

Independent of any explicitely attached saga::context
instances, a call to list_contexts() MUST include the
default saga::context instances in the returned list.

Default saga::context instances on a session can be removed
from a session, with a call to remove_context().

A SAGA implementation MUST document what default context
instances it may create and attach to a saga::session.
That set MAY change during runtime, but must not be changed
once a saga::session instance was created. E.g., two
saga::session instances might have different default
saga::context instances attached. Both sessions however
will have these attached for their complete lifetime.

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (out session obj)
Inputs: -
Outputs: obj: the newly created object
Throws: -
Notes: - The created session has the default context

instances attached.

- DESTRUCTOR

saga-core-wg@ogf.org 48

GWD-R.72 SAGA Session Handling August 18, 2006

Purpose: destroy the object
Format: DESTRUCTOR (in session obj)
Inputs: obj: the object to destroy
Outputs: -
Throws: -

- add_context
Purpose: attach a security context to a session handle
Format: add_context (in context context);
Inputs: context Security context to add
Outputs: -
Throws: -
PostCond: - the added context is deep copied

- remove_context
Purpose: detach a security context from a session handle
Format: remove_context (in context context);
Inputs: -
Outputs: context Security context to remove
Throws: DoesNotExist
PostCond: - the returned context is deep copied
Notes: - See notes to context lifetime above.

- list_contexts
Purpose: retrieve all contexts attached to a session
Format: list_contexts (out array<context>

contexts);
Inputs: -
Outputs: contexts list of contexts of this

session
Throws: -
Note: - a empty list is returned if no context is

attached.
- contexts may get added to a session by default.
hence the returned list MAY be non empty even
if no add_context was ever called before.

- a context might still be in use even if not
included in the returned list. See notes
about context life time aove.

saga-core-wg@ogf.org 49

GWD-R.72 SAGA Session Handling August 18, 2006

3.3.3 Examples

Code Example

1 // c++ example

2 saga::session s;

3 saga::context c (saga::context::Globus);

4

5 s.add_context (c);

6

7 saga::directory d (s, "gsiftp://remote.net/tmp/");

8 saga::file f = dir.open ("data.txt");

9

10 // file has same session attached as dir,

11 // and can use the same contexts

12 --+

13 // c++ example

14 saga::task t;

15 saga::session s;

16

17 {

18 saga::context c (saga::context::Globus);

19

20 s.add_context (c);

21

22 saga::file f (s, url);

23

24 t = f.copy <saga::task::Task> (target);

25

26 s.remove_context (c);

27 }

28 // As it leaves the scope, the gsi context gets ’destroyed’.

29 // However, the copy task and the file object however MAY

30 // continue to use the Globus context, as its destruction is

31 // actually delayed untli the last object using it gets

32 // destroyed.

33

34 t.run (); // can still use the Globus context

saga-core-wg@ogf.org 50

GWD-R.72 SAGA Context August 18, 2006

3.4 SAGA Context

The saga::context class provides the functionality of a security information
container. A context is created, and attached to a session handle. As such it
is available to all objects instantiated in that session. Multiple contexts can
co-exist in one session – it is up to the implementation to choose the correct
context for a specific method call. A single saga::context instance can be
shared between threads and sessions. SAGA objects created from other SAGA
objects inherit its session and thus also its context(s). Section 3.3 contains more
information about the saga::session class, and also about the management
and lifetime of saga::context instances associated with a SAGA session.

A implementation CAN implement various types of contexts, but MUST imple-
ment at least one type. The type of a saga::context instance to be created is
specified by a enum which is the only argument to the context constructor.

On contexts with type Unknown, other methods than get_type() should not be
called – otherwise an IncorrectState exception MUST be thrown.

Every context has a specific set of attributes which can be set/get via the SAGA
attribute interface. Exactly what attributes a context offers depends on its type.
A context MUST issue an error if attributes not corresponding to its type are
accessed.

For application level AAA (e.g. for streams, monitoring, steering), read only
contexts are used to inform the application about the requestor idendity. To
support that, a number of specific attributes are available, as specified below.
They are named "<context_type>_Remote<attribute>".

The lifetime of saga::context instances are defined by the lifetime of those
saga::session instances that context is associated with, and of those SAGA
objects which have been created in these sessions. For detailed information
about lifetime management, see the introduction (sec. 2.5.3), and the description
of the SAGA session class in section 3.3.

FIXME: check and fix the SAML default attrib values below. Check
others as well (SSH vs. SSH2, KERBEROS, SAML, ...).

3.4.1 Specification

package saga.context
{
enum context_type

saga-core-wg@ogf.org 51

GWD-R.72 SAGA Context August 18, 2006

{
Unknown = -1,
Globus = 1, // Globus
MyProxy = 2, // MyProxy
SAML = 3, // SAML
Unicore = 4 // Unicore
SSH = 5, // SSH
Kerberos = 6, // Kerberos
UserPass = 7 // FTP etc.

}

class context : implements saga::object
implements saga::attribute

// from object saga::error_handler
{
CONSTRUCTOR (in context_type type,

out context context);
DESTRUCTOR (in context context);

get_ctype (out context_type type);
}

}

3.4.2 Details

class context:

Following attributes MUST be supported by the correponding
context types, with default values given in brackets, where
appropriate:

Unknown:
No attributes supported

Globus:
ReadWrite:
Cert (/tmp/x509up_u<uid>)
CertDir (/etc/grid-security/certificates/)

ReadOnly:
RemoteID

saga-core-wg@ogf.org 52

GWD-R.72 SAGA Context August 18, 2006

RemoteHost
RemotePort

MyProxy:
ReadWrite:
ID (anonymous)
Pass (anon)

ReadOnly:
RemoteID
RemoteHost
RemotePort

SAML:
ReadWrite:
ID (??)
Cert (??)
Pass (??)

ReadOnly:
RemoteID
RemoteHost
RemotePort

Unicore:
ReadWrite:
Cert ($HOME/.keystore)
Pass (anon)

ReadOnly:
RemoteID
RemoteHost
RemotePort

SSH:
ReadWrite:
CertDir ($HOME/.ssh/)
Cert ($HOME/.ssh/id_dsa.pub)
Pass ($HOME/.ssh/id_dsa)

ReadOnly:
RemoteID
RemoteHost
RemotePort

saga-core-wg@ogf.org 53

GWD-R.72 SAGA Context August 18, 2006

Kerberos:
ReadWrite:
Cert (??)

ReadOnly:
RemoteID
RemotePort
RemotePort

UserPass:
ReadWrite:
ID (anonymous)
Pass (anon)

ReadOnly:
RemoteID
RemoteHost
RemotePort

Other context types MAY be specified by a SAGA
implementation.

- CONSTRUCTOR:
Purpose: create a security context
Format: CONSTRUCTOR (in context_type type,

out context context);
Inputs: type type of context
Outputs: context the newly created context
Throws: BadParameter
Notes: - BadParameter is thrown if a context type is

not supported (NOT NotImplemented).

- DESTRUCTOR:
Purpose: destroy a security context
Format: DESTRUCTOR (in context context);
Inputs: context the context to destroy
Outputs: -
Throws: -

- get_ctype:
Purpose: query the context type
Format: get_ctype (out context_type type);
Inputs: -

saga-core-wg@ogf.org 54

GWD-R.72 SAGA Context August 18, 2006

Outputs: type type of context
Throws: -

3.4.3 Examples

Code Example

1 // c++ example

2 // see notes to the URL problem in the introduction!

3

4 saga::context c_1 (saga::context::SSH); // default attribs

5 saga::context c_2 (saga::context::FTP);

6

7 c_2.set_attribute ("ID", "myself");

8 c_2.set_attribute ("Pass", "secret");

9

10 saga::session s;

11 s.add_context (c_1);

12 s.add_context (c_2);

13

14 saga::file f ("any://remote.net/tmp/data.txt", s);

15

16 // file can be accessed now via ssh or ftp

17 f.copy ("data.bak");

saga-core-wg@ogf.org 55

GWD-R.72 SAGA Attribute Interface August 18, 2006

3.5 SAGA Attribute Interface

There are various places in the SAGA API where attributes need to be associ-
ated with objects, for instance for job descriptions and metrics. The ’Attribute’
interface provides a common interface for storing and retrieving attributes.

Objects implementing this interface maintain a set of attributes. These at-
tributes can be considered as a set of key-value pairs attached to the object.
The key-value pairs are string based for now, but might cover other value types
in later versions of the SAGA API specification.

The interface naming ’Attribute’ is somewhat misleading: it seems to imply that
an object implementing this interface IS-A attribute. What we actually mean
is that an object implementing this interface HAS attributes. In the want of a
better name, we left it ’Attribute’, but implementers and users should be aware
of the actual meaning (The proper interface naming would be ’attributable’,
which sounds awkward).

The SAGA spec defines attributes which MUST be supported by the various
SAGA objects, and their default values, and also defines those which CAN be
supported. An implementation MUST motivate and document if a specified
attribute is not supported.

3.5.1 Specification

package saga.attribute
{
interface attribute
{
// setter / getters
set_attribute (in string key,

in string value);
get_attribute (in string key,

out string value);
set_vector_attribute (in string key,

in array<string> values);
get_vector_attribute (in string key,

out array<string> values);
remove_attribute (in string key);

// inspection methods
list_attributes (out array<string> keys);
find_attributes (in string kpat,

saga-core-wg@ogf.org 56

GWD-R.72 SAGA Attribute Interface August 18, 2006

in string vpat,
out array<string> keys);

attribute_equals (in string key,
in string val,
out bool test);

attribute_exists (in string key,
out bool test);

attribute_is_readonly (in string key,
out bool test);

attribute_is_writable (in string key,
out bool test);

attribute_is_vector (in string key,
out bool test);

}
}

3.5.2 Details

The attribute interface in SAGA provides a uniform paradigm to set and query
parameters and properties of SAGA objects. Although the attribute interface
is generic by design (i.e. it allows arbitrary keys and values to be used), its use
in SAGA is mostly limited to a finite and well defined set of keys.

In several languages, attributes can much more elegantly expressed by native
means - e.g. by using hash tables in Perl. Bindings for such languages MAY
allow to use a native interface additionally to the one described here.

Several SAGA objects have very frequently used attributes. To simplify usage of
these objects, setter and getter methods MAY be defined by the various language
bindings, again additionally to the interface described below. For attributes of
native non string types, these setter/getters MAY be typed.

For example, additionally to

saga::stream->set_attribute ("BufferSize", "1024");

a language binding might allow

saga::stream->set_buffer_size (1024); // int type

saga-core-wg@ogf.org 57

GWD-R.72 SAGA Attribute Interface August 18, 2006

Further, in order to limit semantic and syntactic ambiguities (e.g. due to spelling
deviations), language bindings MUST define known attribute keys as constants,
such as (in C):

#define SAGA_BUFFERSIZE "BufferSize"

...

stream.set_attribute (SAGA_BUFFERSIZE, "1024");

The distinction between scalar and vector attributes is somewhat artificial, and
is supposed to help those languages where that nature of attributes cannot be
handled transparently, e.g. by overloading. Bindings for languages such as
Python, Perl and C++ CAN hide that distinction as long as both access types
are supported.

To simplify handling of scalar/vector attributes, vector attributes can be spec-
ified as comma delimited strings (leading space after comma is ignored, unless
escaped):

val 1: "home, sweet home"

val 2: "Open GF"

val 3: " SAGA"

string: "home\, sweet home, Open GF, \ SAGA"

That format is returned if scalar getters are used for vector attributes, and can
be used for scalar setters for vector attributes. Vector setters/getters handle
scalar attributes as vectors of length one.

The order of the elements of vector attributes is ignored, and CAN be changed
by the SAGA implementation. The equals method does also not rely on ordering
(i.e. ’”one” ”two”’ equals ’”two” ”one”’).

Attributes are expressed as string values, however, they do have a type, which
defines the formatting of that string. The allowed types are String, Int, Enum,
Float, Bool, and Time (the same as metric value types). Additionally, attribute
are qualified as either Scalar or Vector. The default is Scalar.

Values of String type attributes are expressed as-is, however, comma, back-
slashes and leading spaces need to be escaped by a backslash, as described
above.

saga-core-wg@ogf.org 58

GWD-R.72 SAGA Attribute Interface August 18, 2006

Values of Int (i.e. Integer) type attributes are expressed as they would in result
of a printf of the format ”%Lf”, as defined by POSIX.

Values of Enum type attributes are expressed as strings, and have the literal
value of the respective enums as defined in this document. For example, the
initial task states would have the values ’New’, ’Running’ and ’Done’.

Values of Float point type attributes are expressed as they would in result of
a printf of the format ”%lld”, as defined by POSIX.

Values of Boolean type attributes MUST be expressed as ’True’ or ’False’.

Values of Time type attributes MUST be expressed as they would in result of
a call to ctime(), as defined by POSIX. Applications can also specify these at-
tribute values as seconds since epoch (this format the string as a Int type), but
all time attributes set by the implementation MUST be in ctime() format. Ap-
plications should be aware of the strptime() and strftime() methods defined
in POSIX, which assist time conversions.

3.5.3 Attribute Definitions in the SAGA specification

The SAGA specification defines a number of attributes which MUST or CAN
be supported, for various SAGA objects. An example such a definition is (from
the Metric object):

class metric ...
{
...

// Attributes:
// name: Name
// desc: name of metric
// mode: ReadOnly
// type: Scalar String
// value: -
// notes: naming conventions as described below apply
//
// ...

}

These specifications are NORMATIVE, even if described as comments in the
SIDL specification! The specified attributes MUST be supported by an imple-

saga-core-wg@ogf.org 59

GWD-R.72 SAGA Attribute Interface August 18, 2006

mentation, unless noted otherwise, as:

// mode: ReadOnly, optional
// mode: ReadWrite, optional

If an attribute MUST be supported, but the SAGA implementation cannot
support that attribute, any set/get on that attribute MUST throw a NotIm-
plemented exception, and the error message MUST state "Attribute <name>
not not available in this implementation".

If the default value is given as ’-’, the attribute is not set by default. Non-
optional attributes MUST have a default value (which can be an empty string).

Attribute support can ’appear’ and ’go away’ during the lifetime of an object
(e.g. as late binding implementations switch the backend). Any set on a at-
tribute which got removed (’dead attribute’) MUST throw an IncorrectState
exception. However, dead attributes MUST stay available for read access. The
SAGA implementation MUST NOT change that attributes value, as long as it
is not available. Allowed values for mode are ReadOnly and ReadWrite.

It is not allowed to add attributes other then those specified in this document,
unless explicitely allowed, as:

// Attributes (extensible):

The find_attributes() method accepts a list of patterns for attribute keys
and values, and returns a list of keys for those attributes which mach any one of
the specified pattern. The allowed patterns are the same as defined as wildcards
in the describtion of the SAGA name space objects, and are to be formatted as:
<key-pattern>=<value-pattern>.

FIXME: need to be able to check if attrib can be removed.

interface attribute:

- set_attribute
Purpose: set an attribute to a value
Format: set_attribute (in string key,

in string value);
Inputs: key: attribute key

value: value to set the
attribute to

Outputs: -
Throws: ReadOnly

saga-core-wg@ogf.org 60

GWD-R.72 SAGA Attribute Interface August 18, 2006

DoesNotExist
Notes: - a empty string means to set an empty value

(the attribute is not removed).
- the attribute is created, if it does not exist
- only some SAGA objects allow to create new
attributes - others allow only access to
predefined attributes. If a non-existing
attribute is queried on such objects, a
DoesNotExist exception is raised

- get_attribute
Purpose: get an attributes value
Format: get_attribute (in string key,

out string value);
Inputs: key: attribute key
Outputs: value: value of the attribute
Throws: DoesNotExist
Notes: -

- set_vector_attribute
Purpose: set an attribute to an array of values.
Format: set_vector_attribute (in string key,

in array<string> values);
Inputs: key: attribute key

values: array of values for the
attribute

Outputs: -
Throws: ReadOnly
Notes: -

- get_vector_attribute
Purpose: get the array of values associated with an

attribute
Format: get_vector_attribute (in string key,

out array<string> values);
Inputs: key: attribute key
Outputs: values: array of values of the

attribute.
Throws: DoesNotExist

- remove_attribute
Purpose: removes an attribute.

saga-core-wg@ogf.org 61

GWD-R.72 SAGA Attribute Interface August 18, 2006

Format: remove_attribute (in string key);
Inputs: key: attribute to be removed
Outputs: -
Throws: ReadOnly

DoesNotExist
Notes: - only some SAGA objects allow to remove

attributes - others allow only read access to
attributes

- if a non-existing attribute is removed, a
DoesNotExist exception is raised

- a vector attribute can also be removed with
this method

- list_attributes
Purpose: Get the list of attribute keys.
Format: list_attributes (out array<string> keys);
Inputs: -
Outputs: keys: existing attribute keys
Throws: -

- find_attributes
Purpose: find matching attributes.
Format: find_attributes (in array<string> pattern,

out array<string> keys);
Inputs: pattern: key/value pattern
Outputs: keys: matching attribute keys
Throws: BadParameter
Note: - the pattern must be formatted as described

earlier, otherwise a BadParameter exception
is thrown.

- attribute_equals
Purpose:
Format: attribute_equals (in string key,

in string val,
out bool test);

Inputs: key: attribute key
val: val to compare against

Outputs: test bool indicating success
Throws: DoesNotExist
Notes: - This method returns TRUE if the attribute

identified by key has the value identified
by val.

saga-core-wg@ogf.org 62

GWD-R.72 SAGA Attribute Interface August 18, 2006

- For vector attributes, the value has to be
specified as comma delimited concatenated
string of the vector elements (order of the
elements is ignored).

- attribute_exists
Purpose:
Format: attribute_exists (in string key,

out bool test);
Inputs: key: attribute key
Outputs: test bool indicating success
Throws: -
Notes: - This method returns TRUE if the attribute

identified by key exists.
- This method returns FALSE if the attribute
identified by key does not exist, and does
NOT throw a DoesNotExist exception.

- attribute_is_readonly
Purpose:
Format: attribute_is_readonly(in string key,

out bool test);
Inputs: key: attribute key
Outputs: test bool indicating success
Throws: DoesNotExist
Notes: - This method returns TRUE if the attribute

identified by the key exists, and can be read
by get_attribute() or get_vector attribute(),
but cannot be changed by set_attribute() and
set_vector_attribute().

- attribute_is_writable
Purpose:
Format: attribute_is_writable(in string key,

out bool test);
Inputs: key: attribute key
Outputs: test bool indicating success
Throws: DoesNotExist
Notes: - This method returns TRUE if the attribute

identified by the key exists, and can be
changed by set_attribute() and
set_vector_attribute().

saga-core-wg@ogf.org 63

GWD-R.72 SAGA Attribute Interface August 18, 2006

- attribute_is_vector
Purpose:
Format: attribute_is_vector (in string key,

out bool test);
Inputs: key: attribute key
Outputs: test bool indicating if

attribute is scalar
(false) or vector (true)

Throws: DoesNotExist
Notes: - This method returns TRUE if the attribute

identified by key is a vector attribute.

3.5.4 Examples

Code Example

1 // c++ example:

2 job_definition d;

3

4 // vector attributes

5 d.set_attribute ("ExecutionHosts", "host_1, host_2");

6

7 // scalar attribute

8 d.set_attribute ("MemoryUsage", "1024 MB");

9

10 ...

saga-core-wg@ogf.org 64

GWD-R.72 SAGA Monitoring Model August 18, 2006

3.6 SAGA Monitoring Model

The ability to query Grid entities about state is requested in several SAGA use
cases. Also, the SAGA task model introduces numerous new use cases for state
monitoring.

This package definition approaches the problem space of monitoring to unify
the various usage patterns (see details and examples), and to transparently
incorporate SAGA task monitoring. The paradigm is realised by introducing
monitorable SAGA objects, which expose metrics to the application, which
represent values to be monitored.

A closely related topic is Computational Steering, which is (for our purposes)
not seen independently from Monitoring: in the SAGA approach, the steering
mechanisms extend the monitoring mechanisms by the ability to push values
back to the monitored entity, i.e. to introduce writable metrics (see fire()).

3.6.1 Specification

package saga.monotoring
{
// callbacks are used for asynchroneous notification of
// metric changes (events)
interface callback
{
callback (in metric metric,

out bool keep);
}

// a metric represents an entity / value to be monitored.
class metric : implements saga::object

implements saga::attribute
// from object saga::error_handler

{
CONSTRUCTOR (in string name,

in string desc,
in string mode,
in string unit,
in string type,
in string value,
out metric metric);

DESTRUCTOR (in metric metric);

saga-core-wg@ogf.org 65

GWD-R.72 SAGA Monitoring Model August 18, 2006

// callback handling
add_callback (in callback cb,

in context context,
out int cookie);

remove_callback (in int cookie);

// actively signal an event
fire (void);

// Attributes:
// name: Name
// desc: name of metric
// mode: ReadOnly
// type: String
// value: naming conventions as described below apply
//
// name: Description
// desc: description of metric
// mode: ReadOnly
// type: String
//
// name: Mode
// desc: access mode of metric
// mode: ReadOnly
// type: String
// value: ’ReadOnly’, ’ReadWrite’ or ’Final’
//
// name: Unit
// desc: unit of metric
// mode: ReadOnly
// type: String
//
// name: Type
// desc: value type of metric
// mode: ReadOnly
// type: String
// value: ’String’, ’Int’, ’Enum’, ’Float’, ’Bool’ or ’Time’
//
// name: Value
// desc: value of metric
// mode: depending on the mode attribute above
// type: String
// value: see description of value formating below

}

saga-core-wg@ogf.org 66

GWD-R.72 SAGA Monitoring Model August 18, 2006

// SAGA objects which provide metrics and can thus be
// monitored implement the monitorable interface
interface monitorable
{
// introspection
list_metrics (out array<string> names);
get_metric (in string name,

out metric metric);

// callback handling
add_callback (in string name,

in callback cb,
out int cookie);

remove_callback (in int cookie);
}

// SAGA objects which can be steered by changing their
// metrics implement the steerable interface
interface steerable : implements monitorable
{
// metric handling
add_metric (in metric metric,

out bool success);
remove_metric (in string name);
fire_metric (in string name);

}
}

3.6.2 Details

interface callback:

The callback interface is supposed to be implemented by
custom, application level classes. Instances of these
classes can then passed to monitorable SAGA objects, in
order to have their callback method invoked on changes of
metrics on these monitorables.

saga-core-wg@ogf.org 67

GWD-R.72 SAGA Monitoring Model August 18, 2006

The callback classes can maintain state between
initialization and successive invokations. The
implementation MUST ensure that a callback is only called
once at a time, so that no locking is neccessary for the end
user.

If an invoced callback returns true, it stays registered and
can be invoced again on the next metric change. If it
returns false, it is not invoced again.

Callbacks are passed (e.g. added to a metric) by value -- a
copy constructor must hence exist.

- callback
Purpose: asynchroneous handler for metric changes
Format: callback (in metric metric,

out bool keep);
Inputs: metric: the metric causing the

callback invocation
Outputs: keep: indicates if callback stays

registered
Throws: -
Notes: - if ’keep’ is returned as true, the callback

stays registered, and will be invoked again on
the next metric update.

- if ’keep’ is returned as false, the callback
gets unregistered, and will not be invoked
again on metric updates, unless it gets
re-added by the user.

- ’metric’ is the metric the callback is
invoked on - that means that this metric
recently changed. Note that this change is
semantically defined by the metric, e.g. the
string of the ’value’ attribute of the metric
might have the same value in two subsequent
invocations of the callback.

- a callback can be added to a metric multiple
times. A false return (no keep) will remove
only one registration, and keep the others.

- a callback can be added to multiple metrics at
the same time. A false return (no keep) will
only remove the registration on the metric the
callback was invoked on.

saga-core-wg@ogf.org 68

GWD-R.72 SAGA Monitoring Model August 18, 2006

class metric:

The fundamental object introduced in this package is a
metric. A metric represents an observable, which can be
readable, or read/writable. The availability of a readable
observable corresponds to monitoring; the availability of a
writable observable corresponds to steering. A metric is
’Final’ when its values cannot change anymore, ever (i.e.
progress is ’100%’, job state is ’Done’ etc).

The approach is severely limited by the use of SAGA
attributes for the description of a metric, as these are
only defined in terms of string typed keys and values. An
extension of the attribute definition by typed values will
greatly improve the usability of this package, but will also
challenge its semantic simplicity.

The metric MUST provide access to following attributes
(examples given):

name: short human readable name.
- ex: file.copy.progress

desc: extensive human readable description
- ex: "This metric gives the state of

an ongoing file transfer as
percent completed."

mode: "Read", "ReadWrite" or "Final"
- ex: "ReadWrite"

unit: Unit of values
- ex: "percent (%)"
- ex: "Unit"

type: "String", "Int", "Enum", "Float", "Bool", "Time"
- ex: "Float"

value: value of the metric
- ex: "20.5"

The name of the metric must be unique, as it is used in
several methods to identify the metric of interest. The use
of a dot-delimited name space for metrics as in the example

saga-core-wg@ogf.org 69

GWD-R.72 SAGA Monitoring Model August 18, 2006

above is encouraged, as it greatly benefits the interactive
handling of metrics. The first element of the name space
SHOULD be the SAGA class the metric belongs to, the second
element SHOULD be the operation the metric describes (if
applicable, otherwise leave out), the third element SHOULD
indicate the description of the metric (e.g. ’state’ or
’progress’ or ’temperature’). Illustrative examples for
metric names are:

- file.copy.progress
- file.move.progress
- file.size
- job.state
- job.temperature // a custom observable on a job

The name, description, type and mode attributes are ReadOnly
- so only unit and value can be changed by the application.
All attributes are initialized in the metric constructor.
The mode, unit and value attributes can be changed
internally, i.e. by the SAGA implementation or lower layers.
Such a change does cause the metric to ’fire’. For example,
a metric ’fires’ if its mode changes from "Read" to "Final".

The name attribute MUST be interpreted case insensitive:
An implementation MAY change that attribute to lowercase on
metric creation.

If fire() is called on a metric, it returns immediately, but
any callbacks registered on that metric are not invoked
immediately. Instead, the remote entity which is
represented by the metric gets invoked first, and only if it
acknowledges the changes, the callbacks are invoked. A fire
can thus fail in the sense that the remote entity declines
the changes. It is good practice to have at least one
callback registered on the metric before calling fire, in
order to confirm the operation.

The metric ’Type’s are the same as defined for attributes,
and the metric ’Value’s are to be formatted as described for
the respective attribute types.

Metric definitions in the SAGA specification
--

The SAGA specification defines a number of metrics which

saga-core-wg@ogf.org 70

GWD-R.72 SAGA Monitoring Model August 18, 2006

MUST or CAN be supported, for various SAGA objects. An
example such a definition is (from the SAGA stream object):

class stream ...
{
...

// Metrics:
// name: Read
// desc: fires if a stream gets readable
// mode: Read
// unit: 1
// type: Bool
// value: True
//
// ...

}

These specifications are NORMATIVE, even if described as
comments in the SIDL specification! The specified metrics
MUST be supported by an implementation, unless noted
otherwise in the mode description, as:

// mode: ReadOnly, optional
// mode: ReadWrite, optional

If a metric MUST be supported, but the SAGA implementation
cannot provide that metric, any operation on that metric
MUST throw a NotImplemented exception, and the error message
MUST state "Metric <name> not not available in this
implementation".

Implementations MAY add custom metrics, which SHOULD be
documented similarly. However, metrics CAN also be added at
runtime - that is, for example, required for computational
steering of custom applications.

Metric Life Time:

A metric can ’appear’ and ’go away’ during the lifetime of
an object (again, computational steering provides the
obvious use case for this). Any operation on a metric which
got removed (’dead metric’) MUST throw an IncorrectState
exception. However, existing class instances of a dead

saga-core-wg@ogf.org 71

GWD-R.72 SAGA Monitoring Model August 18, 2006

metric MUST stay valid, and expose the same life time as any
other ’life metric’. Attributes of a dead metric MUST be
readable for the lifetime of the object. The Mode attribute
of such an instance MUST be changed to "Final" by the
implementation. Callback cannot be registered to a "Final"
metric, but can be unregistered. No other changes are
allowed on a "Final" metric, neither by the user, nor by the
SAGA implementation. Allowed values for mode are "ReadOnly",
"ReadWrite", and "Final".

Client Side Authorization:

A metric can get fired from a remote party - in fact, that
will be the default situation for both monitoring and
steering. In order to allow for client side authorization,
callback get a context as second parameter. That context
contains information to be used to authorize the remote
party which caused the metric to fire, and the callback to
be invoked. Thus, authorization is only available via the
callback mechanism. The context information passed to the
callback are assumed to be authenticated by the
implementation. If no context information are available, a
context of type ’Unknown’ is passed, which has no attributes
attached.

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in string name

in string desc,
in string mode,
in string unit,
in string type,
in string value,
out metric obj);

Inputs: name: name of metric
desc: description of metric
mode: mode of metric
unit: unit of metric value
type: type of metric
value: initial value of metric

Outputs: obj: the newly created object
Throws: -
Notes: - a metric is not attached to a session, but

saga-core-wg@ogf.org 72

GWD-R.72 SAGA Monitoring Model August 18, 2006

can be used in different sessions.
- the string arguments given are used to
initialise the attributes of the metric, which
are subsequently ReadOnly (see description
above).

- the constructor ensures that metrics are
always initialized completely. All changes to
attributes later will always result in an
equally valid metric.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in metric obj)
Inputs: obj: the object to destroy
Outputs: -
Throws: -
Notes: - on destruction, all callbacks get removed

- if a callback is active at time of
destruction, the destructor MAY block until
that callback returns. No other callbacks
get activated during that block.

// manage callbacks on the metric
- add_callback
Purpose: add asynchron notifier callback to watch metric

changes
Format: add_callback (in callback cb,

out int cookie);
Inputs: cb: callback class instance
Outputs: cookie: handle for this callback,

to be used for removal
Throws: IncorrectState
Notes: - IncorrectState is thrown if the metric is Final

- the ’callback’ method on cb will be invoked on
any change of the metric (not only on its
value)

- if the ’callback’ method returns true, the
callback is kept registered; if it returns
false, the callback is called, and is
un-registered after completion.

- the cb is passed by value.

- remove_callback

saga-core-wg@ogf.org 73

GWD-R.72 SAGA Monitoring Model August 18, 2006

Purpose: remove a callback from a metric
changes

Format: remove_callback (in int cookie);
Inputs: cookie: handle identifying the cb to

be removed
Outputs: -
Throws: -
Notes: - if the callback was removed earlier, or

was unregistered by returning false, this call
does nothing.

- the removal only affects the cb identified
by ’cookie’, even if the same callback was
registered multiple times.

- fire
Purpose: push a new metric value to the backend
Format: fire (void);
Inputs: -
Outputs: -
Throws: IncorrectState

ReadOnly
Notes: - IncorrectState is Final

- ReadOnly is thrown if the metric is not
Writable -- That holds also for a once
writable metric which was flagged Final.
To catch race condition triggered exceptions,
each fire should be try’ed/catched.

- it is not necessary to change the value of a
metric in order to fire it.

- ’set_attribute ("value", "...") on a metric
does NOT imply a fire. Hence the value can be
changed multiple times, but unless fire() is
explicitely called, no consumer will notice.

- if the application invoking fire() has
callbacks registered on the metric, these are
inviced.

interface monitorable:

The monitorable interface is implemented by those SAGA
objects which can be monitored, i.e. which have one or more
associated metrics. The interface allows introspection of
these metrics, and allows to add callbacks to these metrics

saga-core-wg@ogf.org 74

GWD-R.72 SAGA Monitoring Model August 18, 2006

which get called if these metrics change.

Several methods on this interface reflect similar methods on
the metric class - the additional string argument ’name’
identifies the metric these methods act upon. The semantics
of these calls are identical to the specification above.

// introspection
- list_metrics
Purpose: list all metrics associated with the object
Format: list_metrics (out array<string> names);
Inputs: -
Outputs: names: array of names identifying

the metrics associated with
the object instance

Throws: -
Notes: - several SAGA objects are required to expose

certain metrics (e.g. ’task.state’). However,
in general that assumption cannot be made, as
implementations might be unable to provide
metrics. In particular, listed metrics might
be actually unavailable.

- no order is implied on the returned array
- the returned array is guaranteed to have no
double entries (names are unique)

- get_metric
Purpose: returns a metric instance, identified by name
Format: get_metric (in string name,

out metric metric);
Inputs: name: name of metric to be returned
Outputs: metric: metric instance identified by

name
Throws: DoesNotExist
PostCond: - the returned metric is a deep copy.
Notes: - multiple calls of this method with the same

value for name return multiple identical
instances (copies) of the metric.

// callback handling
- add_callback
Purpose: add a callback to the specified metric
Format: add_callback (in string name,

in callback cb,
out int cookie);

saga-core-wg@ogf.org 75

GWD-R.72 SAGA Monitoring Model August 18, 2006

Inputs: name: identifies metric to which cb
is to be added

cb: reference of callback class
instance to be registered

Outputs: cookie: handle to be used for removal
of the callback

Throws: DoesNotExist
PostCond: - the added callback is deep copied.
Notes: - notes to the add_callback method of the metric

class apply

- remove_callback
Purpose: remove a callback from the specified metric
Format: remove_callback (in string name,

in int cookie);
Inputs: name: identifies metric for which

cb is to be removed
cookie: identifies the cb to be

removed
Throws: DoesNotExist - metric is unknown
PostCond: - the DESTRUCTOR of the callback is invoked
Notes: - notes to the remove_callback method of the

metric class apply

interface steerable:

The steerable interface is implemented by saga objects which
can be steered, i.e. which have writable metrics, and which
might allow to add new metrics. Steerable objects must also
implement the monitorable interface.

The method add_metric() allows to implement steerable
applications. In particular, the saga::self object is
steerable, and allows to add metrics (see description of
saga::self in the specification of the SAGA job management).

// metric handling
- add_metric
Purpose: add a metric instance to the application instance
Format: add_metric (in metric metric,

out bool success);
Inputs: metric: metric to be added

saga-core-wg@ogf.org 76

GWD-R.72 SAGA Monitoring Model August 18, 2006

Outputs: success: indicates success
Throws: DoesAlreadyExist
PostCond: - the added metric is deep coppied
Notes: - a metric is uniquely identified by its name

attribute - no two metrics with the same name
can be added.

- any callbacks already registered on the metric
stay registered (state of metric is not
changed)

- a object beeng steerable does not guarantee
that a metric can in fact be added -- the
returned boolean indicates if that particular
metric could be added.

- remove_metric
Purpose: remove a metric instance
Format: remove_metric (in string name);
Inputs: name: identifies metric to be

removed
Outputs: -
Throws: BadParameter
Notes: - only previously added metrics can be removed;

default (saga defined or implementation
specific) metrics cannot be removed, attempts
to do so raise a BadParameter exception.

- fire_metric
Purpose: push a new metric value to the backend
Format: fire_metric (int string name);
Inputs: name: identifies metric to be fired
Outputs: -
Throws: DoesNotExist

IncorrectState
ReadOnly

Notes: - notes to the fire method of the metric
class apply

- fire can be called for metrics which have been
added with add_metric(), and for predefined
metrics

saga-core-wg@ogf.org 77

GWD-R.72 SAGA Monitoring Model August 18, 2006

3.6.3 Examples

Code Example

1 callback example: trace all task state changes:

2 ---

3

4 // c++ example

5 // callback definition

6 class trace_cb : public saga::callback

7 {

8 public:

9 bool callback (saga::metric m)

10 {

11 std::cout << "metric " << m.get_attribute ("name")

12 << " fired." << std::endl;

13 return true; // stay registered

14 }

15 }

16

17 // the application

18 int main ()

19 {

20 ...

21

22 // if the callback defined above is added to all known

23 // metrics of all saga objects, a continous trace of state

24 // changes of these saga objects will be written to stdout

25 trace_cb cb;

26

27 saga::job j = ...

28

29 j.add_metric ("task.state", cb);

30

31 ...

32 }

33

34

35 monitoring example: monitor a write task

36 --

37

38 // c++ example for task state monitoring

39 class write_metric_cb : public saga::callback

40 {

41 private:

42 saga::task t_;

43

44 public:

45 write_metric_cb (const saga::task & t) { t_ = t; }

46

saga-core-wg@ogf.org 78

GWD-R.72 SAGA Monitoring Model August 18, 2006

47 bool callback (saga::metric & m)

48 {

49 std::cout << "bytes written: "

50 << m.get_attribute ("value")

51 << std::endl;

52

53 std::cout << "task state: "

54 << t_.t_state ()

55 << std::endl;

56

57 return (false); // keep calback registered

58 }

59 };

60

61 int main (int argc, char** argv)

62 {

63 ssize_t len = 0;

64 std::string str ("Hello SAGA\n");

65 std::string url (argv[1]);

66

67 saga::file f (url);

68 saga::task t = f.write <saga::task> (str, &len);

69

70 // assume that file has a ’progress’ metric indicating

71 // the number of bytes already written. In general,

72 // the list of metric names has to be searched for an

73 // interesting metric, unless it is a default metric as

74 // specified in the SAGA spec.

75

76 // create and add the callback instance

77 write_metric_callback cb (t);

78 f.add_callback ("progress", cb);

79

80 // wait until task is done, and give cb chance to get

81 // called a couple of times

82 t.wait ();

83 }

84

85

86 steering example: steer a remote job

87 ------------------------------------

88

89 // c++ example

90 class observer_cb : public saga::metric::callback

91 {

92 private:

93 saga::task t;

94

95 public:

96 bool callback (saga::metric & m)

saga-core-wg@ogf.org 79

GWD-R.72 SAGA Monitoring Model August 18, 2006

97 {

98 int val = atoi (m.get_attribute ("value"));

99

100 std::cout << "the new value is"

101 << atoi (m.get_attribute ("value"))

102 << std::endl;

103

104 return (false); // keep callback registered

105 }

106 };

107

108 // the steering appliciation

109 int main (int argc, char** argv)

110 {

111 saga::job_service js;

112

113 saga::job j = js.run ("remote.host.net",

114 "my_remote_application");

115

116 // Assume that job has a ’param_1’ metric representing

117 // a integer parameter for the remote application.

118 // In general, one has to list the metrics available on

119 // job, with list_metric, and search for an interesting

120 // metric. However, we assume here that we know that

121 // metric exists. So we just add an observer callback

122 // to the ’param_1’ metric - that causes the

123 // asynchroneous printout of any changes to the value

124 // of that metric

125

126 observer_cb cb;

127 j.add_callback ("param_1", cb);

128

129 // then we get metric for active steering

130 saga::metric m = j.get_metric ("param_1");

131

132 for (int i = 0; i < 10; i++)

133 {

134 // if param_1 is ReadOnly, set_value would throw

135 // ’ReadOnly’ - it would net be usable for

136 // steering then.

137 m.set_attribute ("value", std::string (i));

138

139 // push the pending change out to the receiver

140 m.fire ();

141

142 // callback should get called NOW + 2*latency

143 // That means fire REQUESTS the value change, but only

144 // the remote job can CHANGE the value - that change

145 // needs then reporting back to us.

146

saga-core-wg@ogf.org 80

GWD-R.72 SAGA Monitoring Model August 18, 2006

147 // give steered application some time to react

148 sleep (1);

149 }

150 }

151

152

153

154 steering example: BE a steerable job

155 ------------------------------------

156

157 // c++ example

158 //

159 // the example shows a job which

160 // - creates a metric to expose a Float steerable

161 // parameter

162 // - on each change of that parameter computes a

163 // new isosurface

164 //

165 // callback - on any change of the metric value, e.g. due to

166 // steering from a remote GUI application, a new iso surface

167 // is computed

168 class my_cb : public saga::callback

169 {

170 public:

171 // the callback gets called on any

172 bool callback (saga::metric m)

173 {

174 // get the new iso-value

175 float iso = atof (m.get_attribute ("value"));

176

177 // compute an isosurface with that iso-value

178 compute_iso (iso);

179

180 // keep this callback alive, and get called again on

181 // the next metric event.

182 return (false);

183 }

184 }

185

186 int main ()

187 {

188 // create a metric for the iso-value of an isosurfacer

189 saga::metric m ("application.isosurfacer.isovalue",

190 "iso-value of the isosurfacer",

191 "ReadWrite", // steerable

192 "", // no unit

193 "Float", // data type

194 "1.0"); // initial value

195

196 // add the callback which reacts on changes of the

saga-core-wg@ogf.org 81

GWD-R.72 SAGA Monitoring Model August 18, 2006

197 // metric’s value (returned cookie is ignored)

198 my_cb cb;

199 m.add_callback (cb);

200

201 // get job handle for myself

202 saga::self self;

203

204 // add metric to myself

205 self.add_metric (m);

206

207 // now others can ’see’ the metric, e.g. via

208 // job.list_metrics ();

209

210 // the callback could also have been added with:

211 // self.add_metric ("application.isosurfacer.isovalue", cb);

212

213 // compute isosurfaces for the next 10 minutes -

214 // the real work is done in the callback, on incoming

215 // requests (i.e. steering events).

216 sleep (600);

217

218 // on object (self) destruction, metrics and callback

219 // objects are destroyed as well

220 return (0);

221 }

222

223

224

225 monitoring example: callback for stream connects

226 --

227

228 // c++ example

229 //

230 // callback class which accepts an incoming client

231 // connection, and then un-registered itself. So, it

232 // accepts exactly one client, and needs to be re-registered

233 // to accept another client.

234 class my_cb : public saga::callback

235 {

236 privat:

237 // we keep a stream server and a single client stream

238 saga::stream_server ss_;

239 saga::stream s_;

240

241 public:

242 // constructor initialises these (note that the

243 // client stream should be not connected at this

244 // point)

245 my_cb (saga::stream_server ss,

246 saga::stream s)

saga-core-wg@ogf.org 82

GWD-R.72 SAGA Monitoring Model August 18, 2006

247 {

248 ss_ = ss;

249 s_ = s;

250 }

251

252

253 // the callback gets called on any incoming client

254 // connection

255 bool callback (saga::metric m)

256 {

257 // the stream server got an event triggered, and

258 // should be able to create a client socket now.

259 s_ = ss_.wait ();

260

261 if (s_.state == saga::stream::open)

262 {

263 // have a client stream, we are done

264 // don’t call this cb again!

265 return (true);

266 }

267

268 // no valid client stream obtained: keep this

269 // callback alive, and get called again on the

270 // next event on ss_

271 return (false);

272 }

273 }

274

275 int main ()

276 {

277 // create a stream server, and an un-connected

278 // stream

279 saga::stream_server ss;

280 saga::stream s;

281

282 // give both to our callback class, and register that

283 // callback with the ’client_connect’ metric of the

284 // server. That causes the callback to be invoked on

285 // every change of that metric, i.e. on every event

286 // that changes that metric, i.e. on every client

287 // connect attempt.

288 my_cb cb (ss, s);

289 ss.add_callback ("client_connect", cb);

290

291 // now we serve incoming clients forever

292 while (true)

293 {

294 // check if a new client is connected

295 // the stream state would then be Open

296 if (s.state == saga::stream::Open)

saga-core-wg@ogf.org 83

GWD-R.72 SAGA Monitoring Model August 18, 2006

297 {

298 // a client got conncted!

299 // handle open socket

300 s.write ("You say hello, I say good bye!\r\n", 32);

301

302 // and close stream

303 s.close ();

304

305 // the stream is not Open anymore. We re-add the

306 // callback, and hence wait for the next client

307 // to connect.

308 ss.add_callback ("client_connect", cb);

309 }

310 else

311 {

312 // no client yet, idle, or do something useful

313 sleep (1);

314 }

315 }

316

317 // we should never get here

318 return (-1);

319 }

saga-core-wg@ogf.org 84

GWD-R.72 SAGA Task Model August 18, 2006

3.7 SAGA Task Model

Operations performed in highly heterogenous distributed environments may
take a long time to complete, and it is thus desirable to have the ability to
perform operations in an asynchronous manner. The SAGA task model as
described here, provides this ability to all other SAGA classes. As such, the
package is orthogonal to the rest of the SAGA API.

run()

task::Async
construction

wait()
intern

intern
wait()
cancel()

construction
task::Sync

Final State

Initial State

construction
task::Task

Unknown

New Running Done

Failed

Figure 3: The SAGA task state model (See figure 1 for a description).

In order to understand the SAGA task model it is not sufficient to read the
specification of the saga::task and saga::task_container classes below, but
it is also imperative to understand how task instances get created. This is is
actually not covered in the SIDL specification in this document, but documented
verbosely below, with references to Figure 3.

The SAGA task model functions as follows:

• A SAGA object is said to implement the SAGA task model if, (a) it in-
herits the saga::async interface, and (b) all methods on that object are
implemented in three different versions, which are called synchronous,
asynchronous, and task version.

• The synchronous version of SAGA calls correspond to the normal method

saga-core-wg@ogf.org 85

GWD-R.72 SAGA Task Model August 18, 2006

calls specified in the SAGA specification. The first out parameter specified
(if any) is used as return value.

• The asynchronous version of SAGA calls has a different signature, and
returns a saga::task instance. That returned task is in Running state
and represents the asynchronous operation: it can be queried for state,
and can be cancelled.

• The task version of SAGA calls is very similar to the asynchronous version,
the only difference is that the returned task instance is in the New state,
and must be run() to get into the Running state.

• For symmetry, a language binding MAY add a second flavour of syn-
chronous calls, which have the same signature as asynchronous and task
versions, but the returned task is in a final state (i.e. run() and wait()
have been called on that task before returning).

• out and inout parameters for asynchronous operations MUST NOT be
accessed before the corresponding task enters the Done state. In all other
states, no assumption can be made about the contents of these parameters.

• in parameters are passed by value, and are assumed to be constant. They
can be accessed and changed again as soon as the task instance is created.

Errors arising from synchronous method invocations on SAGA objects are, in
general, flagged by exceptions, and can also be inspected using the error hand-
ler interface that all SAGA objects implement. For asynchronous operations,
this mechanism would break, as the error_handler interface allows only in-
spection of the last method call – but the order of execution is undefined for
asynchronous operations. Additionally, exceptions from asynchronous opera-
tions would be difficult to catch, as they would presumably be thrown outside
of any exception protection block.

For that reason, errors on asynchronous operations (i.e. tasks) are handled as
follows:

Error Handler: The saga::task class implements the saga::error_handler
interface, which allows inspection of an error thrown by an asynchronous
operation. Errors MUST NOT be reported unless the task enters a final
state.

Exceptions: The task instance MUST catch all SAGA exceptions and, if pos-
sible all other exceptions thrown by the asynchronous operation. If an
exception is caught by the task instance, the task state MUST be changed
to Failed immediately. Such exceptions are to be re-thrown by the task
when the rethrow() method is called.

saga-core-wg@ogf.org 86

GWD-R.72 SAGA Task Model August 18, 2006

3.7.1 Example Rendering in C++

Below is an example of how the SAGA task model might be rendered in C++
(this example is not normative). Note that template-tags are used to distinguish
the three task-returning method calls.

Code Example

1 // c++ like example

2

3 // SAGA specfication:

4 // read (in int len_in,

5 // inout array<byte> buffer,

6 // out int len_out);

7

8 // synchronous version

9 ssize_t len_out = saga::file::read (char * buffer,

10 size_t len_in);

11

12 // alternative synchronous version

13 saga::task t1 = saga::file::read <saga::task::Sync>

14 (char * buffer,

15 size_t len_in,

16 ssize_t & len_out);

17

18 // asynchronous version

19 saga::task t2 = saga::file::read <saga::task::ASync>

20 (char * buffer,

21 size_t len_in,

22 ssize_t & len_out);

23

24 // asynchronous version

25 saga::task t3 = saga::file::read <saga::task::Task>

26 (char * buffer,

27 size_t len_in,

28 ssize_t & len_out);

29

30 // t1 is in Done or Failed state

31 // t2 is in Running state

32 // t3 is in New state

A C language binding of this package might choose to use flags to distinguish
these calls; equivalently the C binding might use different method names, for it
is up to the language bindings to define the mechanism that is native – or as
close as possible – to the language to distinguish these calls.

Note that a SAGA task represents an asynchronous version of a SAGA API
method call, and as such it may, or may not have a one-to-one correspondence

saga-core-wg@ogf.org 87

GWD-R.72 SAGA Task Model August 18, 2006

to an external process, thread, or operation handle.

In general care should be exercised to not confuse tasks and jobs, as they rep-
resent different paradigms: a SAGA job explicitly and always represents an
externally running executable, performing any kind of work and as such IS-A
task; whereas the internal representation of a SAGA task is very much up to
the implementation, and a task is not always a job.

It should also be noted that the task state model (see fig. 3) and the job state
model (see fig. 4) are very similar, in that the task states represent a subset of
the job state model (as can be expected, for a job IS-A task).

For additional notes on resource management and task lifetime, see the intro-
duction section 2.5.3 of this document.

3.7.2 Specification

package saga.task
{
enum state
{
Unknown = -1,
New = 1,
Running = 2,
Done = 3,
Failed = 4

}

enum wait_mode
{
All = 0,
Any = 1

}

interface async
{
// this interface is empty on purpose, and is used only
// for tagging of SAGA classes which implement the SAGA
// task model.

}

saga-core-wg@ogf.org 88

GWD-R.72 SAGA Task Model August 18, 2006

class task : implements saga::object
implements saga::monitorable

// from object saga::error_handler
{
// no contructor
DESCTRUCTOR (in task obj);

run (void);
cancel (in float timeout = 0.0);
wait (in float timeout = -1.0,

out boolean finished);

get_state (out state state);

rethrow (void);

// Metric:
// name: state
// desc: "fires if on task state change, and
// has the literal value of the task
// state enum."
// mode: Read
// Unit: 1
// Type: Int
// Value: "0"

}

class task_container : implements saga::object
implements saga::monitorable

// from object saga::error_handler
{
CONSCTRUCTOR (out task_container obj);
DESCTRUCTOR (in task_container obj);

add (in task task,
out int cookie);

remove (in int cookie);

run (void);
cancel (in float timeout = 0.0);
wait (in float timeout = -1.0,

int wait_mode mode = All,
out array<task> finished);

saga-core-wg@ogf.org 89

GWD-R.72 SAGA Task Model August 18, 2006

list_tasks (out array<int> cookies);
get_tasks (out array<task> tasks);
get_states (out array<state> states);

// Metric:
// name: State
// desc: fires on state changes of any task in
// container, and has the value of that
// tasks cookie.
// mode: Read
// unit: 1
// type: Enum
// value: "Unknown"

}
}

3.7.3 Details

FIXME: move state description closer to state diagram – AM

enum state:

A task can be in one of several possible states:

New: The task has been created but not yet started. Tasks start in
this state, it is initial.

Running:
The run() method has been invoked on the task, either
explicitly or implicitly, see above.

Failed:
The asynchronous operation has finished unsuccessfully
or has been cancelled. This state is final.

Done:
The asynchronous operation has successfully finished.
This state is final.

Unknown:
This state signals that something went wrong, and that the SAGA

saga-core-wg@ogf.org 90

GWD-R.72 SAGA Task Model August 18, 2006

implementation cannot assign a state to the task reliably.

class task:

Objects of this class represent asynchronous API calls.
They are only created by invoking a method on a saga object
which returns a task object (with saga::task::ASync or
saga::task::task). But as saga::job instances inherit from
the task class, tasks are also effectively created as jobs.

If a task gets created, it will share the state of the
object it was created from. For more information on state
sharing, see introduction.

- CONSTRUCTOR
No constructor is available, as tasks get only created
through asynchronous method calls.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in task obj)
Inputs: obj: the object to destroy
Outputs: -
Throws: -
PostCond: - state is no longer shared with the creating

object

- run
Purpose: Start the asynchronous operation.
Format: run (void);
Inputs: -
Outputs: -
Throws: IncorrectState
Notes: - run can only be called on a task in New state.

All other states will cause the IncorrectState
exception to be thrown.

- wait
Purpose: Wait for the task to finish.
Format: wait (in float timeout,

out boolean done);

saga-core-wg@ogf.org 91

GWD-R.72 SAGA Task Model August 18, 2006

Inputs: timeout: seconds to wait
Outputs: done: indicating if the task is

done running
Throws: -
Notes: - for timeout semantics, see Introduction

- wait returns success (true) as soon as the
task enters a final state, or is in a final
state already

- wait returns no success (false) if the task is,
even after timeout, not in yet a final state.

- cancel
Purpose: Cancel the asynchronous operation.
Format: cancel (in float timeout);
Inputs: timeout: time for freeing resources
Outputs: -
Throws: IncorrectState
PreCond: - task is in ’Running’ state
Notes: - for timeout semantics, see Introduction

- for resource deallocation semantics, see
Introduction

- if cancel fails, the task state remains
’Running’ until the cancel operation
succeeded. The state then changes to
’Failed’.

- if the task is in a final state, the call has
no affect, and, in particular, does NOT change
the state from ’Done’ to ’Failed’. This is to
avoid race conditions.

- if the task is in ’New’ state, an
’IncorrectState’ exception is thrown.

- get_state
Purpose: Get the state of the task.
Format: get_state (out state state);
Inputs: -
Outputs: state: state of the task.
Throws: -

- rethrow
Purpose: re-throw any exception a failed task caught.
Format: throw (void);
Inputs: -

saga-core-wg@ogf.org 92

GWD-R.72 SAGA Task Model August 18, 2006

Outputs: -
Throws: any exception
Notes: - that method does nothing unless the task is in

’Failed’ state, and MUST NOT throw
’IncorrectState’ if the task is in any other
state.

- if in ’Failed’ state, the method MUST raise an
exception which indicates the reason why that
task entered the ’Failed’ state (i.e. it throws
the exception which caused it to enter the
’Failed’ state.

- if the ’Failed’ state was reached due to
cancel(), the ’NoSuccess’ exception MUST be
thrown, with the message "task cancelled".

class task_container:

The management of large number of tasks can be tedious.
The task_container class is intended to help in these
situations, and to effectively handle large number of
asynchronous operations.

When there are many asynchronous tasks it would be inefficient to
invoke the wait() method on each one sequentially. The
task_container class provides a mechanism to wait (amongst other
operations) for a set of tasks.

- CONSTRUCTOR:
Purpose: create a task container
Format: CONSTRUCTOR (out task_container tc);
Inputs: -
Outputs: tc: newly created container
Throws: -

- DESTRUCTOR:
Purpose: destroy a task container
Format: DESTRUCTOR (in task_container tc);
Inputs: tc: container to destroy
Outputs: -
Throws: -

saga-core-wg@ogf.org 93

GWD-R.72 SAGA Task Model August 18, 2006

- add
Purpose: Add a task to a task_container.
Format: add (in task task);
Inputs: task: task to add to the

task_container
Outputs:
Throws: -
Notes: - a task can be added more than once

- remove
Purpose: Remove a task from a task_container.
Format: remove (in task task);
Inputs: task: task to remove from the

task_container
Outputs: -
Throws: DoesNotExist
Notes: - if a task was added more than once, it must be

removed the same number of times in order to
leave no trace of it in the task container.

- run
Purpose: Start all asynchronous operations in the

container.
Format: run (void);
Inputs: -
Outputs: -
Throws: IncorrectState
Notes: - run will cause an IncorrectState exception if

any of the tasks in the container causes that
exception on run().

- as the order of execution of the tasks is
undefined, no assumption on the individual task
states can be made after such an exception.

- cancel
Purpose: Cancel all the asynchronous operations in the

container.
Format: cancel (in float timeout);
Inputs: timeout: time for freeing resources
Outputs: -
Throws: -
Notes: - see semantics of task cancel.

saga-core-wg@ogf.org 94

GWD-R.72 SAGA Task Model August 18, 2006

- wait
Purpose: Wait for one or more of the tasks to finish.
Format: wait (in float timeout,

in run_mode mode
out task done);

Inputs: timeout: seconds to wait
mode: wait for All or Any task

Outputs: done: finished task
Throws: -
Notes: - for timeout semantics, see Introduction

- if mode is ’All’, the wait call returns only
if all tasks in the container are finished,
or on timeout, whatever occurs first.
The output task is then any of the finished
tasks.

- if mode is ’Any’, the wait call returns on the
first task which would return on task::wait in
that timeout period, and returns that task.

- the returned task is removed from the
container, which allows constructs like
while (task = tc.wait ()) { ... }

- list_tasks
Purpose: List the tasks in the task task_container.
Format: list_tasks (out array<int> cookies);
Outputs: cookies: array of cookies for all

tasks in task_container
Throws: -

- get_tasks
Purpose: Get the tasks in the task task_container.
Format: get_tasks (out array<task> tasks);
Outputs: tasks: array of tasks in

task_container
Throws: -
Notes: - the returned tasks are NOT removed from the

task container.

- get_states
Purpose: Get the states of all tasks in the task

task_container.
Format: get_states (out array<state> states);

saga-core-wg@ogf.org 95

GWD-R.72 SAGA Task Model August 18, 2006

Outputs: states: array of states for
tasks in task_container

Throws: -
Notes: - the returned list is not ordered

3.7.4 Examples

Code Example

1 // c++ example, partly pseudocode

2 saga::directory dir;

3 saga::job job;

4

5 ...

6

7 /* create tasks */

8 saga::task t1 = dir.ls <saga::task> (result);

9 saga::task t2 = dir.copy <saga::task> (source,target);

10 saga::task t3 = dir.move <saga::task> (source,target);

11 saga::task t4 = job.checkpoint <saga::task> ();

12 saga::task t5 = job.signal <saga::task> (SIG_USR);

13

14 // start tasks

15 t1.run ();

16 t2.run ();

17 t3.run ();

18 t4.run ();

19 t5.run ();

20

21 // put all tasks into container

22 saga::task_container tc;

23

24 tc.add (t1);

25 tc.add (t2);

26 tc.add (t3);

27 tc.add (t4);

28 tc.add (t5);

29

30 // take one out again

31 tc.remove (t5);

32

33 // wait for all other tasks in container to finish

34 tc.wait ();

35

36 // wait for the last task

37 t5.wait ();

38

39 +---+

saga-core-wg@ogf.org 96

GWD-R.72 SAGA Task Model August 18, 2006

40

41 // example for error handling in C++

42 {

43 task.run ();

44 task.wait ();

45

46 if (task.get_state = saga::task::Failed)

47 {

48 try {

49 task.rethrow ();

50 }

51 catch (saga::exception e)

52 {

53 std::cout << "task failed: " << e.what () << std::endl;

54 }

55 }

56 }

saga-core-wg@ogf.org 97

GWD-R.72 SAGA Job Management August 18, 2006

3.8 SAGA Job Management

Nearly all of the SAGA use cases (except for the GridRPC use cases) had either
explicit or implicit requirements for submitting jobs to grid resources, and most
needed to also to monitor and control these submitted jobs.

This section describes the SAGA API for submitting jobs to a grid resource,
either in batch mode, or in an interactive mode. It also describes how to control
these submitted jobs (e.g. to cancel(), suspend(), or signal() a running
job), and how to retrieve status information for both running and completed
jobs.

This API is also intended to incorporate the work of the DRMAA-WG [5].
Much of this specification was taken directly from DRMAA specification [15],
with many of the differences arising from an attempt to make the job API
consistent with the overall SAGA API look&f́eel2.

The API covers four classes: saga::job_description, saga::job_service,
saga::job and saga::job_self. The job description class is nothing more
than a container for a well defined set of attributes which, using JSDL [9] based
keys, defines the job to be started, and its resource requirements. The job
server represents a resource management endpoint which allows the starting
and listing of jobs. The job class itself is central to the API, and represents an
application instance running under the management of a resource manager. The
job self class IS-A job, but additionally implements the steering interface. The
purpose of this class is to represent the current SAGA application, and allows
for a number of use cases which have the application actively interacting with
the Grid infrastructure, for example to provide steering capabilities, to migrate
itself, or to set job attributes.

The job class inherits the saga::task class 3.7, and uses its methods to run(),
wait() for, and to cancel() jobs. The inheritance feature also allows for the
management of large numbers of jobs in task containers. Additional methods
provided by the saga::job class relate to the Suspended state (which is not
available on tasks), and provide access to the jobs standard I/O streams, and to
more detailed status information. In this specification, the standard I/O streams
are specified to have opaque types. The SAGA language bindings MUST specify
a native type for I/O streams. That type SHOULD be the one used as the file
descriptor to the POSIX read() call in that language.

2We expect that SAGA-API implementations may be implemented using DRMAA, or may
produce JSDL documents to be passed to underlying scheduling systems.

saga-core-wg@ogf.org 98

GWD-R.72 SAGA Job Management August 18, 2006

3.8.1 Job State Model

The SAGA job state diagram is shown in figure 4. It is an extension of the
saga::task state diagram (figure 3), and extends the state diagram with an
’Unknown’ state (which is needed for job instances which are not yet initialized,
and are to be used for asynchronous initialization), and with a ’Suspended’
state, which the job can enter/leave using the suspend()/resume() calls. In
contrast to tasks, jobs cannot be created in ’Done’ state.

cancel()

create_job()

run_job()
synchronous

asynchronous

wait()

CONSTRUCTOR()

run_job()
asynchronous

create_job()
synchronous

run()
wait()
intern

cancel()
intern

su
sp
en
d(
)

re
su
me
()

intern

Final State

Initial State
disabled

Unknown

New

Suspended Failed

Running Done

Figure 4: The SAGA job state model extends the SAGA task state model with ’Unknown’
and ’Suspended’ states, and additional transitions (See figure 1 for a legend).

SAGA implementations need to map the native backend state model onto the
SAGA state model. The SAGA state model should be simple enough to allow
a straight forward mapping in most cases. For some applications, access to
the native backend state model is useful. For that reason, an additional met-
ric named ’StateDetail’ allows to query the native job state. That schema
follows the current state model of the OGSA-BES specification, which also has
as simplified top level state model, and allows for additional, backend specific
state details.

FIXME: ref to BES – AM

State details SHOULD be formatted as follows:

’<model>:<state>’

saga-core-wg@ogf.org 99

GWD-R.72 SAGA Job Management August 18, 2006

with valid models being: ”BES”, ”DRMAA”, or implementation specific (ex-
ample: ’BES:StagingIn’). If no state details are available, the metric is either
not available, or it has always an empty string value.

3.8.2 Job Description Attributes

Although JSDL [2] based attribute names are used for job description, the API
uses no explicit representation of JSDL (i.e. JSDL compliant XML). XML is
deemed to be too low level to be included into the SAGA API.

SAGA implementations MUST support the Executable attribute, as that is
the only required attribute for a job_description. An implementation MUST
document which other attributes are supported, and which aren’t. In general,
a job_description containing an unsupported attribute does not cause an
error on job creation or submission, unless noted otherwise in the attribute
description.

Attributes marked as ’not supported by JSDL’ might disappear in future ver-
sions of the SAGA API – all other attributes are likely to be kept, at least for
backward compatibility. The attribute description lists some of the standards
and backend systems where that attribute is supported. FIXME: needs com-
pletion for Unicore, Condor, Globus

3.8.3 File Transfer Specifications

The syntax of a file transfer directive for the job description is modeled on the
LSF syntax, and has the general syntax:

local_file operator remote_file

Both the local_file and the remote_file can be URLs. If they are not URLs,
but full or relative pathnames, then the local_file is relative to the host where
the submission is executed, and the remote_file is evaluated on the execution
host of the job.

The operator is one of the following four:

saga-core-wg@ogf.org 100

GWD-R.72 SAGA Job Management August 18, 2006

’>’ copies the local file to the remote file before the job starts.
Overwrites the remote file if it exists.

’>>’ copies the local file to the remote file before the job starts.
Appends to the remote file if it exists.

’<’ copies the remote file to the local file after the job finishes.
Overwrites the local file if it exists.

’<<’ copies the remote file to the local file after the job finishes.
Appends to the local file if it exists.

3.8.4 Job Identifiers

The job ID is treated as an opaque string in the SAGA API. However, for the
sake of interoperability of different SAGA implementations, and for potential
extended use of the job id information, the job id SHOULD be implemented as:

’[backend url]-[native id]’

For example, a job submitted to the host remote.host.net via ssh (whose
daemon runs on port 22), and having the unix pid 1234, should get the job id:

’[ssh://remote.host.net:22/]-[1234]’

The implementation MAY free the resources used for the job, and hence MAY
invalidate a job id, after a successful wait on the job, or after the application
recieved the job status information, and job status details if available, at least
once.

3.8.5 Specification

package saga.job
{
enum state
{
Unknown = -1, // same as in saga::task::state
New = 1, // same as in saga::task::state
Running = 2, // same as in saga::task::state
Done = 3, // same as in saga::task::state
Failed = 4, // same as in saga::task::state
Suspended = 5

}

saga-core-wg@ogf.org 101

GWD-R.72 SAGA Job Management August 18, 2006

class job_description : implements saga::object
implements saga::attribute

// from object: saga::error_handler
{
CONSTRUCTOR (out job_description obj);
DESTRUCTOR (in job_description obj);

// Attributes:
// name: Executable
// desc: command to execute.
// type: String
// mode: ReadWrite
// value: ’’
// notes: - this is the only required attribute.
// - can be a full pathname, or a pathname
// relative to the ’WorkingDirectory’ as
// evaluated on the execution host.
// - semantics as defined in JSDL
// - available in JSDL, DRMAA, LSF
//
// name: Argument
// desc: positional parameters for the command.
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - semantics as specified by JSDL
// - available in JSDL, DRMAA, LSF
//
//
// name: Environment
// desc: set of environment variables for the job
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - exported into the job environment
// - format: ’key=value’
// - semantics as specified by JSDL
// - availbale in JSDL, DRMAA
//
// name: WorkingDirectory
// desc: working directory for the job
// mode: ReadWirite, optional
// type: String
// value: ’.’
// notes: - semantics as specified by JSDL
// - available in JSDL, DRMAA, LSF

saga-core-wg@ogf.org 102

GWD-R.72 SAGA Job Management August 18, 2006

//
// name: JobInteractive
// desc: run the job in interactive mode
// mode: ReadWrite, optional
// type: Boolean
// value: ’False’
// notes: - this implies that stdio streams will stay
// connected to the submitter after job
// submission, and during job execution.
// - if an implementation cannot handle
// interactove jobs, and this attribute is
// present, and ’True’, the job creation MUST
// throw and ’IncorrectParameter’ error with an
// descriptive error message.
// - available in LSF
// - not supported by JSDL, DRMAA
//
// name: Input
// desc: pathname of the standard input file
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - semantics as specified by JSDL
// - available in JSDL, DRMAA, LSF
//
// name: Output
// desc: pathname of the standard output file
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - semantics as specified by JSDL
// - available in JSDL, DRMAA, LSF
//
// name: Error
// desc: pathname of the standard error file
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - semantics as specified by JSDL
// - available in JSDL, DRMAA, LSF
//
// name: JobContact
// desc: set of endpoints describing where to report
// job state transitions.
// mode: ReadWrite
// type: Vector String

saga-core-wg@ogf.org 103

GWD-R.72 SAGA Job Management August 18, 2006

// value: -
// notes: - format: URI (e.g. fax:+123456789,
// sms:+123456789, mailto:joe@doe.net).
// - available in DRMAA, LSF (mailto)
// - not supported by JSDL
//
// name: JobName
// desc: job name to be attached to the job submission
// mode: ReadWrite
// type: String
// value: ’False’
// notes: - available in DRMAA, LSF
// - not supported by JSDL
//
// name: FileTransfer
// desc: a list of file transfer directives
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - translates into jsdl:DataStaging
// - used to specify pre- and post-staging
// - semantics as specified in JSDL
// - syntax similar to LSF (see earlier notes)
// - available in JSDL, DRMAA, LSF
//
// name: Cleanup
// desc: defines if output files get removed after job
// finishes
// mode: ReadWrite, optional
// type: String
// value: ’Default’
// notes: - can have the Values ’True’, ’False’, and
// ’Default’
// - On ’False’, output files MUST be kept
// after job finishes
// - On ’True’, output files MUST be deleted
// after job finishes
// - On ’Default’, the behaviour is defined by
// the implementation or the backend.
// - translates into ’DeleteOnTermination’ elements
// in JSDL
//
// name: JobStartTime
// desc: time at which a job shoule be scheduled
// mode: ReadWrite, optional
// type: Int

saga-core-wg@ogf.org 104

GWD-R.72 SAGA Job Management August 18, 2006

// value: -
// notes: - Could be viewed as a desired job start
// time, but that is up to the resource
// manager.
// - format: number of seconds since epoch
// - available in DRMAA, LSF
// - not supported by JSDL
//
// name: Deadline
// desc: hard deadline after which the resource
// manager should cancel the job.
// mode: ReadWrite, optional
// type: Int
// value: -
// notes: - Could be viewed as a desired job start
// time, but that is up to the resource
// manager.
// - format: number of seconds since epoch
// - available in DRMAA, LSF
// - not supported by JSDL
//
// name: WallTimeLimit
// desc: hard limit on the amount of wall clock time
// in seconds that a job may consume
// mode: ReadWrite, optional
// type: Int
// value: -
// notes: - semantics as defined in JSDL
// - available in JSDL, DRMAA, LSF
//
// name: WallclockSoftLimit
// desc: estimate of wall clock time in seconds which
// job will require. This attribute is
// mode: ReadWrite, optional
// type: Int
// value: -
// notes: - intended to provide hints to the scheduler.
// - if limit is reached, the action taken is
// specific to the resource manager and its
// scheduling policies.
// - available in DRMAA, LSF
// - not supported by JSDL
//
// name: CPUTimeLimit
// desc: estimated job runtime in CPU seconds.
// mode: ReadWrite, optional

saga-core-wg@ogf.org 105

GWD-R.72 SAGA Job Management August 18, 2006

// type: Int
// value: -
// notes: - semantics as defined in JSDL
// - available in JSDL, DRMAA, LSF
//
// name: TotalCPUCount
// desc: total number of cpus requested for this job
// mode: ReadWrite, optional
// type: Int
// value: ’1’
// notes: - semantics as defined in JSDL
// - available in JSDL, DRMAA, LSF
//
// name: TotalPhysicalMemory
// desc: Estimated amount of memory the job requires
// mode: ReadWrite, optional
// type: Float
// value: -
// notes: - unit is in MegaByte
// - memory usage of the job is aggregated
// across all processes of the job
// - semantics as defined by JSDL
// - availale in JSDL, LSF
//
// name: CPUArchitecture
// desc: compatible processor for job submission
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - allowed values as specified in JSDL
// - semantics as defined by JSDL
// - availale in JSDL
//
// name: OperatingSystemType
// desc: compatible operating system for job submission
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - allowed values as specified in JSDL
// - semantics as defined by JSDL
// - availale in JSDL
//
// name: CandidateHosts
// desc: list of host names which to be considered by
// the resource manager as candidate targets
// mode: ReadWrite, optional

saga-core-wg@ogf.org 106

GWD-R.72 SAGA Job Management August 18, 2006

// type: Vector String
// value: -
// notes: - semantics as defined by JSDL
// - availale in JSDL
//
// name: Queue
// desc: name of a queue to place the job into
// mode: ReadWrite
// type: String
// value: -
// notes: - While SAGA itself does not define the
// semantics of "queue", many back end systems
// can make use of this attribute.
// - LSF
// - not supported by JSDL

}

class job_service : implements saga::object
implements saga::async

// from object saga::error_handler
{
CONSTRUCTOR (in session session,

in string rm = "",
out job_service service);

DESTRUCTOR (in job_service service);

create_job (in job_description job_desc,
out job job);

run_job (in string host = "",
in string commandline,
out job job,
out opaque stdin,
out opaque stdout,
out opaque stderr);

list (out array<string> job_ids);
get_job (in string job_id,

out job job);
get_self (out job_self job);

}

class job : extends saga::task
implements saga::async
implements saga::attribute

// from task saga::object

saga-core-wg@ogf.org 107

GWD-R.72 SAGA Job Management August 18, 2006

// from task saga::monitorable
// from object saga::error_handler

{
DESTRUCTOR (void);
DESTRUCTOR (in job job);

// job inspection
get_job_description (out job_description job_desc);
get_stdin (out opaque stdin);
get_stdout (out opaque stdout);
get_stderr (out opaque stderr);

// job management
suspend (void);
resume (void);
checkpoint (void);
migrate (in job_description job_desc);
signal (in int signum);

// Attributes:
// name: JobID
// desc: SAGA representation of the job identifier
// mode: Read
// type: String
// value: -
// notes: - format: as described earlier
//
// name: ExecutionHosts
// desc: list of host names or IP addresses allocated
// to run this job
// mode: Read, optional
// type: Vector String
// value: -
// notes: -
//
// name: Created
// desc: time stamp of the job creation in the
// resource manager
// mode: Read, optional
// type: Time
// value: -
// notes: - can be interprested as submission time
//
// name: Started
// desc: time stamp indicating when the job started
// running

saga-core-wg@ogf.org 108

GWD-R.72 SAGA Job Management August 18, 2006

// mode: Read, optional
// type: Time
// value: -
//
// name: Finished
// desc: time stamp indicating when the job completed
// mode: Read, optional
// type: Time
// value: -
//
// name: WorkingDirectory
// desc: working directory on the execution host
// mode: Read, optional
// type: String
// value: -
// notes: - can be used to determine the location of
// files staged using relative file paths
//
// name: ExitCode
// desc: process exit code as collected by the wait(2)
// series of system calls.
// mode: Read, optional
// type: Int
// value: -
// notes: - exit code is collected from the process
// which was started from the ’Executable’
// attribute of the job_description object.
// - only available in final states, if at all
//
// name: Termsig
// desc: signal number which caused the job to exit
// mode: Read, optional
// type: Int
// value: -
// notes: - only available in final states, if at all

// Metrics:
// name: State
// desc: fires on state changes of the job, and has
// the literal value of the job state enum.
// mode: Read
// unit: 1
// type: Enum
// value: "Unknown"
//

saga-core-wg@ogf.org 109

GWD-R.72 SAGA Job Management August 18, 2006

// name: StateDetail
// desc: fires as a job changes its state detail
// mode: Read, optional
// unit: 1
// type: String
// value: -
// notes: - the state metric is inherited from
// saga::task
// - see description of job states above
//
// name: Signal
// desc: fires as a job receives a signal, and has a
// value indicating the signal number
// mode: Read, optional
// unit: 1
// type: Int
// value: -
// notes: - no guarantees are made that any or all
// signals can be notified by this metric
//
// name: CPUTimeLimit
// desc: number of cpu seconds consumed by the job
// mode: Read, optional
// unit: seconds
// type: Int
// value: -
// notes: - aggregated across all processes/threads
//
// name: MemoryUse
// desc: current aggregate memory usage
// mode: Read, optional
// unit: megabyte
// type: Float
// value: "0.0"
// notes: - metric becomes ’Final’ after Job completions,
// and then shows the memory high water mark
//
// name: VmemoryUse
// desc: current aggregate virtual memory usage
// mode: Read, optional
// unit: megabyte
// type: Float
// value: "0.0"
// notes: - metric becomes ’Final’ after Job
// completions, and then shows the virtual
// memory high water mark

saga-core-wg@ogf.org 110

GWD-R.72 SAGA Job Management August 18, 2006

//
// name: Performance
// desc: current performance
// mode: Read, optional
// unit: FLOPS
// type: Float
// value: "0.0"
// notes: - metric becomes ’Final’ after Job
// completions, and then shows the performance
// high water mark

}

class job_self : extends saga::job
implements saga::steerable

// from job saga::async
// from job saga::attribute
// from job saga::task
// from job saga::object
// from job saga::monitorable
// from job saga::error_handler

{
// no CONSTRUCTOR
DESTRUCTOR (in job_self self);

}
}

3.8.6 Details

class job_description:

This object encapsulates all the attributes which define a
job to be run. It has no methods of its own, but implements
the ’Attribute’ interface in order to provide access to the
job properties, which are expressed as JSDL keywords.

The only required attribute in order to perform a valid job
submission is the ’Executable’. Given the ’Executable’, a
job can be instantiated in many existing back end systems
without any further specification.

saga-core-wg@ogf.org 111

GWD-R.72 SAGA Job Management August 18, 2006

There should be much overlap between the attributes defined
within SAGA and within the JSDL specification. This list,
however, will not be complete in cases where the JSDL was
deemed more complicated than was required for a simple API
(e.g. the notion of JSDL Profiles), or where an attribute
was needed to interact with a scheduler, which was not
within the stated scope of the JSDL working group (e.g.
’Queue’, which is considered a "site" attribute, and thus
not relevant to the pure description of a job).

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (out job_description obj)
Inputs: -
Outputs: obj: the newly created object
Throws: -
Notes: - a job_description is not associated with a

session, but can be used for job services
from different sessions.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in job_description obj)
Inputs: obj: the object to destroy
Outputs: -
Throws: -

class job_service:

The job_service represents a resource management backend,
and as such allows to create and submit jobs, and to
discover jobs. The job management methods are on the job
object itself - that probably implies that implementations
need to internally track what resource manager (or
job_service) created the job.

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in session session,

in string rm = "",
out job_service obj)

Inputs: session: session to associate with

saga-core-wg@ogf.org 112

GWD-R.72 SAGA Job Management August 18, 2006

the object
rm: contact string for resource

manager
Outputs: obj: the newly created object
Throws: BadParameter
Notes: - ’rm’ defaults to an empty string - in that

case, the implementation must perform a
resource discovery, or fall back to a fixed
value, or find a valid rm contact in any
other way. If that is not possible, a
’BadParameter’ exception must be thrown, and
must indicate that a rm contact string is
needed. The expected behaviour MUST be
documented (i.e. if a default is available).

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in job_service obj)
Inputs: obj: the object to destroy
Outputs: -
Throws: -

- create_job
Purpose: create a job instance
Format: create_job (in string rm,

in job_description job_desc,
out job job);

Inputs: rm: rm name or IP address of
the resource manager which
will accept and run the job

job_desc: description of job to be
submitted

Outputs: job: a job object representing
the submitted job instance

Throws: BadParameter
PreCon: - job_des MUST have a valid ’Executable’

attribute, otherwise a ’BadParameter’
exception is thrown.

PostCond: - the returned job is in the New state
- the job_description is deep_copied (no state
is shared after the method invocation)

Notes: - calling run() on the job will submit it to
the resource, and advance its state.

saga-core-wg@ogf.org 113

GWD-R.72 SAGA Job Management August 18, 2006

- run_job
Purpose: Run a command synchronously.
Format: run_job (in string host,

in string commandline,
out job job,
out opaque stdin,
out opaque stdout,
out opaque stderr);

Inputs: host: hostname to be used by rm for
submission

commandline: the command and arguments
to be run

Outputs: stdin: IO handle for the running
jobs standard input stream

stdout: IO handle for the running
jobs standard output

stderr: IO handle for the running
jobs standard error

job: a job object representing
the submitted job instance

Throws: AuthenticationFailed
AuthorizationFailed
PermissionDenied
BadParameter
NoSuccess

PostCond: - the returned job is in the ’Running’ state
Notes: - This is a convenience routine built on the

create_job method, and is intended to simplify
the steps of creating a job_description,
creating and running the job, and then
querying the standard I/O streams.

- the I/O handles have to be passed to the call
as references, in most languages, as calls
often allow only one return value (perl or python beeing
notable exceptions). If these parameters are
ommitted, the job is to be started
non-interactively, and the output I/O streams
may be discarded.

- the job is guaranteed to run on the given
host, or not at all.

- the method is exactly equivalent to the
sequence of (1) creation of a job_description
with ’Executable’/Environment set to the
values from commandline, ’JobInteractive’ set if

saga-core-wg@ogf.org 114

GWD-R.72 SAGA Job Management August 18, 2006

I/O is requested, ’CandidateHost’ set to host;
(2) create_job() with that description;
(3) calling run() on that job.

- list
Purpose: Get a list of jobs which are currently known by

the resource manager.
Format: list (out array<string> job_ids);
Inputs: -
Outputs: job_ids: an array of job identifiers
Throws: -
Notes: - The semantics of which jobs are viewable by

the calling user context, or how long a
resource manager keeps job information, are
implementation dependent.

- a returned job_id may translate into a job
(via get_job()) which is not controllable by
the requesting application (e.g. it could
cause an ’AuthorizationFailed’ exception.

- get_job
Purpose: Given a job identifier, this method returns a

job object representing this job.
Format: get_job (in string job_id,

out job job)
Inputs: job_id: job identifier as returned

by the resource manager
Outputs: job: a job object representing

the job identified by
job_id

Throws: BadParameter
DoesNotExist

PostCond: - Multiple job instances returned by calling
this method with the same argument do not
share state (but usually will reflect the same
state).

Notes: - in general, only a job_service representing the
resource manager which submitted the job may be
able to handle the job_id, and to identify the
job -- however, other job_services may succeed
as well.

- if the resource manager can handle the job_id,
but the referenced job is not alive, a
’DoesNotExist’ exception is thrown.

saga-core-wg@ogf.org 115

GWD-R.72 SAGA Job Management August 18, 2006

- if the resource manager cannot parse the job_id
at all, a ’BadParameter’ exception is thrown.

- get_self
Purpose: This method returns a job object representing

this job, i.e. the calling application.
Format: get_self (out job_self self)
Inputs: -
Outputs: self: a job_self object

representing _this_ job.
Throws: NoSuccess
PostCond: - the returned job_self is, by definition, in

’Running’ state.
- instances returned by multiple invocations of
this method do not share state (although may
reflect the same state).

Notes: - in general, only a job_service representing the
resource manager which started the application
which now calls get_self() can successfully
return a job_self instance. However, other
job_services may succeed as well.

- if a job_service cannot handle the calling job
as a job_self instance, a ’NoSuccess’ exception
is thrown.

class job:

The job provides the manageability interface to a job
instance submitted to a resource manager. There are two
general types of methods: those for retrieving job state and
information, and those for manipulating the job. The
methods intended to manipulate jobs cannot make any
guarantees about _how_ the resource manager will effect an
action to be taken. The API implementation is designed to
be agnostic of the back end implementation, such that any
back end could be implemented to perform an action. For
example, the checkpoint routine might cause an application
level checkpoint, or might use the services of GridCPR.

Job implements the ’Attribute’ interface. If not noted
otherwise, none of these attributes is available before the
job is running, and none is guaranteed to have a non-empty
value while the job is running or after the job finishes.

saga-core-wg@ogf.org 116

GWD-R.72 SAGA Job Management August 18, 2006

Job also implements the monitorable interface, and thus
allows monitoring and notification for changes of runt time
attributes.

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (out job obj);
Inputs: -
Outputs: obj: the newly created object
Throws: -
PostCond: - the returned job is in ’Unknown’ state
Notes: - the constructor serves only the purpose to

create jobs to be passed by reference to
asynchronous create_job method of the
job_service class.

- if any method is called on the created job
before it was initilized by a asynchronous
call to create_job(), an ’IncorrectState’
exception MUST be thrown.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in job obj)
Inputs: obj: the object to destroy
Outputs: -
Throws: -
Notes: - the object destruction does not imply a

cancel() on the job.

- get_job_description
Purpose: Retrieve the job_description which was used to

submit this job instance.
Format: get_job_description (out job_description jd);
Inputs: -
Outputs: jd: a job_description object
PreCond: - the job can be in any state
PostCond: - the returned job_description is a deep copy
Throws: -
Notes: - There are cases when the job_description is not

available, and thus this object will be empty
(i.e. has no attributes attached, and the
mandatory ’Executable’ attribute is set to be

saga-core-wg@ogf.org 117

GWD-R.72 SAGA Job Management August 18, 2006

an empty string). This may include cases when
the job might not have been submitted through
SAGA, and get_job() was used to retrieve the
job, or when this state information has been
lost (e.g. the client application restarts and
the particular SAGA implementation did not
persist the information). This is not an
error. Success is hence signaled by a
non-empty ’Executable’ attribute of the
returned job_description instance.

- get_stdin
Purpose: retrieve input stream for a job.
Format: get_stdin (out opaque stdin)
Inputs: -
Outputs: stdin: standard input stream for

the job
PreCond: - the job was submitted via run_job(), or with

a job_description which had the attribute
’JobInteractive’ set to ’True’ - otherwise
a ’IncorrectState’ error is thrown.

Throws: IncorrectState
DoesNotExist

Notes: - if preconditions are met, but the standard
input stream is not available for some
reason, a ’DoesNotExist’ exception is thrown.

- get_stdout
Purpose: retrieve output stream of job
Format: get_stdout (out opaque stdout)
Inputs: -
Outputs: stdout: standard output stream for

the job
Throws: IncorrectState

DoesNotExist
PreCond: - the job was submitted via run_job(), or with

a job_description which had the attribute
’JobInteractive’ set to ’True’ - otherwise
a ’IncorrectState’ error is thrown.

Notes: - if preconditions are met, but the standard
output stream is not available for some
reason, a ’DoesNotExist’ exception is thrown.

saga-core-wg@ogf.org 118

GWD-R.72 SAGA Job Management August 18, 2006

- get_stderr
Purpose: retrieve error stream of job
Format: get_stderr (out opaque stderr)
Inputs: -
Outputs: stderr: standard error stream for

the job
Throws: IncorrectState

DoesNotExist
PreCond: - the job was submitted via run_job(), or with

a job_description which had the attribute
’JobInteractive’ set to ’True’ - otherwise
a ’IncorrectState’ error is thrown.

Notes: - if preconditions are met, but the standard
error stream is not available for some
reason, a ’DoesNotExist’ exception is thrown.

Job Management Methods:

- suspend
Purpose: Ask the resource manager to perform a suspend

operation on the running job.
Format: suspend (void);
Inputs: -
Outputs: -
Throws: IncorrectState

AuthenticationFailed
AuthorizationFailed
PermissionDenied
NoSuccess

PreCond: - job must be in ’Running’ state
PostCond: - on success, the job is in ’Suspended’ state

- on failure, the job is in ’Running’ state

- resume
Purpose: Ask the resource manager to perform a resume

operation on a suspended job.
Format: resume (void);
Inputs: -
Outputs: -
Throws: IncorrectState

AuthenticationFailed
AuthorizationFailed
PermissionDenied

saga-core-wg@ogf.org 119

GWD-R.72 SAGA Job Management August 18, 2006

NoSuccess
PreCond: - the job must be in ’Suspended’ state
PostCond: - on success, the job is in ’Running’ state

- on failure, the job is in ’Suspended’ state

- checkpoint
Purpose: Ask the resource manager to initiate a checkpoint

operation on a running job.
Format: checkpoint (void);
Inputs: -
Outputs: -
Throws: IncorrectState

AuthenticationFailed
AuthorizationFailed
PermissionDenied
NoSuccess

PreCond: - the job must be in ’Running’ state
PostCond: - the job is in ’Running’ state
Notes: - The semantics of checkpoint, and the actions

taken to initiate a checkpoint, are resource
manager specific. In particular, the
implementation/backend can trigger either a
system level or an application level
checkpoint.

- migrate
Purpose: Ask the resource manager to migrate a job.
Format: migrate (in job_description job_desc);
Inputs: job_desc: new job parameters to apply

when the job is migrated
Outputs: -
Throws: IncorrectState

AuthenticationFailed
AuthorizationFailed
PermissionDenied
NoSuccess

PreCond: - the job must be in ’Running’ state
PostCond: - the job is in ’Running’ state

- the job_description does not share state with
the job or other saga objects - it is deep
copied.

Notes: - job_desc might indicate new resource
requirements, for example.

- the action of migration might change the job

saga-core-wg@ogf.org 120

GWD-R.72 SAGA Job Management August 18, 2006

identifier within the resource manager.
- ideally, the submitted job description was
obtained by get_job_description(), and then
changed by the application. That is not a
condition though.

- signal
Purpose: Ask the resource manager to deliver an arbitrary

signal to a dispatched job.
Format: signal (in int signum); \F{shouldn’t signal take a metric? -- HK}
Inputs: signum: signal number to be

delivered
Outputs: -
Throws: IncorrectState

AuthenticationFailed
AuthorizationFailed
PermissionDenied
NoSuccess

PreCond: - the job must be in ’Running’ or ’Suspended’
state

PostCond: - the job can remain in its state, or can go to
’Running’, ’Suspended’, or any final state.

Notes: - there is no guarantee that the signal number
specified is valid for the operating system
on the execution host where the job is
running, or that the signal can be delivered.

class job_self:

The job_self class IS-A job which represents the current
application (i.e. the very application which owns that
job_self instance). It can only by created by calling
get_self() on a job service (that call can fail though).

The motivation to introduce this class is twofold: (1) it
allows to actively handle the current application
as a grid job (e.g. to migrate it, or to obtain its job
description for cloning/spawning); (2) as the class
implements the steerable interface, it is possible to add
ReadWrite metrics to its instance - that way it is possible
to expose these metrics to other external applications,
which in fact allows to steer the current application.

A drawback of this approach is that, in order to make an

saga-core-wg@ogf.org 121

GWD-R.72 SAGA Job Management August 18, 2006

application steerable, a job_service instance is needed
which can in fact return a job_self instance, which means
there must be a resource manager available which can manage
the current application - that however has nothing to do
with the concept of remote steering. Future versions of the
SAGA API may change that, and may make job_self a
singleton, independent from the job_service behaviour. As a
result, that class might disappear, and might not be
maintained for backward compatibility.

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (out job_self obj);
Inputs: -
Outputs: obj: the newly created object
Throws: -
PostCond: - the returned job_self is in ’Unknown’ state
Notes: - the constructor serves only the purpose to

create jobs to be passed by reference to
asynchronous get_self method of the
job_service class.

- if any method is called on the created
job_self before it was initilized by a
asynchronous call to get_self(), an
’IncorrectState’ exception MUST be thrown.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in job_self obj)
Inputs: obj: the object to destroy
Outputs: -
Throws: -
Notes: - destruction of job_self does not imply a

cancel() on the application.

3.8.7 Examples

Code Example

1 Example : simple job submission and polling for finish.

2

3 // ---

4 // c++ example

5 std::list <string> transfers;

saga-core-wg@ogf.org 122

GWD-R.72 SAGA Job Management August 18, 2006

6 saga::job_description jobdef;

7

8 transfers.push_back ("infile > infile");

9 transfers.push_back ("ftp://host.net/path/out << outfile");

10

11 jobdef.set_attribute ("’Executable’", "job.sh");

12 jobdef.set_attribute ("’TotalCPUCount’", "16");

13 jobdef.set_vector_attribute ("’FileTransfer’", transfers);

14

15 saga::job_service js;

16 saga::job job = js.create_job ("remote.host.net",

17 jobdef);

18 job.run ();

19

20 while (1)

21 {

22 // get job state

23 saga::job::state state = job.get_state ();

24

25 // get list of hosts the job is/where running on

26 std::list <std::string> hostlist = job.get_attribute

27 ("ExecutionHosts");

28

29 if (saga::job::Running == state)

30 {

31 std::cout << "Job is running." << std::endl;

32 }

33 else if (saga::job::Suspended == state)

34 {

35 std::cout << "Job is suspended." << std::endl;

36 }

37 else if (saga::job::Done == state)

38 {

39 std::cout << "Job completed successfully." << std::endl;

40 exit (0);

41 }

42 else

43 {

44 // state can only be ’Failed’

45 assert(saga::job::Failed == state);

46

47 std::string exitcode = job.get_attribute ("ExitCode");

48

49 std::cout << "Job failed with " << exitcode << std::endl;

50 exit (exitcode);

51 }

52

53 sleep (1); // idle

saga-core-wg@ogf.org 123

GWD-R.72 SAGA Job Management August 18, 2006

54 }

saga-core-wg@ogf.org 124

GWD-R.72 SAGA Name Spaces August 18, 2006

3.9 SAGA Name Spaces

Several SAGA packages share the notion of namespaces and operations on these
namespaces. In order to increase consistency in the API, those packages share
the same API paradigms. This section describes those paradigms, and those
classes which operate on arbitrary hierarchical namespaces, such as used in
physical, virtual and logical file systems, and in information systems.

The API is inspired by the POSIX standard, which defines tools and calls to
handle the name space of physical files (directories). The methods listed for the
interfaces have POSIX like syntax and semantics.

While POSIX has an iterative interface to directory listing (i.e., opendir, telldir,
seekdir, readdir), the corresponding part of the interface included here deviates
significantly from the POSIX version: it has fewer calls, with a different syntax,
but identical semantics.

Please note that ’stat’ like API calls are not covered here – they are rather
meaningless on a namespace per se, but belong to the specific implementations,
e.g. physical files, which implement the namespace interfaces.

3.9.1 Definitions

Pathnames: A pathname as accepted by this specification MUST follow the
specification of pathnames as described in section 1.1.3 ”Pathnames” of the
Document ”Namespace Service” of the Grid File System Working Group (GFS-
WG) in GGF [14]. Pathname specifications can contain wildcards as specified
below.

All method arguments which are named name, source or target are considered
pathnames. These pathnames can always be relative pathnames, but MUST
then start with ’./’ or ’../’. Relative pathnames refer to the current working
directory of the instance the method is called upon.

Note that the comments from the Inroduction, subsection 2.11, apply here. In
particular, an implementation MAY throw an IncorrectURL exception if it is
unable to handle a given pathname.

FIXME: check if pathnames in reference are in fact URLs

Current Working Directory (cwd) Every saga::ns_entry instance has
an associate current working directory (cwd), which forms the implicit base for
all operations on relative pathnames. For saga::ns_directory instances, that
cwd can be changed with the change_dir method. Otherwise, cwd only changes

saga-core-wg@ogf.org 125

GWD-R.72 SAGA Name Spaces August 18, 2006

if the entry itself is move()’d.

Directory: A ’Directory’ represent what [1] defines as ’Virtual Directories’.

Directory Entry: A directory entry or Entry represent what [14] defines as
’Junction’. Note that any type of junction defined there could be used.

Links: Links in this specification are considered symbolic links, i.e. they can
break if the entry they point to is removed. An implementation MAY support
links, as not all backends can support links, and others might support links only
in specific circumstances (e.g. if entry and link live on the same file system).

The ’Dereference’ flag allows methods to operate on the link target instead of
the link – only one level of reference is resolved though. The read_link()
method does also resolve only one link level, and returns an URL pointing to
the link target.

Wildcards: The API supports wildcards where appropriate, and thereby fol-
lows the POSIX standard for shell wildcards. Available wildcard patterns are:

* : matches any string
? : matches a single character
[abc] : matches any of a set of characters
[a-z] : matches any of a range of characters
[!abc] : matches none of a range of characters
[!a-z] : matches none of a range of characters
{a,bc} : matches any of a set of strings

See the POSIX standard for more details. In the API, wildcards are allowed in
all pathnames where they can be used in the respective shell commands, as:

copy *.txt dir
move *.txt dir
link *.txt dir
ls *.txt
remove *.txt

Users are rarely aware that wildcards can be used in unorthodox places, such
as:

saga-core-wg@ogf.org 126

GWD-R.72 SAGA Name Spaces August 18, 2006

move *.txt dir*
move *

The result of such operations is dependend on the order the wildcard expansion
is performed, e.g. if ’dir*’ expands to ’dir_1 dir_2’, all txt files and dir_1
will end up in dir_2.

SAGA implementation MUST support wildcards for all pathnames where that
ambiguity cannot arise, (source for move etc), and MAY support wildcards at
all pathnames where that ambiguite may arise.

For the method calls on saga::ns_entry, NO wildcards are allowed. The meth-
ods read_link(), exists(), is_dir(), is_entry(), is_link(), open and
open_dir() MUST NOT support wild cards (their return values make only
sense in repect to a single entry). Flags MUST be applied to all elements of a
wildcard expansion, even if that raises an exception for any reasons.

Access Control Lists – ACLs: ACLs are adopted to express access permis-
sions. As of now it is somewhat unclear on what subjects should ACLs operate
in grid environments: user id’s? distinguished names? groups? This docu-
ment settles for distinguished names but additionally allows a ’*’ wildcard for
set_acl(), which enables to set ACLs for more than one ’groups’:

dn_user = "O=dutchgrid, O=vu, CN=Andre Merzky";
dn_group = "O=dutchgrid, O=vu, CN=*";

An implementation MAY raise an InvalidParameter exception if that is not
supported.

Queries for ACLs (get_acl()), are supposed to be performed for an individual
DN, not a group of DN’s (e.g. the DN should not contain a *). An implmenta-
tion MAY support queries for pattern, but MUST then return the smallest set
of ACLs available for any single DN matching the pattern.

If name space entities are newly created, they inherit the ACLs of the name
space directory they are created in. However, new file entries (i.e. non-directory
entries) get the executable ACL stripped off. If entries get moved, copied or
linked into a new location, they maintain the original set of ACLs, and in
particular stay excecutable.

We are well aware that this approach needs reviewing as soon as some standard
emerges in that area (hopefully very soon).

FIXME: Should ACLs stay as they are?

saga-core-wg@ogf.org 127

GWD-R.72 SAGA Name Spaces August 18, 2006

Opening and Closing Name Space Entries: If a ns_entry object instance
gets created, it is also opened. Hence, the semantic and all notes of the repective
open() call do also apply to the constructor. The same holds for all classes which
inherit ns_entry.

In accordance with subsection 2.5.4 in the introduction, the saga::ns_entry
class has a close() method, which allows a enforce a timely release of used
(local and remote) resources. After an name space entry instance was closed,
all methdod calls on that instance MUST throw a IncorrectState exception.
A destruction of an entry implies the repsective close() semantics. The same
hold for all classes which inherit ns_entry.

3.9.2 Specification

package saga.name_space
{
enum flags
{
None = 0,
Overwrite = 1,
Recursive = 2,
Dereference = 4,
Create = 8,
Excl = 16,
Lock = 32,
CreateParents = 64,

}

enum acl
{
None = 0,
ACL_List = 1,
ACL_Read = 2,
ACL_Write = 4,
ACL_Exec = 8,
ACL_Admin = 16

}

class ns_entry : implements saga::object,
implements saga::async

// from object saga::error_handler

saga-core-wg@ogf.org 128

GWD-R.72 SAGA Name Spaces August 18, 2006

{
CONSTRUCTOR (in session session = theSession,

in string url,
in int flags = None);

out ns_entry obj);
DESTRUCTOR (in ns_entry obj);

// basic properties
get_url (out string url);
get_name (out string name);
get_cwd (out string cwd);

// navigation/query methods
is_dir (in int flags = None,

out boolean test);
is_entry (in int flags = None,

out boolean test);
is_link in int flags = None,

out boolean test);
read_link (out string link);

// security
set_acl (in string dn,

in int acl,
in int flags = None);

get_acl (in int flags = None,
out int acl);

list_dn (in int flags = None,
out array<string> dn);

// management methods
copy (in string target,

in int flags = None);
link (in string target,

in int flags = None);
move (in string target,

in int flags = None);
remove (void);
close (void);

}

class ns_directory : extends saga::ns_entry
// from ns_entry saga::object
// from ns_entry saga::async

saga-core-wg@ogf.org 129

GWD-R.72 SAGA Name Spaces August 18, 2006

// from object saga::error_handler
{
CONSTRUCTOR (in session session = theSession,

in string url,
in int flags = None,
out ns_directory obj);

DESTRUCTOR (in ns_directory obj);

// navigation/query methods
change_dir (in string dir);
list (in string pattern = "",

out array<string> names);
find (in string pattern,

in int flags = None,
out array<string> names);

read_link (in string name,
out string link);

exists (in string name,
out boolean exists);

is_dir (in string name,
in int flags = None,
out boolean test);

is_entry (in string name,
in int flags = None,
out boolean test);

is_link (in string name,
in int flags = None,
out boolean test);

// manage entries by number
get_num_entries (out int num);
get_entry (in int entry,

out string name);

// security
set_acl (in string name,

in string dn,
in int acl,
in int flags = None);

get_acl (in string name,
in int flags = None,
out int acl);

list_dn (in string name,
in int flags = None,
out array<string> dn);

saga-core-wg@ogf.org 130

GWD-R.72 SAGA Name Spaces August 18, 2006

// management methods
copy (in string source,

in string target,
in int flags = None);

link (in string source,
in string target,
in int flags = None);

move (in string source,
in string target,
in int flags = None);

remove (in string target,
in int flags = None);

make_dir (in string target,
in int flags = None);

// factory methods
open (in string name,

in int flags = None,
out ns_entry entry);

open_dir (in string name,
in int flags = None,
out ns_directory dir);

}
}

3.9.3 Details

class ns_entry:

ns_entry defines methods which serve the inspection of the
entry itself, methods which allows to manage the entry (e.g.
to copy, move, or remove it), and methods to manipulate
the entries access control lists.

In general, multiple such URLs might be valid to identify an
entry:

ftp://ftp.host.net/pub/data/test.txt
http://www.host.net/ftp/data/test.txt
http://www.host.net/ftp/data/./test.txt

saga-core-wg@ogf.org 131

GWD-R.72 SAGA Name Spaces August 18, 2006

http://www.host.net/ftp/data/../data/test.txt

Any valid URL can be returned on get_url(), but it SHOULD
not contain ’..’ or ’.’ path elements. The URL returned on
get_url() should serve as base for the return values on
get_cwd() and get_name(): for directory type entries,
get_url() and get_cwd() MUST return identical URLs. For
not-directory type entries, the URL returned on get_url MUST
equal the concatenation of the return values of get_cwd()
and get_name().

Constructor / Destructor:

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in Session session,

in string url,
in int flags,
out ns_directory obj)

Inputs: session: session handle
url: initial working dir
flags: open mode

Outputs: obj: the newly created object
Throws: -
Notes: - the default flag set is ’None’ (0)

- the constructor performs an open of the
entry - all notes to the respective open
call apply.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in ns_entry obj)
Inputs: obj: the object to destroy
Outputs: -
Throws: - the destructor performs a close() of the

entry, all notes to close() apply.

Methods for inspecting ns_entry:

- get_url
Purpose: obtain the complete url pointing to the entry

saga-core-wg@ogf.org 132

GWD-R.72 SAGA Name Spaces August 18, 2006

Format: get_url (out string url);
Inputs: -
Outputs: url url pointing to the entry
Throws: IncorrectState
Notes: -

- get_cwd
Purpose: obtain the current working directory for the

entry
Format: get_cwd (out string cwd);
Inputs: -
Outputs: cwd current working directory
Throws: IncorrectState
Notes: -

- get_name
Purpose: obtain the name part of the url
Format: get_name (out string name);
Inputs: -
Outputs: name last part of the pathname
Throws: IncorrectState
Notes: -

- is_dir
Purpose: tests entry for beeing a directory
Format: is_dir (in int flags,

out boolean test);
Inputs: flags: flags for operation
Outputs: test: boolean indicating if entry

is a directory
Throws: BadParameter

IncorrectState
Notes: - returns true if entry is a directory, false

otherwise
- flag can be set to ’Dereference’, default is
’None’

- similar to ’test -d’ as defined by POSIX

- is_entry

saga-core-wg@ogf.org 133

GWD-R.72 SAGA Name Spaces August 18, 2006

Purpose: tests entry for beeing a ns_entry
Format: is_entry (in int flags,

out boolean test);
Inputs: flags: flags for operation
Outputs: test: boolean indicating if entry

is a ns_entry
Throws: BadParameter

IncorrectState
Notes: - the method returns false if the entry is a

link or a directory (although a ns_dir IS_A
ns_entry, false is returned on a test on a
ns_dir) - otherwise true is returned.

- flag can be set to Dereference, default is
None

- similar to ’test -f’ as defined by POSIX

- is_link
Purpose: tests the entry for beeing a link
Format: is_link (in int flags,

out boolean test);
Inputs: flags: flags for operation
Outputs: test: boolean indicating if

entry is a link
Throws: BadParameter

IncorrectState
Notes: - returns true if the entry is a link, false

otherwise
- flag can be set to Dereference, default is
None

- similar to ’test -l’ as defined by POSIX

- read_link
Purpose: returns the name of the link target
Format: read_link (out string link);
Inputs: -
Outputs: link: resolved name
Throws: IncorrectState
Notes: - the returned name MUST be sufficient to

access the link target entry
- resolves one link level only
- if the entry instance this methoid is called
upon does not point to a link, BadParameter
is thrown.

- similar to ’ls -L’ as defined by POSIX

saga-core-wg@ogf.org 134

GWD-R.72 SAGA Name Spaces August 18, 2006

Methods for managing access control lists:
--

- set_acl
Purpose: set access control list for this entry
Format: set_acl (in string dn,

in int acl,
in int flags);

Inputs: dn: DN to set ACLs for
flags: flags defining the operation

modus
Outputs: -
Throws: BadParameter

IncorrectState
Notes: - if the entry is a directory and the ’Recursive’

flag is set, the ACLs are applied to all
entries in the directory tree below. If the
flag is set and the entry is not a directory, a
’BadParameter’ exception is thrown.

- if the entry is a link and the ’Dereference’
flag is set, the ACLs are set for the link
target, and not for the link itself. If the
flag is set and the entry is not a link, a
’BadParameter’ exception is thrown.

- Other flags are not allowed, and cause a
’BadParameter’ exception.

- get_acl
Purpose: get access control list for this entry
Format: get_acl (in string dn,

in int flags,
out int acl);

Inputs: dn: DN to get ACLs for
flags: flags defining the operation

modus
Outputs: acl: OR’ed ACLs set on the entity, for

the specified dn
Throws: BadParameter

IncorrectState
Notes: - if the entry is a link and the ’Dereference’

flag is set, the ACLs are retrieved for the
link target, and not for the link itself.
If the flag is set and the entry is not a

saga-core-wg@ogf.org 135

GWD-R.72 SAGA Name Spaces August 18, 2006

link, a ’BadParameter’ exception is thrown.
- Other flags are not allowed, and cause a
’BadParameter’ exception.

- list_dn
Purpose: list all DN’s for which ACLs are set.
Format: list_dn (in int flags,

out array<string> dn);
Inputs: flags: flags defining the operation
Outputs: dn: list of DNs for which ACLs

are set on the entry
Throws: BadParameter

IncorrectState
Notes: - if the entry is a link and the ’Dereference’

flag is set, the DNs are retrieved for the
link target, and not for the link itself.
If the flag is set and the entry is not a
link, a ’BadParameter’ exception is thrown.

- Other flags are not allowed, and cause a
’BadParameter’ exception.

- the list of returned DNs can contain wildcards
as described earlier. These must be expanded
by the application if that is required.

Methods for managing the name space entry:
--

- copy
Purpose: copy the entry to another part of the namespace
Format: copy (in string target,

in int flags);
Inputs: target: name to copy to

flags: flags defining the operation
modus

Outputs: -
Throws: BadParameter

DoesNotExist
IncorrectState
IncorrectURL

Notes: - if the target is a directory the source entry
is copied into the directory

- it is a ’BadParameter’ error if the source is
a directory and the ’Recursive’ flag is not

saga-core-wg@ogf.org 136

GWD-R.72 SAGA Name Spaces August 18, 2006

set
- if the target lies in a non-existing part of
the name space, an ’DoesNotExist’ error is
thrown.

- if the target already exists, it will be
overwritten if the ’Overwrite’ flag is set,
otherwise it is an ’BadParameter’ error.

- default flags set is ’None’ (0)
- similar to ’cp’ as defined by POSIX

- link
Purpose: create a symbolic link from the entry to

the target entry
Format: link (in string target,

in int flags);
Inputs: target: name to link to

flags: flags defining the operation
modus

Outputs: -
Throws: BadParameter

DoesNotExist
IncorrectState
IncorrectURL

Notes: - if the target is a directory the source entry
is linked into the directory.

- if the target already exists, it will be
overwritten if the ’Overwrite’ flag is set,
otherwise it is an ’BadParameter’ error

- if the target lies in a non-existing part of
the name space, an ’DoesNotExist’ error is
thrown.

- default flag set is ’None’ (0)
- similar to ’ln -s’ as defined by POSIX

- move
Purpose: rename source to target, or move source to

target if target is an directory.
Format: move (in string target,

in int flags);
Inputs: target: name to move to

flags: flags defining the operation
modus

Outputs: -
Throws: BadParameter

saga-core-wg@ogf.org 137

GWD-R.72 SAGA Name Spaces August 18, 2006

DoesNotExist
IncorrectState
IncorrectURL

Notes: - if the target already exists, it will be
overwritten if the ’Overwrite’ flag is set,
otherwise it is an ’BadParameter’ error

- if the target lies in a non-existing part of
the name space, an ’DoesNotExist’ error is
thrown.

- default flag set is ’None’ (0)
- the method changes the cwd to the target
directory. If the instance is a ns_directory,
it changes the cwd to the new pathname of the
directory.

- similar to ’mv’ as defined by POSIX

- remove
Purpose: removes this entry, and closes it
Format: remove (in int flags);
Inputs: target: entry to be removed
Outputs: -
Throws: BadParameter

IncorrectState
Notes: - if the entry is a directory the ’Recursive’

flag MUST be set or an ’BadParameter’ exception
will be raised

- default flag set is ’None’ (0)
- the method implies a call on close(0), and all
side effects from close() apply.

- similar to ’rm’ as defined by POSIX

- close
Purpose: closes the object
Format: close (float time);
Inputs: -
Outputs: -
Throws: IncorrectState
Notes: - IncorrectState is thrown if the object was

closed or removed before
- any subsequent method call on the object
MUST also raise IncorrectState (apart from
DESTRUCTOR)

- for timeout semantics, see Introduction
- for resource deallocation semantics, see

saga-core-wg@ogf.org 138

GWD-R.72 SAGA Name Spaces August 18, 2006

Introduction

class ns_directory:

ns_directory inherits all navigation and manipulation
methods from ns_entry, but adds some more methods to these
sets: instead of ’dir.copy (target)’ they allow, for
example, to do ’dir.copy (source, target)’. Other methods
added allow to change the cwd of the instance (which changes
the values returned by the get_name(), get_cwd() and
get_url() inspection methods), and others allow to open new
ns_entry and ns_directory instances (open() and open_dir()).

For all methods which have the same name as in the ns_entry
class, the descriptions and semantics defined in ns_entry
apply, unless noted here otherwise.

Constructor / Destructor:

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in Session session,

in string url,
in int flags,
out ns_directory obj)

Inputs: url: initial working dir
flags: open mode
session: session handle for

object creation
Outputs: obj: the newly created object
Notes: - the semantics of the inherited constructors

apply
- the default flag set is ’None’ (0)

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in ns_directory obj)
Inputs: obj: the object to destroy

saga-core-wg@ogf.org 139

GWD-R.72 SAGA Name Spaces August 18, 2006

Outputs: -
Throws: -
Notes: - the semantics of the inherited destructors

apply

Methods for navigation in the namespace hierarchy:
--

- change_dir
Purpose: change the working directory
Format: change_dir (in string dir);
Inputs: dir: directory to change to
Outputs: -
Throws: DoesNotExist

IncorrectState
IncorrectURL

Notes: - similar to the ’cd’ command in Unix shells,
as defined by POSIX

- list
Purpose: list entries in this directory
Format: list (in string pattern="",

out array<string> names);
Inputs: pattern: name or pattern to list
Outputs: names: array of names matching the

pattern
Throws: DoesNotExist

IncorrectState
IncorrectURL

Notes: - if pattern is not given (i.e. empty string),
all entries in the current working directory
are listed.

- similar to ’ls’ as defined by POSIX

- find
Purpose: find entries in the current directory and below
Format: find (in string pattern,

in int flags,
out array<string> names);

Inputs: pattern: pattern for names of
entries to be found

flags: flags defining the operation

saga-core-wg@ogf.org 140

GWD-R.72 SAGA Name Spaces August 18, 2006

modus
Outputs: names: array of names matching the

pattern
Throws: BadParameter

IncorrectState
IncorrectURL

Notes: - the find operates recursively below the current
working directory if the ’Recursive’ flag is
specified (default)

- find does not follow symbolically linked
directories, unless the ’Dereference’ flag
is specified

- find does also list symbolic link entries
with matching name

- the pattern follows the standard unix shell
wildcard specification, as described above

- the matching entries returned are relative
(to cwd) path names.

- default flags set is ’Recursive’ (1)
- similar to ’find’ as defined by POSIX, but
limited to the -name option.

- read_link
Purpose: returns the name of the link target
Format: read_link (in string name,

out string link);
Inputs: name: name to be resolved
Outputs: link: resolved name
Throws: DoesNotExist

IncorrectState
IncorrectURL

Notes: - the returned name MUST be sufficient to
access the link target entry

- resolves one link level only
- similar to ’ls -L’ as defined by POSIX

- exists
Purpose: returns true if entry exists, false otherwise
Format: exists (in string name,

out boolean exists);
Inputs: name: name to be tested for

existence
Outputs: exists: boolean indicating existence

of name

saga-core-wg@ogf.org 141

GWD-R.72 SAGA Name Spaces August 18, 2006

Throws: IncorrectState
IncorrectURL

Notes: - similar to ’test -e’ as defined by POSIX

- is_dir
Purpose: tests name for beeing a directory
Format: is_dir (in string name,

in int flags,
out boolean test);

Inputs: name: name to be tested
flags: flags for operation

Outputs: test: boolean indicating if name
is a directory

Throws: BadParameter
DoesNotExist
IncorrectState
IncorrectURL

Notes: - returns true if entry is a directory, false
otherwise

- flag can be set to Dereference, default is
None

- similar to ’test -d’ as defined by POSIX

- is_entry
Purpose: tests name for beeing a ns_entry
Format: is_entry (in string name,

in int flags,
out boolean test);

Inputs: name: name to be tested
flags: flags for operation

Outputs: test: boolean indicating if name
is a non-directory entry

Throws: BadParameter
DoesNotExist
IncorrectState
IncorrectURL

Notes: - returns true if the instance represents
a non-directory entry, false otherwise
(although ns_directory IS_A ns_entry,
false is returned on an ns_directory
instance)

- flag can be set to ’Dereference’, default is
’None’ (0)

- similar to ’test -f’ as defined by POSIX

saga-core-wg@ogf.org 142

GWD-R.72 SAGA Name Spaces August 18, 2006

- is_link
Purpose: tests name for beeing a symbolic link
Format: is_link (in string name,

in int flags,
out boolean test);

Inputs: name: name to be tested
flags: flags for operation

Outputs: test: boolean indicating if name
is a link

Throws: BadParameter
DoesNotExist
IncorrectState
IncorrectURL

Notes: - returns true if the entry is a symbolic link,
false otherwise

- the return value is independent of the fact if
a link target exists or not

- flag can be set to ’Dereference’, default is
’None’ (0)

- similar to ’test -l’ as defined by POSIX

Iterate over large directories:

- get_num_entries
Purpose: gives the number of entries in the directory
Format: get_num_entries (out int num);
Inputs: -
Outputs: num: number of entries in the

directory
Throws: IncorrectState
Notes: - at the time of using the result of this call,

the actual number of entries may already have
changed (no locking is implied)

- vaguely similar to ’opendir’/’readdir’ (2) as
defined by POSIX

- get_entry
Purpose: gives the name of an entry in the directory

based upon the enumeration defined by
get_num_entries

saga-core-wg@ogf.org 143

GWD-R.72 SAGA Name Spaces August 18, 2006

Format: get_entry (in int entry,
out string name);

Inputs: entry: index of entry to get
Outputs: name: name of entry at index
Throws: IncorrectState

DoesNotExist
Notes: - ’0’ is the first entry

- there is no sort order implied by the
enumeration, however an underlying
implementation MAY choose to sort the entries

- subsequent calls to get_entry and/or
get_num_entries may return inconsistent data,
i.e. no locking or state tracking is implied.
In particular, an index may be invalid - a
’DoesNotExist’ exception is then thrown.

- vaguely similar to ’opendir’/’readdir’ (2) as
defined by POSIX

Methods for managing access control lists:
--

- set_acl
Purpose: set access control list for this entry
Format: set_acl (in string name,

in string dn,
in int acl,
in int flags);

Inputs: name: entry to set ACLs for
dn: DN to set ACLs for
flags: flags defining the operation

modus
Outputs: -
Throws: BadParameter

DoesNotExist
IncorrectState

Notes: - if name is a directory and the ’Recursive’
flag is set, the ACLs are applied to all
entries in the directory tree below. If the
flag is set and name is not a directory, a
’BadParameter’ exception is thrown.

- if name is a link and the ’Dereference’
flag is set, the ACLs are set for the link
target, and not for the link itself. If the
flag is set and name is not a link, a
’BadParameter’ exception is thrown.

saga-core-wg@ogf.org 144

GWD-R.72 SAGA Name Spaces August 18, 2006

- Other flags are not allowed, and cause a
’BadParameter’ exception.

- get_acl
Purpose: get access control list for this entry
Format: get_acl (in string name,

in string dn,
in int flags,
out int acl);

Inputs: dn: entry to get ACLs for
dn: DN to get ACLs for
flags: flags defining the operation

modus
Outputs: acl: OR’ed ACLs set on the entity, for

the specified dn
Throws: BadParameter

DoesNotExist
IncorrectState

Notes: - if name is a link and the ’Dereference’
flag is set, the ACLs are retrieved for the
link target, and not for the link itself.
If the flag is set and name is not a
link, a ’BadParameter’ exception is thrown.

- Other flags are not allowed, and cause a
’BadParameter’ exception.

- list_dn
Purpose: list all DN’s for which ACLs are set.
Format: list_dn (in string name,

in int flags,
out array<string> dn);

Inputs: name: entry to list DNs foreration
flags: flags defining the operation

Outputs: dn: list of DNs for which ACLs
are set on the entry

Throws: BadParameter
DoesNotExist
IncorrectState

Notes: - if name is a link and the ’Dereference’
flag is set, the DNs are retrieved for the
link target, and not for the link itself.
If the flag is set and name is not a
link, a ’BadParameter’ exception is thrown.

- Other flags are not allowed, and cause a
’BadParameter’ exception.

saga-core-wg@ogf.org 145

GWD-R.72 SAGA Name Spaces August 18, 2006

- the list of returned DNs can contain wildcards
as described earlier. These must be expanded
by the application if that is required.

Management of namespace entries:

- copy
Purpose: copy the entry to another part of the namespace
Format: copy (in string source,

in string target,
in int flags);

Inputs: source: name to copy
target: name to copy to
flags: flags defining the operation

modus
Outputs: -
Throws: BadParameter

DoesNotExist
IncorrectState
IncorrectURL

Notes: - if the target is a directory, the source entry
is copied into the directory, keeping its
original name

- it is an error if the source is a directory
and the ’Recursive’ flag is not set, and causes
a ’BadParameter’ exception.

- if the target already exists, it will be
overwritten if the ’Overwrite’ flag is set,
otherwise it is a ’BadParameter’ error

- default flags set is ’None’ (0)
- similar to ’cp’ as defined by POSIX

- link
Purpose: create a symbolic link from the source entry to

the target entry so that any reference to the
target refers to the source entry

Format: link (in string source,
in string target,
in int flags);

Inputs: source: name to link
target: name to link to
flags: flags defining the operation

saga-core-wg@ogf.org 146

GWD-R.72 SAGA Name Spaces August 18, 2006

modus
Outputs: -
Throws: BadParameter

DoesNotExist
IncorrectState
IncorrectURL

Notes: - if the target is a directory, the source entry
is linked into the directory, with its original
name

- if the target already exists, it will be
overwritten if the ’Overwrite’ flag is set,
otherwise it is an error

- default flag set is ’None’ (0)
- similar to ’ln -s’ as defined by POSIX

- move
Purpose: rename source to target, or move source to

target if target is an directory.
Format: move (in string source,

in string target,
in int flags);

Inputs: source: name to move
target: name to move to
flags: flags defining the operation

modus
Outputs: -
Throws: BadParameter

DoesNotExist
AlreadyExists
IncorrectState
IncorrectURL

Notes: - if the target is a directory, the source entry
is moved into the directory, keeping its
original name

- if the target already exists, it will be
overwritten if the ’Overwrite’ flag is set,
otherwise it an ’AlreadyExists’ exception is
thrown

- moving any parent or the current directoy (e.g.
’.’, ’..’ etc.) is not allowed, and throws a
’BadParameter’ exception

- default flag set is ’None’ (0)
- similar to ’mv’ defined by POSIX

saga-core-wg@ogf.org 147

GWD-R.72 SAGA Name Spaces August 18, 2006

- remove
Purpose: removes the entry
Format: remove (in string target,

in int flags);
Inputs: target: entry to be removed
Outputs: -
Throws: BadParameter

DoesNotExist
IncorrectState
IncorrectURL

Notes: - if the entry is a directory and the
’Recursive’ is not set, a ’BadParameter’
exception is thrown

- default flag set is ’None’ (0)
- removing any path element of the current
working directory is not allowed, and throws
a ’BadParameter’ exception

- similar to ’rm’ as defined by POSIX

- close
Purpose: closes the object
Format: close (void);
Inputs: -
Outputs: -
Throws: IncorrectState
Notes: - IncorrectState is thrown if the object was

closed before
- any subsequent method call on the object
MUST also raise ’IncorrectState’ exception
(apart from the DESTRUCTOR)

- see the description of resource deallocation in
the intoduction for more details.

- make_dir
Purpose: creates a new directory
Format: make_dir (in string target,

in int flags);
Inputs: target: directory to create
Ouputs: -
Throws: AlreadyExists

IncorrectState
IncorrectURL

Notes: - if the parent directory or directories do not
exist, ’CreateParents’ flag MUST be set or an

saga-core-wg@ogf.org 148

GWD-R.72 SAGA Name Spaces August 18, 2006

exception will be raised. If set, the parrent
directories are created as well

- an ’AlreadyExists’ exception is thrown if the
directory already exists

- default flag set is ’None’ (0)
- similar to ’mkdir’ (2) as defined by POSIX

- open_dir
Purpose: creates a new ns_directory instance
Format: open_dir (in string name,

in int flags,
out ns_directory dir);

Inputs: name: directory to open
flags: flags defining the operation

modus
Outputs: dir: opened directory instance
Throws: BadParameter

DoesNotExist
AlreadyExists
IncorrectState
IncorrectURL

Notes: - the cwd of the new dir object instance is set
to ’name’

- a ’BadParameter’ exception is thrown if ’name’
is not an directory

- a ’DoesNotExist’ exception is thrown if ’name’
does not exist

- ’name’ is always deeply dereferenced, however,
the cwd is still set to ’name’, and not to the
value of the link target.

- similar to ’opendir’ (3) as defined by POSIX

- open
Purpose: creates a new ns_entry instance
Format: open (in string name,

in int flags,
out ns_entry entry);

Inputs: name: entry
flags: flags defining the operation

modus
Outputs: entry: opened entry instance
Throws: BadParameter

DoesNotExist

saga-core-wg@ogf.org 149

GWD-R.72 SAGA Name Spaces August 18, 2006

AlreadyExists
IncorrectState
IncorrectURL

Notes: - a ’BadParameter’ exception is thrown if ’name’
is a directory

- a ’DoesNotExist’ exception is thrown if ’name’
does not exist

- ’name’ is always deeply dereferenced, however,
the cwd is not changed to the link targets cwd.

- if name does not exist, it is created if
the ’Create’ flag is given, otherwise it is
an error

- the file is locked on open if the ’Lock’ flag
is given. If the file is already in a locked
state, the open will fail and a descriptive
error will be issued. If a file is opened in
locked mode, any other open on that file MUST
fail with a ’NoSuccess’ exception, with no
respect to the given flags. Note that a file
can be opened in normal mode, and then in
locked mode, w/o an error getting raised. The
application programmer must take precautions to
avoud such situations. The lock will get
removed on destruction of the file object, and
also on close. If an implementation does not
support locking, an descriptive ’BadParameter’
error MUST get thrown if the ’Lock’ flag is
given.

- it is an ’NoSuccess’ error if name exists and
both the ’Create’ and the ’Excl’ flag are given.

- similar to ’open’ (2) as defined by POSIX

3.9.4 Examples:

Code Example

1 More examples are given in the File and Logical_File sections.

2

3 Example: provide recursive directory listing for a given

4 directory

5

6 Note: - check for ’.’ and ’..’ resursion are left as an

7 exercise to the reader...

saga-core-wg@ogf.org 150

GWD-R.72 SAGA Name Spaces August 18, 2006

8 - string operations and printf statements are

9 obviously simplified...

10

11 +---+

12 // c++ example

13 std::string indent (int indent)

14 {

15 std::string s = " ";

16

17 for (int i = 0; i < indent; i++, s += " ");

18

19 return (s);

20 }

21

22 void list_dir (std::string & url,

23 int indent = 0)

24 {

25 try

26 {

27 // create directory and iterate over entries

28 saga::ns_dir dir (url);

29

30 printf ("\n%s ---> %s\n", indent (indent), url);

31

32 for (int i = 0; i < dir.get_num_entries (); i++)

33 {

34 char type = ’?’;

35 string info = "";

36

37 // get name of next entry

38 string name = dir.get_entry (i);

39

40 // get type and other infos

41 if (dir.is_link (name))

42 {

43 if (dir.exists(dir.read_link (name))){info="---> ";}

44 else {info="-|-> ";}

45 info += dir.read_link (name);

46 type = ’l’;

47 }

48 else if (dir.is_entry(name)){ type = ’f’; }

49 else if (dir.is_dir (name)){ type = ’d’; info = "/";}

50

51 printf ("%s > %3d - %s - %s%s\n",

52 indent (indent), i + 1,

53 type, name, info);

54

55 // recursion on directories

56 if (dir.is_dir (name))

57 {

saga-core-wg@ogf.org 151

GWD-R.72 SAGA Name Spaces August 18, 2006

58 list_dir (name, indent++);

59 }

60 }

61

62 printf ("\n%s <--- %s\n", indent (indent), url);

63 }

64

65 // catch all errors - see elsewhere for better examples

66 // of error handling in SAGA

67 catch (const saga::exception & e)

68 {

69 std::cerr << "Oops! SAGA error: "

70 << e.what () << std::endl;

71 }

72

73 return;

74 }

75

76 +---+

77

78 // a C++ example for ACL management

79 {

80 // allow short forms of flags

81 using namespace saga::ns_entry;

82

83 std::string dn_user = "O=dutchgrid, O=vu, CN=Andre Merzky";

84 std::string dn_group = "O=dutchgrid, O=vu, CN=*";

85

86 // open file (default: Read only)

87 saga::file f (url);

88

89 // set ACL restrictions for file. The ACL set is

90 // performed with the permissions of the session context

91 f.set_acl (dn_user, ACL_Read | ACL_Write);

92 f.set_acl (dn_group, ACL_Read);

93

94 // check if acl allow write with our current session

95 // contexts

96 if (f.get_acl () & ACL_Write)

97 {

98 saga::file f_2 (url, ReadWrite);

99

100 f_2.write ("data", 4);

101 }

102 }

saga-core-wg@ogf.org 152

GWD-R.72 SAGA File Management August 18, 2006

3.10 SAGA File Management

The ability to access the contents of files regardless of their location is central
to many of the SAGA use cases. This section addresses the most common
operations detailed in these use cases.

It is useful to note that interactions with files as opaque entities (i.e., as entries in
file name spaces) are covered by the name space package. The classes presented
here supplement the namespace package with operations for the reading and
writing of the contents of files. For all methods, the descriptions and notes
of the equivalent methods in the name space package apply if available, unless
noted here otherwise.

The described classes are syntacically and semantically POSIX oriented. Large
numbers of simple POSIX like remote data access operations are however, prone
to latency related performance problems. To allow for efficient implementations,
the presented API borrows ideas from GridFTP and other specifications which
are widely used for remote data access. These extentions should be seen as just
that: optimizations. Implementations of this package MUST implement the
POSIX likeread(), write() and seek() methods, and MAY implement the
additional optimized methods (a ’NotImplemented’ MUST be thrown if these
are not implemented). The optimizations included here are:

Scattered I/O Scattered I/O operations are already defined by POSIX, as
readv() and writev(). Essentially, these methods represent v ector versions of
the standard POSIX read()/write() methods; the argumemts are vectors of
instructions and buffers to operate on. In other words, readv() and writev()
can be regarded as specialized bulk methods, which cluster multiple I/O opera-
tions into a single operation. Advantages of such an approach are that it is easy
to implement, is very close to the original POSIX I/O in semantics, and in some
cases even very fast. Disadvantages are that for many small I/O operations (a
common occurence in SAGA use cases), the description of the I/O operations
can be larger than the sent, returned or received data.

Pattern Based I/O (FALLS) One approach to address the bandwith lim-
itation of scattered I/O is to describe the required I/O operations at a more
abstract level. Regularly repeating patterns of binary data can be described by
the so called ’Family of Line Segments’ (FALLS) [8]. The pattern based I/O
routines in SAGA use such descriptions to reduce the bandwidths limitation
of scattered I/O. The advantages of such an approach is that it targets very
common data access patterns (at least those very commonly found in SAGA
use cases). The disadvantages are that FALLS is a paradigm not widely known
or used, and that FALLS is by definition, limited to repeating patterns of data,
and hence is inefficient for more randomized data access.

saga-core-wg@ogf.org 153

GWD-R.72 SAGA File Management August 18, 2006

Extended I/O GridFTP (which was designed for a similar target domain)
introduced an additional remote I/O paradigm, that of Extended I/O opera-
tions.

In essence, the Extended I/O paradigm allows the formulation of I/O requests
using custom strings, which are not interpreted on the client but on the server
side; these can be expanded to arbitrary complex sets of I/O operations. The
type of I/O request encoded in the string is called mode. A server may support
one or many of these extended I/O modes. Whereas the approach is very flexible
and powerful and has proven its usability in GridFTP, a disadvantage is that it
requires very specific infrastructure to function, i.e. it requires a remote server
instance which can interpret opaque client requests. Additionally, no client side
checks or optimizations on the I/O requests are possible. Also, the application
programmer needs to estimate the size of the data to be returned in advance,
which in some cases is very difficult.

The three described operations have, if compared to each other, increasing se-
mantic flexibility, and are increasingly powerful for specific use cases. However,
they are also increasingly difficult to implement and support in a generic fashion.
It is up to the SAGA implementation and the specific use cases, to determine
the level of I/O abstraction that serves the application best and that can be
best supported in the target environment.

FIXME: Jha: Can this ’increasingly’ be eliminated? Also what does
’increasing semantic flexibility’ in the previous sentence mean? Can
we just say ’permit increased semantic flexibility’?
FIXME: AM: I changed that slightly (added ’if compared to each
other’) - does it make more sense now? We mean that read v is more
flexible than read p is more flexible than read e, etc.

3.10.1 Specification

package saga.file
{
enum flags
{
None = 0, // same as in name_space::flags
Overwrite = 1, // same as in name_space::flags
Recursive = 2, // same as in name_space::flags
FollowSymbolic = 4, // same as in name_space::flags
Create = 8, // same as in name_space::flags
Excl = 16, // same as in name_space::flags
Lock = 32, // same as in name_space::flags

saga-core-wg@ogf.org 154

GWD-R.72 SAGA File Management August 18, 2006

CreateParents = 64, // same as in name_space::flags
DeReference = 128, // same as in name_space::flags
Truncate = 256,
Append = 512,
Read = 1024,
Write = 2048,
ReadWrite = 4096,
Binary = 8192

}

enum seek_mode
{
Start = 1,
Current = 2,
End = 3

}

struct ivec
{
int offset; // position of data to r/w
int leng_in; // number of bytes to r/w
array<byte> buffer; // data to r/w
int leng_out; // number of bytes r/w

}

class directory : extends saga::ns_directory
// from ns_directory saga::ns_entry
// from ns_entry saga::object
// from ns_entry saga::async
// from object saga::error_handler

{
CONSTRUCTOR (in session session,

in string url,
in int flags = Read,
out directory dir);

DESTRUCTOR (in directory dir);

get_size (in string name,
out int size);

is_file (in string name,
in int flags = None,
out boolean test);

saga-core-wg@ogf.org 155

GWD-R.72 SAGA File Management August 18, 2006

open_dir (in string name,
in int flags = Read,
out directory dir);

open (in string name,
in int flags = Read,
out file file);

}

class file : extends saga::ns_entry,
implements saga::attributes

// from ns_entry saga::object
// from ns_entry saga::async
// from object saga::error_handler

{
CONSTRUCTOR (in session session,

in string url,
in int flags = Read,
out file file);

DESTRUCTOR (in file file);

// POSIX like I/O
read (in int len_in,

inout array<byte> buffer,
out int len_out);

write (in int len_in,
in array<byte> buffer,
out int len_out);

seek (in int offset,
in seek_mode whence,
out int position);

// scatterer I/O
read_v (inout array<ivec> ivec);
write_v (inout array<ivec> ivec);

// pattern based I/O
size_p (in string pattern,

out int size);
read_p (in string pattern,

inout array<byte> buffer,
out int len_out);

write_p (in string pattern,
in array<byte> buffer,
out int len_out);

saga-core-wg@ogf.org 156

GWD-R.72 SAGA File Management August 18, 2006

// extended I/O
modes_e (out array<string> emodes);
read_e (in string emode,

in string spec,
inout array<byte> buffer,
out int len_out);

write_e (in string emode,
in string spec,
in array<byte> buffer,
out int len_out);

// Attributes:
// name: Blocking
// desc: defines if file I/O is blocking or
// non-blocking
// mode: ReadWrite
// type: Bool
// value: True
// note: optional, I/O must be blocking if
// attribute is absent

}
}

3.10.2 Details

class directory:

- CONSTRUCTOR
Purpose: open the directory
Format: CONSTRUCTOR (in session session,

in string url,
in int flags,
out directory dir)

Inputs: session: session to associate the
object with

url: location of directory
flags: mode for opening

Outputs: dir: the newly created object
Throws: BadParameter

DoesNotExist

saga-core-wg@ogf.org 157

GWD-R.72 SAGA File Management August 18, 2006

Notes: - the default flag set is ’Read’ (1024)
- the semantics of the inherited constructors
apply

- DESTRUCTOR
Purpose: destroy the directory object
Format: DESTRUCTOR (in directory dir)
Inputs: dir: the object to destroy
Outputs: -
Thorws: -
Notes: - the semantics of the inherited destructors

apply

Methods giving information about files:

- get_size
Purpose: returns the number of bytes in the file
Format: get_size (in string name,

in int flags,
out int size);

Inputs: name: name of file to inspect
Outputs: size: number of bytes in the file
Throws: BadParameter

DoesNotExist
Notes: - similar to the ’st_size’ field from ’stat’ (2)

as defined by POSIX

- is_file
Purpose: alias for is_entry in saga::ns_directory

Factory like methods for creating objects:
--

- open_dir
Purpose: creates a directory object
Format: open_dir (in string name,

in int flags,
out directory dir)

Inputs: name: name of directory to open
flags: flags definition operation

modus
Outputs: dir: opened directory instance

saga-core-wg@ogf.org 158

GWD-R.72 SAGA File Management August 18, 2006

Throws: BadParameter
DoesNotExist
AlreadyExists

Notes: - default flag set is ’Read’ (1024)

- open
Purpose: creates a new file instance
Format: open (in string name,

in int flags = Read,
out file file);

Inputs: name: file to be opened
flags: flags definition operation

modus
Outputs: file: opened file instance
Throws: BadParameter

DoesNotExist
Notes: - the file is truncated to length 0 on the open

operation if the ’Trunc’ flag is given
- the file is in opened in append mode if the
’Append’ flag is given (a seek (0, End) is
performed after the open)

- the ’Binary’ flag is to be silently ignored on
systems which don’t support it (i.e.
non-Windows)

- default flag set is ’Read’ (1024)

class file:

This class represents an open file descriptor for read/write
operations on a physical file. Its concept is similar to
the file descriptor returned by the open (2) call in Unix.

Several methods can return error codes indicating failure,
instead of always raising an exception. These error codes
are, as described in the saga error section, defined as
POSIX ERRNO values. These codes SHOULD be used in identical
situations as described in POSIX. The calls which can use
return error codes are documented.

- CONSTRUCTOR
Purpose: create the obj
Format: CONSTRUCTOR (in session session,

saga-core-wg@ogf.org 159

GWD-R.72 SAGA File Management August 18, 2006

in string url,
in int flags = Read,
out file obj)

Inputs: url: location of file
flags: mode for opening
session: session to associate the

object with
Outputs: obj: the newly created object
Throws: BadParameter

DoesNotExist
Notes: - the session handle defaults to the SAGA

default session handle if not explicitely
specified

- the default flag set is ’Read’ (1024)

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in file obj)
Inputs: obj: the object to destroy
Outputs: -
Throws: -
Notes: - the semantics of the inherited destructors

apply

- read
Purpose: reads up to len_in bytes from the file into

the buffer.
Format: read (in int len_in,

in array<byte> buffer,
out int len_out);

Inputs: len_in: number of bytes to be read
InOuts: buffer: buffer to read into
Outputs: len_out: number of bytes successfully

read
Throws: BadParameter
Notes: - the actually number of bytes read into buffer

is returned in len_out. It is not an error
to read less bytes than requested, or in fact
zero bytes, eg. at the end of the file.

- errors are indicated by returning negative
values for len_out, which correspond to
negatives of the respective ERRNO error code

- the file pointer is positioned at the end of
the byte area successfully read during this

saga-core-wg@ogf.org 160

GWD-R.72 SAGA File Management August 18, 2006

call.
- the given buffer must be large enough to
store up to len_in bytes, otherwise the
behaviour is undefined.

- similar to read (2) as specified by POSIX

- write
Purpose: writes up to len_in bytes from buffer into

the file at the current file position.
Format: write (in int len_in,

in array<byte> buffer,
out int len_out);

Inputs: len_in: number of bytes to write
buffer: data to write

Outputs: len_out: number of bytes successfully
written

Throws: BadParameter
Notes: - errors are indicated by returning negative

values for len_out, which correspond to
negatives of the respective ERRNO error code

- the file pointer is positioned at the end
of the byte area written during this call.

- similar to write (2) as specified by POSIX

- seek
Purpose: reposition the file pointer
Format: seek (in int offset,

in seek_mode whence,
out int position);

Inputs: offset: offset in bytes to move
pointer

whence: offset is relative to
’whence’

Outputs: position: position of pointer after
seek

Throws: BadParameter
Notes: - seek repositions the file pointer for

subsequent read, write and seek calls.
- initially (after open), the file pointer is
positioned at the beginning of the file,
unless the ’Append’ flag was given - then
the initial position is the end of the file.

- the repositioning is done relative to the
position given in ’Whence’, so relative to

saga-core-wg@ogf.org 161

GWD-R.72 SAGA File Management August 18, 2006

the ’Begin’ or ’End’ of the file, or to the
’CURRENT’ position.

- errors are indicated by returning negative
values for len_out, which correspond to
negatives of the respective ERRNO error code

- the file pointer can be positioned after the
end of the file w/o extending it.

- reads at or behind EOF return no data.
- similar to lseek (2) as specified by POSIX.

Scattered I/O methods:

- read_v
Purpose: gather/scatter read
Format: read_v (inout array<ivec> ivec);
InOuts: ivec: array of ivec structs

defining start (offset) and
length (length) of each
individual read, buffer
to read into, and integer
to store result into.

Throws: BadParameter
Notes: - the behaviour of each individual read is as

in the normal read method.
- an exception is thrown if any of the
individual reads detects a condition which
would raise an exception for the normal
read method.

- errors are indicated by setting negative
values for len_out, which correspond to
negatives of the respective ERRNO error code

- the lengths returned also correspond to those
of the normal read method.

- similar to readv (2) as specified by POSIX

- write_v
Purpose: gather/scatter write
Format: write_v (inout array<ivec> ivec);
InOuts: ivec: array of ivec structs

defining start (offset) and
length (length) of each
individual write, and
buffers containing the data
to write

saga-core-wg@ogf.org 162

GWD-R.72 SAGA File Management August 18, 2006

Throws: BadParameter
WriteError

Notes: - the behaviour of each individual write is as
in the normal write method.

- an exception is thrown if any of the
individual writes detects a condition which
would raise an exception for the normal write
method.

- errors are indicated by setting negative
values for len_out, which correspond to
negatives of the respective ERRNO error code

- the lengths returned also correspond to those
of the normal write method.

- similar to writev (2) as specified by POSIX

Pattern based I/O methods:

- size_p
Purpose: determine the strorage size required for a

pattern I/O operation
Format: size_p (in string pattern,

out int size);
Inputs: pattern: pattern to determine size for
Outputs: size: size required for I/O

operation with that pattern
Throws: BadParameter
Notes: - the method does, in general, not perform a

remote operation, but is intended to help
the application programmer to handle pattern
I/I and associated buffer sizes correctly
in the normal write method.

- if the pattern cannot be parsed or interpreted,
a ’BadParameter’ exception is thrown.

- read_p
Purpose: pattern based read
Format: read_p (in string pattern,

inout array<byte> buffer,
out int len_out);

Inputs: pattern: pattern specification for
read operation

InOuts: buffer: buffer to store read bytes
into

saga-core-wg@ogf.org 163

GWD-R.72 SAGA File Management August 18, 2006

Outputs: len_out: number of successfully read
bytes

Throws: BadParameter
ReadError

Notes: - if the pattern cannot be parsed or interpreted,
a ’BadParameter’ exception is thrown.

- errors are indicated by setting negative
values for len_out, which correspond to
negatives of the respective ERRNO error code

- errors which do not have an equivalent ERRNO
error code cause a ’ReadError’ exception, which
MUST include a detailed error description

- write_p
Purpose: pattern based read
Format: read_p (in string pattern,

in array<byte> buffer,
out int len_out);

Inputs: pattern: pattern specification for
read operation

buffer: buffer to store read bytes
into

Outputs: len_out: number of bytes successfully
written

Throws: BadParameter
WriteError

Notes: - if the pattern cannot be parsed or interpreted,
a ’BadParameter’ exception is thrown.

- errors are indicated by setting negative
values for len_out, which correspond to
negatives of the respective ERRNO error code

- errors which do not have an equivalent ERRNO
error code cause a ’ReadError’ exception, which
MUST include a detailed error description

Extended I/O methods:

- modes_e
Purpose: list the exetnded modes avaiable in this

implementation, and/or on server side
Format: modes_e (in string pattern,

out int size);
Inputs: pattern: pattern to determine size for

saga-core-wg@ogf.org 164

GWD-R.72 SAGA File Management August 18, 2006

Outputs: size: size required for I/O
operation with that pattern

Throws: BadParameter
Notes: - the method does, in general, not perform a

remote operation, but is intended to help
the application programmer to handle pattern
I/I and associated buffer sizes correctly
in the normal write method.

- if the pattern cannot be parsed or interpreted,
a ’BadParameter’ exception is thrown.

- read_e
Purpose: extended read
Format: read_e (in string emode,

in string spec,
inout array<byte> buffer,
out int len_out);

Inputs: emode: extended mode to use
spec: specification of read

operation
InOuts: buffer: buffer to store read bytes

into
Outputs: len_out: number of successfully read

bytes
Throws: BadParameter

ReadError
Notes: - if the spec cannot be parsed or interpreted,

a ’BadParameter’ exception is thrown.
- if the emode is not supported, a ’BadParameter’
exception is thrown.

- errors are indicated by setting negative
values for len_out, which correspond to
negatives of the respective ERRNO error code

- errors which do not have an equivalent ERRNO
error code cause a ’ReadError’ exception,
which MUST include a detailed error
description.

- write_e
Purpose: extended write
Format: write_e (in string emode,

in string spec,
in array<byte> buffer,
out int len_out);

saga-core-wg@ogf.org 165

GWD-R.72 SAGA File Management August 18, 2006

Inputs: emode: extended mode to use
spec: specification of write

operation
buffer: buffer to store read bytes

into
Outputs: len_out: number of successfully read

bytes
Throws: BadParameter

WriteError
Notes: - if the spec cannot be parsed or interpreted,

a ’BadParameter’ exception is thrown.
- if the emode is not supported, a ’BadParameter’
exception is thrown.

- errors are indicated by setting negative
values for len_out, which correspond to
negatives of the respective ERRNO error code

- errors which do not have an equivalent ERRNO
error code cause a ’WriteError’ exception,
which MUST include a detailed error
description.

3.10.3 Examples

Example: open a file. If its size is greater than 10, then read the first 10 bytes
into a string, and print it.

Code Example

1 // c++ example

2 void head (const char* url)

3 {

4 try {

5 // get type and other infos

6 saga::file my_file (url);

7

8 off_t size = my_file.get_size ();

9

10 if (size > 10)

11 {

12 char buffer[11];

13 long bufflen;

14

15 my_file.read (10, buffer, &bufflen);

16

17 if (bufflen == 10)

saga-core-wg@ogf.org 166

GWD-R.72 SAGA File Management August 18, 2006

18 {

19 printf ("head: ’%s’\n", buffer);

20 }

21 }

22 }

23

24 // catch any possible error - see elsewhere for better

25 // examples of error handling in SAGA

26 catch (const saga::exception & e)

27 {

28 std::cerr << "Oops! SAGA error: " + e.what () + std::endl;

29 }

30

31 return;

32 }

saga-core-wg@ogf.org 167

GWD-R.72 SAGA Replica Management August 18, 2006

3.11 SAGA Replica Management

This section of the SAGA API describes the interaction with replica systems.
Numerous SAGA use cases required replica management functionality in the
API – however, only a small number of operation have been requested. The
methods described here are hence limited to the creation and maintainance of
logical files, replicas, and to search on logical file meta data.

The saga::logical_file class implements the saga::attribute interface. It
is important to realize that this is intendet to reflect the ability of replica systems
to associate meta data with logical files. The SAGA attribute model (string
based key/value pairs) can, with all probablility, only give a crude representation
of meta data models used in real world replica systems – however, the definition
of a more abstract and comprehensive data model for replica meta data was
felt to be outside the scope of a SAGA API definition. Implementations are
expected to map the native data model to key/value pairs as well as possible,
and MUST document that mapping process (and in particular the supported
keys) carefully.

Please note that the interactions with logical files as opaque entities (as entries in
logical file name spaces) are covered by the name space package. The interfaces
presented here supplement the name space package with operations for operating
on entries in replica catalogues.

3.11.1 Definitions

Logical File: A logical file represents merely an entry in a name space which
has (a) an associated set of registered (physical) replicas of that file, and (b) an
associated set of meta data describing that logical file. Both sets can be empty.

Replica: A replica (or physical file is a file which is registered on a logical
file. In general, all replicas registered on the same logical are identical. Often,
one of these replicas is deemed to be a master copies (often its the first replica
registered, and/or the only one which can be changed) – that distinction is,
however, not visible in the SAGA API.

Logical Directory: A logical directory represents a directory entry in the
namespace of logical files. Several replica system implementations have the
notion of container s, which, for our purposes, represent directories which can
have, just as logical files, associated sets of meta data. In the presented API,
logical directories and containers are the same.

saga-core-wg@ogf.org 168

GWD-R.72 SAGA Replica Management August 18, 2006

Note that the truncate flag on opening logical files is interpreted as to truncate
the set of registered replicas on that logical file – the associated meta data set
is not truncated.

The find() method of the saga::logical_directory class represents a com-
bination of (a) the find() method from the saga::ns_directory class, and
(b) the find_attributes() method from the saga::attribute interface. The
method accepts patterns for meta data matches (meta_pattern) and for file
name matches (name_pattern) and returns a list of logical file names for for
which both patterns match. The meta_pattern are formatted as defined for
find_attribute() of the saga::attribute interface. The name_pattern are
formatted as defined for the find() method of the saga::ns_directory class.
In general, the allowed patterns are the same as defined as wildcards in the
describtion of the SAGA name_space objects.

3.11.2 Specification

package saga.logical_file
{
enum flags
{
None = 0, // same as in name_space::flags
Overwrite = 1, // same as in name_space::flags
Recursive = 2, // same as in name_space::flags
FollowSymbolic = 4, // same as in name_space::flags
Create = 8, // same as in name_space::flags
Excl = 16, // same as in name_space::flags
Lock = 32, // same as in name_space::flags
CreateParents = 64, // same as in name_space::flags
DeReference = 128, // same as in name_space::flags
Truncate = 256,

// Append = 512, // unused
Read = 1024,
Write = 2048,
ReadWrite = 4096,

// Binary = 8192 // unused
}

class logical_directory : extends saga::ns_directory
implements saga::attribute

// from ns_directory saga::ns_entry
// from ns_entry saga::object

saga-core-wg@ogf.org 169

GWD-R.72 SAGA Replica Management August 18, 2006

// from ns_entry saga::async
// from object saga::error_handler

{

CONSTRUCTOR (in session session,
in string url,
in int flags = Read,
out logical_directory dir);

DESTRUCTOR (in logical_directory dir);

// add for inspection
is_file (in string name,

out boolean test);

// open methods
open_dir (in string name,

in int flags = Read,
out logical_directory dir);

open (in string name,
in int flags = Read,
out logical_file file);

// find logical files based on name and meta data
find (in string name_pattern,

in array<string> meta_pattern,
in int flags = None,
out array<string> names);

}

class logical_file : extends saga::ns_entry
implements saga::attribute

// from ns_entry saga::object
// from ns_entry saga::async
// from object saga::error_handler

{
CONSTRUCTOR (in session session,

in string url,
in int flags = Read,
out logical_file file);

DESTRUCTOR (in logical_file file);

// manage the set of associated replicas

saga-core-wg@ogf.org 170

GWD-R.72 SAGA Replica Management August 18, 2006

add_location (in string name);
remove_location (in string name);
update_location (in string name_old,

in string name_new);
list_locations (out array<string> names);

// create a new physical replica
replicate (in string name);

// Attributes (extensible):
}

}

3.11.3 Details

class logical_directory:

This class represents a container for logical files in a
logical file name space. It allows traversal of the
catalogs name space, and the manipulation and creation
(open) of logical files in that name space.

Constructor / Destructor:

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in session session,

in string url,
in int flags,
out logical_directory

obj)
Inputs: session: session to associate with

the object
url: location of directory
flags: mode for opening

Outputs: obj: the newly created object
Throws: BadParameter

DoesNotExist
IncorrectState

saga-core-wg@ogf.org 171

GWD-R.72 SAGA Replica Management August 18, 2006

Notes: - the semantics of the inherited constructors
apply

- the default flag set is ’Read’ (1024)

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in logical_directory obj)
Inputs: obj: the object to destroy
Outputs: -
Throws: -
Notes: - the semantics of the inherited destructors

apply

- is_file
Purpose: alias for is_entry of saga::ns_directory

- open_dir
Purpose: creates a new logical_directory instance
Format: open_dir (in string name,

in int flags,
out logical_directory dir);

Inputs: name: name of directory to open
flags: flags definition operation

modus
Outputs: dir: opened directory instance
Throws: BadParameter

IncorrectState
DoesNotExist
IncorrectState

Notes: - notes to logical_directory constructor apply

- open
Purpose: creates a new logical_file instance
Format: open (in string name,

in int flags,
out logical_file file);

Inputs: name: file to be opened
flags: flags definition operation

modus
Outputs: file: opened file instance
Throws: BadParameter

IncorrectState

saga-core-wg@ogf.org 172

GWD-R.72 SAGA Replica Management August 18, 2006

DoesNotExist
IncorrectState

Notes: - notes to logical_file constructor apply

- find
Purpose: find entries in the current directory and below,

with matching names and matching meta data
Format: find (in string name_pattern,

in array<string> meta_pattern,
in int flags,
out array<string> names);

Inputs: name_pattern: pattern for names of
entries to be found

meta_pattern: pattern for meta data of
entries to be found

flags: flags defining the operation
modus

Outputs: names: array of names matching both
pattern

Throws: BadParameter
Notes: - the description of find in the introduction to

this section applies.
- the semantics for both the find_attributes()
method in the saga::attribute interface and for
the find() method in the saga::ns_directory
class apply. On conflicts, the find()
semantics supercedes the find_attributes
semantic.

class logical_file:

This class provides means to handle the contents of logical
files. That contents consists of strings representing
locations of physical files (replicas) associated with the
logical file.

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in string url,

in int flags,
in session session,
out logical_file obj)

saga-core-wg@ogf.org 173

GWD-R.72 SAGA Replica Management August 18, 2006

Inputs: url: location of directory
flags: mode for opening
session: session to associate with

the object
Outputs: obj: the newly created object
Throws: BadParameter

DoesNotExist
Notes: - the semantics of the inherited constructors

apply
- the ’Truncate’ and ’Binary’ flags have no
meaning on logical files, and cause a
’BadParameter’ exception.

- the default flag set is ’Read’ (1024)

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in logical_file obj)
Inputs: obj: the object to destroy
Outputs: -
Throws: -
Notes: - the semantics of the inherited destructors

apply

manage the set of associated replicas:

- add_location
Purpose: add a replica location to the replica set
Format: add_location (in string name);
Inputs: name: location to add to set
Outputs: -
Throws: BadParameter

AlreadyExists
IncorrectURL

Notes: - this methods adds a given replica location
(url) to the set of locations associated with
the logical file.

- if the replica is already in the set, this
method does nothing.

- the implementation MAY choose to interpret the
replica locations associated with the logical
file. It may return an ’IncorrectURL’ error
indicating an invalid location if it is unable
or unwilling to handle that specific location.

saga-core-wg@ogf.org 174

GWD-R.72 SAGA Replica Management August 18, 2006

- the documentation MUST specify how valid
replica location are constructed.

- remove_location
Purpose: remove a replica locate from the replica set
Format: remove_location (in string name);
Inputs: name: replica to remove from set
Outputs: -
Throws: BadParameter

DoesNotExist
Notes: - this method removes a given replica location

from the set of replicas associated with the
logical file.

- if the location is not in the set of
replicas, a ’DoesNotExist’ exception is
thrown.

- if the set of locations is empty after that
operation, the logical file object is still
a valid object (see replicate() method
description).

- update_location
Purpose: change a replica location in replica set
Format: update_location (in string name_old,

in string name_new);
Inputs: name_old replica to be updated

name_new update for replica
Outputs: -
Throws: BadParameter

DoesNotExist
IncorrectURL

Notes: - this method removes a given replica location
from the set of locations associated with the
logical file, and adds a new location.

- if the old replica location is not in the
set of locations, an ’DoesNotExist’ exception
is thrown, and the new replica location is not
added.

- list_locations
Purpose: list the locations in the location set
Format: list_locations (out array<string> names);
Inputs: -

saga-core-wg@ogf.org 175

GWD-R.72 SAGA Replica Management August 18, 2006

Outputs: names: array of locations in set
Notes: - this method returns an array of strings

containing the complete set of locations
associated with the logical file.

- an empty array returned is not an error - see
description to the remove_location method.

- replicate
Purpose: replicate a file from any of the known

replica locations to a new location, and, on
success, add the new replica location to the
set of associated replicas

Format: replicate (in string name);
Inputs: name: location to replicate to
Outputs: -
Throws: BadParameter

IncorrectURL
IncorrectState
NoSuccess

Notes: - the method implies a two step operation:
1) copy any of the already associated replicas

to the given location, which then represents
a new replica location.

2) perform an add_location() for the new
replica location.

- the method is not required to be atomic, but:
the implementation MUST be either
successfull in both steps, or throw an
NoSuccess exception error indicating if both
methods failed, or if one of the methods
succeeded.

- a replicate call on an instance with empty
location set raises and ’IncorrectState’
exception.

3.11.4 Examples

Code Example

1 // c++ example

2 int main ()

3 {

4 saga::logical_file lf ("lfn://remote.catalog.net/tmp/file1");

5

6 lf.replicate ("gsiftp://localhost.net/tmp/file.rep");

saga-core-wg@ogf.org 176

GWD-R.72 SAGA Replica Management August 18, 2006

7

8 saga::file f ("gsiftp://localhost.net/tmp/file.rep");

9 std::cout << "sice of local replica: "

10 << f.get_size ()

11 << std::endl;

12 }

saga-core-wg@ogf.org 177

GWD-R.72 SAGA Streams August 18, 2006

3.12 SAGA Streams

A number of use cases involved launching of remotely located components in
order to create distributed applications. These use cases require simple remote
socket connections to be established between these components and their control
interfaces.

The target of the streams API is to establish the simplest possible authenticated
socket connection with hooks to support authorization and encryption schemes.
The stream API is:

1. is not performance oriented: If performance is required, then it is better
to program directly against the APIs of existing performance oriented
protocols like GridFTP or XIO. The API design should allow, however,
for performance implementations.

2. is focused on TCP/IP socket connections. There has been no attempt
to generalize this to arbitrary streaming interfaces (although it does not
prevent such things as connectionless protocolls from being supported).

3. does not attempt to create a programming paradigm that diverges very
far from baseline BSD sockets, Winsock, or Java Sockets.

This API greatly reduces the complexity of establishing authenticated socket
connections in order to communicate with remotely located components. It
however, provides very limited functionality and is thus suitable for applications
that do not have very sophisticated requirements (as per 80-20 rule). It is
envisaged that as applications become progressively more sophisticated, they
will graduate to more the sophisticated, native APIs in order to support those
needs.

Several SAGA use cases require a more abstract communication API, which
exchanges opaque messages instead of byte streams. That behaviour can be
modelled on top of this stream API, but future versions of the SAGA API may
introduce higher level communication APIs.

3.12.1 Endpoint URLs

The SAGA stream API uses URLs to specify connection endpoints. These URLs
are supposed to allow SAGA implementations to be interoperable. For example,
the URL

tcp://remote.host.net:1234/

saga-core-wg@ogf.org 178

GWD-R.72 SAGA Streams August 18, 2006

is supposed to signal that a standard tcp connection can be etsablished with
host remote.host.net on port 1234. No matter what the specified URL scheme
is, the SAGA stream API impementation MUST have the same semantics on
API level, i.e. behave like a reliable byte oriented data stream.

3.12.2 Stream States

intern

CONSTRUCTOR()

connect()

close()
intern

connect()
failed

Final State

Initial State

success

wait()
stream_server

Closed Dropped

Open

New

Error

Figure 5: The SAGA stream state model (See figure 1 for a legend).

A SAGA stream can be in several states – the complete state diagram is shown
in figure 5. The stream states are:

New: A newly constructed stream enters the initial New state. It is not con-
nected yet, and no I/O operations can be performed on it. connect()
must be called to advance the state to Open (on success) or Error (on
failure).

Open: The stream is connected to the remote endpoint, and I/O operations
can be called. If any error eccurs on the stream, it will move into the Error
state. If the remote party closes the connection, the stream will move into
the Dropped state. If close() is called on the stream, the stream will
enter the Closed state.

saga-core-wg@ogf.org 179

GWD-R.72 SAGA Streams August 18, 2006

Closed: The close() method was called on the stream – I/O is no longer
possible. This is a final state.

Dropped: The remote party closed the connection – I/O is no longer possible.
This is a final state.

Error: An error occured on the stream – I/O is no longer possible. This is a
final state. The exact reason for reaching this state MUST be available
through the error_handler interface.

3.12.3 Stream Activity Types

The SAGA stream API allows for event driven communication. A stream can
flag activities, i.e. Read, Write and Exception, and the application can react
on these activities. It is possible to poll for these events (using wait() with a
potential timeout), or to get asynchronous notification of these events, by using
the repspective metrics.

3.12.4 Specification

package saga.stream
{
enum state
{
New = 1
Open = 2,
Closed = 3,
Dropped = 4,
Error = 5

}

enum activity
{
Read = 1,
Write = 2,
Exception = 4

}

class stream_service : implements saga::object
implements saga::async
implements saga::monitorable

saga-core-wg@ogf.org 180

GWD-R.72 SAGA Streams August 18, 2006

// from object saga::error_handler
{
CONSTRUCTOR (in string url,

in session session,
out stream_service obj);

DESTRUCTOR (in stream_service obj);

get_url (out string url);

serve (in float timeout = -1.0,
out stream stream);

// Metrics:
// name: ClientConnect
// desc: fires if a client connects
// mode: Read
// unit: 1
// type: Bool
// value: True

}

class stream : extends saga::object
implements saga::async
implements saga::attribute
implements saga::monitorable

// from object saga::error_handler
{
// constructor / destructor
CONSTRUCTOR (in session session,

in string url,
out stream obj);

DESTRUCTOR (in stream obj);

// inspection methods
get_url (out string url);
get_state (out state state);
get_context (out context ctx);

// management methids
connect (out context ctx);
wait (in activity what,

in float timeout = -1.0,
out array<activity> activity);

close (void);

saga-core-wg@ogf.org 181

GWD-R.72 SAGA Streams August 18, 2006

// I/O methods
read (in int len_in,

inout array<byte> buffer,
out int len_in);

write (in int len_out,
in array<byte> buffer,
out int len_out);

// Attributes:
// name: Bufsize
// desc: determines the size of the send buffer,
// in bytes
// mode: ReadWrite, optional
// type: Int
// value: system dependend
// notes: - the implementation MUST document the
// default value, and its meaning (e.g. on what
// layer that buffer is maintained, or if it
// diables zero copy).
//
// name: Timeout
// desc: determines the amount of idle time
// before dropping the line, in seconds
// mode: ReadWrite, optional
// type: Int
// value: system dependend
// notes: - the implementation MUST document the
// default value
// - if that attribute is supported, the
// connection MUST be closed by the
// implementation if for that many seconds
// nothing has been read from or written to
// the stream.
//
// name: Blocking
// desc: determines if read/writes are blocking
// or not
// mode: ReadWrite, optional
// type: Bool
// value: True
// notes: - if the attribute is not supported, the
// implementation MUST be blocking
// - if the attribute is set to ’True’, a read or
// write operation MAY return immediately if
// not data can be read or written - that does
// not constitute an error (see EAGAIN in

saga-core-wg@ogf.org 182

GWD-R.72 SAGA Streams August 18, 2006

// POSIX).
//
// name: Compression
// desc: determines if data are compressed
// before/after transfer
// mode: ReadWrite, optional
// type: Bool
// value: schema dependend
// notes: - the implementation MUST document the
// default values for the available schemas
//
// name: Nodelay
// desc: determines if packets are sent
// immediatley, i.e. w/o delay
// mode: ReadWrite, optional
// type: Bool
// value: True
// notes: - similar to the TCP_NODELAY option
//
// name: Reliable
// desc: determines if all sent data MUST arrive
// mode: ReadWrite, optional
// type: Bool
// value: True
// notes: - if the attribute is not supported, the
// implementation MUST be reliable

// Metrics:
// name: State
// desc: fires if the state of the stream changes,
// and has the value of the new state
// enum
// mode: Read
// unit: 1
// type: Enum
// value: ’New’
//
// name: Read
// desc: fires if a stream gets readable
// mode: Read
// unit: 1
// type: Bool
// value: True
// notes: - a stream is considered readable if a
// subsequent read() can sucessfully read

saga-core-wg@ogf.org 183

GWD-R.72 SAGA Streams August 18, 2006

// 1 or more byte of data.
//
// name: Write
// desc: fires if a stream gets writable
// mode: Read
// unit: 1
// type: Bool
// value: True
// notes: - a stream is considered writable if a
// subsequent write() can sucessfully write
// 1 or more byte of data.
//
// name: Exception
// desc: fires if a stream has an error condition
// mode: Read
// unit: 1
// type: Bool
// value: True
// notes: -
//
// name: Dropped
// desc: fires if the stream gets dropped by the
// remote party
// mode: Read
// unit: 1
// type: Bool
// value: True

}
}

3.12.5 Details

class stream_service:

The stream_service object establishes a listening/server
object that waits for client connections. It can _only_ be
used as a factory for Client sockets. It doesn’t do any
read/write I/O.

- CONSTRUCTOR
Purpose: create a new stream_service object

saga-core-wg@ogf.org 184

GWD-R.72 SAGA Streams August 18, 2006

Format: CONSTRUCTOR (in session session,
in string url,
out stream_service obj);

Inputs: session: session to be used for
object creation

url: channel name or url,
defines the source side
binding for the stream

Outputs: obj: new stream_service object
Throws: BadParameter

IncorrectURL
PostCond: - the stream_service can now wait for incoming

connections.
Notes: - If the resource information given in the URL

cannot be used (e.g. hostname is not usable,
scheme is not available, or port is already
taken), a ’BadParemeter’ exception is thrown,
which must contain a detailed error message.

- DESTRUCTOR
Purpose: Destructor for stream_service object.
Format: DESTRUCTOR (in stream_service obj)
Inputs: stream: object to be destroyed
Outputs: -
Notes: -

- serve
Purpose: wait for incoming client connections
Format: serve (in float timeout,

out stream client);
Inputs: timeout: number of seconds to wait

for client
Outputs: client: new Connected stream object
Throws: -
PostCond: - the returned client is in ’Open’ state
Notes: - if successful, it returns a new stream object

that is connected to the client.
- returns NULL or equivalent if it times out.
- if connection setup failed (not on timeout!),
the returned client is in the ’Error’ state.
Its error_handler interface should give
detailed information about the reason.

- for timeout semantics, see Introduction

saga-core-wg@ogf.org 185

GWD-R.72 SAGA Streams August 18, 2006

- get_url
Purpose: get URL to be used to connect to this server
Format: get_url (out string url);
Inputs: -
Outputs: url: string containing the URL

of the connection.
Throws: -
Notes: - returns a URL which can be passed to

stream constructor to create a connection to
this stream_service.

class stream:

This is the object that encapsulates all client stream
objects.

Constructor / Destructor:

- CONSTRUCTOR
Purpose: Constructor, initializes a client client stream,

for later connection to an server.
Format: CONSTRUCTOR (in session session,

in string url,
out stream stream);

Inputs: session: saga session handle
url: server location as URL

Outputs: stream: new, unconnected stream
instance

Throws: BadParameter
IncorrectURL

PostCond: - the state of the new socket is ’New’
Notes: - server location and possibly protocol is

described by the input URL - see description
above.

- the socket is only connected after the
connect() method is called.

- DESTRUCTOR
Purpose: destroy an stream object
Format: DESTRUCTOR (in stream obj)
Inputs: obj: stream to destroy

saga-core-wg@ogf.org 186

GWD-R.72 SAGA Streams August 18, 2006

Outputs: -
Notes: -

Inspection methods:

- get_url
Purpose: get URL used for creating the string
Format: get_url (out string url);
Inputs: -
Outputs: url: string containing the URL

of the connection.
Throws: -
Notes: - returns a URL which can be passed to a

stream constructor to create another
connection to the same stream_service.

- get_state
Purpose: return the current stream state
Format: get_url (out state state);
Inputs: -
Outputs: state: current stream state
Throws: -
Notes: -

- get_context
Purpose: return remote authorization info
Format: get_context (out context ctx);
Inputs: -
Outputs: ctx: remote context
Throws: -
PostCond: - the retuned context is deep copied, and does

not share state with any other object
Notes: - the context returned contains the security

information from the REMOTE party, and can be
used for authorization.

- it is assumed that the context is
authenticated.

- if no security information are available, the
returned context has the type ’Unknown’ and no
attributes.

Management methods:

saga-core-wg@ogf.org 187

GWD-R.72 SAGA Streams August 18, 2006

- connect
Purpose: Establishes a connection to the target defined

during the construction of the stream.
Format: connect (void);
Inputs: -
Outputs: -
Throws: IncorrectState
PreCond: - the stream is in ’New’ state.
PostCond: - the stream is in ’Open’ state
Notes: - on failure, the stream state is changed to

’Error’

- close
Purpose: closes an active connection
Format: close (void)
Inputs: -
Outputs: -
Throws: IncorrectState
PreCond: - stream is in ’Open’ state
PostCond: - stream is in ’Closed’ state
Notes: - if a stream was closed earlier (i.e. is

in ’Closed’ or ’Dropped’ state), this method
does nothing.

- if the stream is in ’New’ or ’Error’ state,
a ’IncorrectState’ exception is thrown.

- for resource deallocation semantics, see
Introduction

Stream I/O methods:

- read
Purpose: Read a raw buffer from socket.
Format: read (in int len_in,

inout string buffer,
out int len_out);

Inputs: len_in: Maximum number of bytes
that can be copied in to
the buffer.

In/Out: buffer: Empty buffer passed in to
get filled

Outputs: len_out: number of bytes read, if
successful. (0 is also

saga-core-wg@ogf.org 188

GWD-R.72 SAGA Streams August 18, 2006

valid)
Throws: IncorrectState
PreCond: - stream is in ’Open’ state
Notes: - if the stream is blocking, the call waits

until data get available.
- if the stream is non-blocking, the call
returns immediately, even if no data are
available -- that is not an error condition.

- it is not an error to read less than len_in
bytes.

- on read errors, a negative value for len_out
is returned, which is equal to the POSIX errno
value describing the error.

- write
Purpose: Write a raw buffer to socket.
Format: write (in int len_in,

in string buffer,
out int len_out);

Inputs: len_in: number of bytes of data in
the buffer

buffer: raw array containing data
that will be sent out via
socket

Outputs: len_out: bytes written if successful
Throws: IncorrectState
PreCond: - stream is in ’Open’ state
Notes: - if the stream is blocking, the call waits

until the data can be written.
- if the stream is non-blocking, the call
returns immediately, even if no data are
written -- that is not an error condition.

- it is not an error to write less than len_in
bytes.

- on write errors, a negative value for len_out
is returned, which is equal to the POSIX errno
value describing the error.

- wait
Purpose: check if stream is ready for reading/writing, or

if it has entered an error state.
Format: wait (in int what,

in float timeout,
out int cause);

saga-core-wg@ogf.org 189

GWD-R.72 SAGA Streams August 18, 2006

Inputs: what: parameter list of activity
types to wait for

timeout: number of seconds to wait
Outputs: cause: activity type causing the

call to return
Throws: IncorrectState
PreCond: - stream is in ’Open’ state
Notes: - wait will only check on the conditions specified

by ’what’
- cause the describes availability of the socket
(eg. OR’ed ’Read’, ’Write’, or ’Exception’)

- for timeout semantics, see Introduction

3.12.6 Examples

Code Example

1 Sample SSL/Secure Client:

2 -------------------------

3

4 Opens a stream connection using native security: context is

5 passed in implicitly via a global SAGA context

6 (GSI or SSL security)

7

8 // C++/JAVA Style

9 int recvlen;

10 saga::stream s ("localhost:5000");

11

12 s.connect ();

13 s.write ("Hello World!", 12);

14

15 // blocking read, read up to 128 bytes

16 recvlen = s.read (buffer, 128);

17

18

19 /* C Style */

20 int recvlen;

21

22 SAGA_stream = SAGA_Stream_open ("localhost:5000");

23

24 SAGA_Stream_connect (s);

25 SAGA_Stream_write (s, "Hello World!", 12);

26

27 /* blocking read, read up to 128 bytes */

28 recvlen = SAGA_Stream_read (s, buffer, 128);

29

30

saga-core-wg@ogf.org 190

GWD-R.72 SAGA Streams August 18, 2006

31 c Fortran Style */

32 INTEGER err,SAGAStrRead,SAGAStrWrite,err

33 INTEGER*8 SAGAStrOpen,streamhandle

34 CHARACTER buffer(128)

35 SAGAStrOpen("localhost:5000",streamhandle)

36 call SAGAStrConnect(streamhandle)

37 err = SAGAStrWrite(streamhandle,"localhost:5000",12)

38 err = SAGAStrRead(streamhandle,buffer,128)

39

40

41 Sample Secure Server:

42 ---------------------

43

44 Once a connection is made, the server can use information

45 about the authenticated client to make an authorization

46 decision

47

48 // C++/JAVA Style

49 saga::stream_service server ("tcp://localhost/5000");

50 saga::stream client;

51 int done = 0;

52

53 // now wait for a connection (normally in a loop)

54 do {

55 string value;

56

57 // wait forever for connection

58 client = server.serve (&ctx);

59

60 // get remote security details

61 saga::context ctx = client.get_context ();

62

63 // check if context type is X509, and if DN is the

64 // authorized one

65 if (ctx.type () == saga::context::X509 &&

66 ctx.attribute_equals ("DN", auth_dn))

67 {

68 done = 1; // allowed

69 }

70 else

71 {

72 SAGA::stream_close (client); // not allowed

73 }

74 } while (! done);

75

76 // start activity on client socket...

77

78

79 Example for async stream server

80 -------------------------------

saga-core-wg@ogf.org 191

GWD-R.72 SAGA Streams August 18, 2006

81

82 // c++ example

83 class my_cb : public saga::callback

84 {

85 privat:

86 saga::stream_service ss;

87 saga::stream s;

88

89 public:

90

91 my_cb (saga::stream_service ss_,

92 saga::stream s_)

93 {

94 ss = ss_;

95 s = s_;

96 }

97

98 ~my_cb (void) { }

99

100 void callback (saga::monitorable mt,

101 saga::metric m,

102 int c)

103 {

104 s = ss.serve ();

105 mt.remove_callback (c); // want to be called only once

106 }

107 }

108

109 int main ()

110 {

111 saga::stream_service ss;

112 saga::stream s;

113 my_cb cb (ss, s);

114

115 ss.add_callback ("client_connect", cb);

116

117 while (true)

118 {

119 if (s.state != saga::stream::Open)

120 {

121 // no client, yet

122 sleep (1);

123 }

124 else

125 {

126 // handle open socket

127 s.write ("Hello Client\r\n", 14);

128 s.close ();

129

130 // restart listening

saga-core-wg@ogf.org 192

GWD-R.72 SAGA Streams August 18, 2006

131 ss.add_callback ("client_connect", cb);

132 }

133 }

134

135 return (-1); // unreachable

136 }

saga-core-wg@ogf.org 193

GWD-R.72 SAGA Remote Procedure Call August 18, 2006

3.13 SAGA Remote Procedure Call

GridRPC is one of the few high level APIs that have been specified by the
GGF [13]. Thus including the GridRPC specification in the SAGA API bene-
fits both SAGA and the GridRPC effort: SAGA becomes more complete and
provides a better coverage of its use cases with a single look-and-feel, whilst
GridRPC gets embedded into a set of other tools of similar scope, which opens
it to a potentially wider user community, and ensures its further development.

Semantically, the methods defined in the GridRPC specification, as described in
GFD.52 [13], map exactly with the RPC package of the SAGA API as described
here. In essence, the GridRPC API has been imported into the SAGA RPC
package, and has been equipped with the look-and-feel, error conventions, task
model, etc. of the SAGA API.

The rpc class constructor initialises the remote function handle. This process
may involve connection setup, service discovery, etc. The rpc class further
offers one method ’call’, which invokes the remote procedure, and returns the
respective return data and values. The asynchronous call versions described in
the GridRPC specification are realised by the SAGA task model, and are not
represented as separate calls here.

In the constructor, the remote procedure to be invoked is specified by a URL,
with the syntax:

gridrpc://server.net:1234/my_function

with the elements responding to:

gridrpc – scheme – identifying a grid rpc operation
server.net – server – server host serving the rpc call
1234 – port – contact point for the server
my_function – name – name of the remote method to invoke

All elements can be empty, which allows the implementation to fall back to a
default remote method to invoke.

The argument and return value handling is very basic, and reflects the tradi-
tional scheme for remote procedure calls, that is, an array of structures acts as
variable parameter vector. For each element of the vector, the parameter struct
describes its data buffer, the size of that buffer, and its input/output mode.

The mode value has to be initialized for each parameter, and size and buffer
values have to be initialized for each In and InOut struct. For Out parameters,
size may have the value 0 in which case the buffer must be a NULL reference,

saga-core-wg@ogf.org 194

GWD-R.72 SAGA Remote Procedure Call August 18, 2006

and is to be created (e.g., allocated) by the SAGA implementation upon arrival
of result data, with a size sufficient to hold all result data. The size value is
to be set by the implementation to the allocated buffer size. SAGA language
bindings MUST prescribe the responsibilities for releasing the allocated buffer,
according to usual procedures in the respective languages.

When an Out or InOut struct uses a pre-allocated buffer, any data exceeding the
buffer size are discarded. The application is responsible for specifying correct
buffer sizes for pre-allocated buffers; otherwise the behaviour is undefined.

This argument handling scheme allows efficient (copy-free) passing of parame-
ters. The parameter vector must be passed by reference because it is specified
as inout in SIDL. (See also Section 2.2.)

3.13.1 Specification

package saga.rpc
{
enum io_mode
{
In = 1, // input parameter
Out = 2, // output parameter
InOut = 3 // input and output parameter

}

struct parameter
{
long size; // number of bytes in buffer
array<byte> buffer; // data
io_mode mode; // parameter mode

}

class rpc : implements saga::object
implements saga::async

// from object saga::error_handler
{
CONSTRUCTOR (in session session,

in string funcname = "",
out rpc obj);

DESTRUCTOR (in rpc obj);

// method rpc invocation
call (inout array<parameter> parameters);

saga-core-wg@ogf.org 195

GWD-R.72 SAGA Remote Procedure Call August 18, 2006

}
}

3.13.2 Details

class rpc:

This class represents a remote function handle, which
can be called (repeatedly), and returns the result of
the respective remote procedure invocation.

Constructor / Destructor:

- CONSTRUCTOR
Purpose: inits a remote function handle
Format: CONSTRUCTOR (in session session,

in string funcname,
out rpc obj);

Inputs: session: saga session to use
funcname: name of remote method to

initialize
Outputs: obj the newly created object
Throws: DoesNotExist

AuthorizationFailed
NoSuccess

Notes: - if funcname is not given or an empty string,
a default handle is created

- according to the GridRPC specification, the
constructor may or may not contact the RPC
server; absence of an exception does not imply
that following RPC calls will succeed, or that
a remote function handle is in fact available

- the following mapping MUST be applied from
GridRPC errors to SAGA exceptions:
GRPC_SERVER_NOT_FOUND : DoesNotExist
GRPC_FUNCTION_NOT_FOUND : DoesNotExist
GRPC_RPC_REFUSED : AuthorizationFailed
GRPC_OTHER_ERROR_CODE : NoSuccess

- non-GridRPC based implementations SHOULD ensure

saga-core-wg@ogf.org 196

GWD-R.72 SAGA Remote Procedure Call August 18, 2006

on object construction that the remote handle
is available, for consistency with the
semantics on other SAGA object constructors.

- call
Purpose: call the remote procedure
Format: call (inout array<parameter> param);
Inputs: -
In/Out: param: argument/result values for call
Outputs: -
Throws: DoesNotExist

AuthorizationFailed
NoSuccess
BadParameter

Notes: - according to the GridRPC specification, the
RPC server might not be contacted before
invoking call(). For this reason, all notes to
the object constructor apply to the call()
method as well.

- if an implementation finds inconsistent
information in the param vector (like a non-zero
size for a void buffer for an ’In’ element), a
’BadParameter’ exception is thrown.

3.13.3 Examples

Code Example

1 // c++ example

2 // call a remote matrix multiplication A = A * B

3 try

4 {

5 rpc rpc ("gridrpc://fs0.das2.cs.vu.nl/matmul1");

6

7 std::vector <saga::rpc::parameter> params (2);

8

9 params[0].buffer = // ptr to matrix A

10 params[0].size = sizeof (buffer);

11 params[0].mode = saga::rpc::InOut;

12

13 params[1].buffer = // ptr to matrix B

14 params[1].size = sizeof (buffer);

15 params[1].mode = saga::rpc::In;

16

17 rpc.call (¶ms);

18

saga-core-wg@ogf.org 197

GWD-R.72 SAGA Remote Procedure Call August 18, 2006

19 // A now contains the result

20 }

21 catch (const saga::exception & e)

22 {

23 std::err << "SAGA error: " << e.what () << std::endl;

24 }

25

26 +--+

27

28 // c++ example

29 // call a remote matrix multiplication C = A * B

30 try

31 {

32 rpc rpc ("gridrpc://fs0.das2.cs.vu.nl/matmul2");

33

34 std::vector <saga::rpc::parameter> params (3);

35

36 params[0].buffer = NULL; // buffer will be created

37 params[0].size = 0; // buffer will be created

38 params[0].mode = saga::rpc::Out;

39

40 params[1].buffer = // ptr to matrix A

41 params[1].size = sizeof (buffer);

42 params[1].mode = saga::rpc::InOut;

43

44 params[2].buffer = // ptr to matrix B

45 params[2].size = sizeof (buffer);

46 params[2].mode = saga::rpc::In;

47

48 rpc.call (¶ms);

49

50 // params[0].buffer now contains the result

51 }

52 catch (const saga::exception & e)

53 {

54 std::err << "SAGA error: " << e.what () << std::endl;

55 }

56

57 +--+

58

59 // c++ example

60 // asynchronous version of A = A * B

61 try

62 {

63 rpc rpc ("gridrpc://fs0.das2.cs.vu.nl/matmul1");

64

65 std::vector <saga::rpc::parameter> params (2);

66

67 params[0].buffer = // ptr to matrix A

68 params[0].size = sizeof (buffer);

saga-core-wg@ogf.org 198

GWD-R.72 SAGA Remote Procedure Call August 18, 2006

69 params[0].mode = saga::rpc::InOut;

70

71 params[1].buffer = // ptr to matrix B

72 params[1].size = sizeof (buffer);

73 params[1].mode = saga::rpc::In;

74

75 saga::task t = rpc.call <saga::task::ASync> (¶ms);

76

77 t.wait ();

78 // A now contains the result

79 }

80 catch (const saga::exception & e)

81 {

82 std::err << "SAGA error: " << e.what() << std::endl;

83 }

84

85 +--+

86

87 // c++ example

88 // parameter sweep example from

89 // http://ninf.apgrid.org/documents/ng4-manual/examples.html

90 //

91 // Monte Carlo computation of PI

92 //

93 try

94 {

95 std::string uri[NUM_HOSTS]; // initialize...

96 long times, count[NUM_HOSTS], sum;

97

98 std::vector <saga::rpc::rpc> servers;

99

100 // create the rpc handles for all URIs

101 for (int i = 0; i < NUM_HOSTS; ++i)

102 {

103 servers.push_back (saga::rpc::rpc (uri[i]));

104 }

105

106 // create persistent storage for tasks and parameter structs

107 saga::task_container tc;

108 std::vector <std::vector <saga:rpc::parameter> > params;

109

110 // fill parameter structs and start async rpc calls

111 for (int i = 0; i < NUM_HOSTS; ++i)

112 {

113 std::vector <saga::rpc::parameter> param (3);

114

115 param[0].buffer = i; // use as random seed

116 param[0].size = sizeof (buffer);

117 param[0].mode = saga::rpc::In;

118

saga-core-wg@ogf.org 199

GWD-R.72 SAGA Remote Procedure Call August 18, 2006

119 param[1].buffer = times;

120 param[1].size = sizeof (buffer);

121 param[1].mode = saga::rpc::In;

122

123 param[2].buffer = count[i];

124 param[2].size = sizeof (buffer);

125 param[2].mode = saga::rpc::Out;

126

127 // start the async calls

128 saga::task t = servers[i].call <saga::task::ASync> (¶m);

129

130 // save the task;

131 tc.add (t[i]);

132

133 // save the parameter structs

134 params.push_back (param);

135 }

136

137 // wait for all async calls to finish

138 tc.wait (-1, saga::task::All);

139

140 // compute and print pi

141 for (int i = 0; i < NUM_HOSTS; ++i)

142 {

143 sum += count[i];

144 }

145

146 std::out << "PI = "

147 << 4.0 * (sum / ((double) times * NUM_HOSTS))

148 << std::endl;

149 }

150 catch (const saga::exception & e)

151 {

152 std::err << "SAGA error: " << e.what () << std::endl;

153 }

saga-core-wg@ogf.org 200

GWD-R.72 Intellectual Property Issues August 18, 2006

4 Intellectual Property Issues

4.1 Contributors

This document is the result of the joint efforts of many contributors. The au-
thors listed here and on the title page are those committed to taking permanent
stewardship for this document. They can be contacted in the future for inquiries
about this document.

Tom Goodale Shantenu Jha
t.r.goodale@cs.cardiff.ac.uk s.jha@ucl.ac.uk
Cardiff School of Computer Science Centre for Computational Science
5, The Parade, Roath University College London
Cardiff, CF24 3AA London, WC1H 0AJ
United Kingdom United Kingdom

Thilo Kielmann Andre Merzky
kielmann@cs.vu.nl andre@merzky.net
Vrije Universiteit Vrije Universiteit
Dept. of Computer Science Dept. of Computer Science
De Boelelaan 1083 De Boelelaan 1083
1081HV Amsterdam 1081HV Amsterdam
The Netherlands The Netherlands

John Shalf Christopher Smith
jshalf@lbl.gov csmith@platform.com
Lawrence Berkeley Platform Computing Inc.
National Laboratory USA
Mailstop 50F
1 Cyclotron Road
94720 Berkeley
California, USA

The initial version of the presented SAGA API was drafted by the SAGA Design
Team. Members of that design team did not necessarily contribute text to the
document, but did certainly contribute to its current state, and very much so.
Additional to the authors listed above, the following people were members of
the design team, in alphabetical order:

Hrabri Rajic (Intel), Keith Jackson (LBL), David Konerding (LBL), Gregor von
Laszewski (ANL).

Further, the authors would like to thank all contributors from OGF’s SAGA-RG
and SAGA-CORE-WG, and other related groups. We would like to acknowl-

saga-core-wg@ogf.org 201

GWD-R.72 Intellectual Property Issues August 18, 2006

edge, in alphabetical order, the contributions of:

Gabriele Allen (LSU), Stephan Hirmer (LSU), Hartmut Kaiser (LSU), Pas-
cal Kleijer (NEC), Hidemoto Nakada (AIST), Steven Newhouse (OMII-UK),
Stephen Pickles (University of Manchester), Ed Seidel (LSU), Derek Simmel
(PSC), Yusuke Tanimura (AIST).

4.2 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover tech-
nology that may be required to practice this recommendation. Please address
the information to the OGF Executive Director.

4.3 Disclaimer

This document and the information contained herein is provided on an ”As
Is” basis and the OGF disclaims all warranties, express or implied, including
but not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

4.4 Full Copyright Notice

Copyright (C) Open Grid Forum (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by

saga-core-wg@ogf.org 202

GWD-R.72 Intellectual Property Issues August 18, 2006

removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the OGF Document process must
be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

saga-core-wg@ogf.org 203

GWD-R.72 SAGA Code Examples August 18, 2006

Appendix

A SAGA Code Examples

This appendix shows a couple of SAGA examples in different languages. As
stated in the introduction, these examples are not normative – language bindings
are outside the scope of this document. This appendix is rather supposed to
illustrate how the authors imagine the use of the API in various languages.

We hope that the examples illustrate that the API stays SIMPLE in various
language incarnations, as was the major design intent for the S AGA API.

Code Example

1

2 Example 1 (C++): Object State:

3 ==============================

4

5 // This example illustrates the expected life

6 // times of object states. State is shared in

7 // these cases, as only shallow copies occur.

8

9 int main (void)

10 {

11 { // task scope

12 saga::task t;

13

14 { // file scope

15 saga::file f;

16

17 { // session scope

18 saga::session s;

19

20 { // context scope

21 saga::context c (saga::context::UserPass);

22

23 s.add_context (c);

24 f (s, "file:////tmp/data.bin");

25 t = f.copy <saga::task::Task>

26 ("file:////tmp/data.bak");

27

28 } // leave context scope

29 // session keep context state

30

31 } // leave session scope

32 // file keeps session state

33

34 } // file scope

saga-core-wg@ogf.org 204

GWD-R.72 SAGA Code Examples August 18, 2006

35 // task keeps file state

36

37 t.run ();

38 // task runs, and uses state of file, of session,

39 // and of context.

40 t.wait ();

41

42 } // task scope

43 // task releases file state

44 // file releases session state

45 // session releases context state

46

47 return (0);

48 }

49

50

51 +---+

52

53 Example 2: Files:

54 =================

55

56 open a file. if its size is > 10, then read the first 10

57 bytes into a string, print it, end return it.

58

59 --

60 Example 2a: C++

61 --

62 // c++ example

63 void head (const char* url)

64 {

65 try {

66 // get type and other infos

67 saga::file my_file (url);

68

69 off_t size = my_file.get_size ();

70

71 if (size > 10)

72 {

73 char buffer[11];

74 long bufflen;

75

76 my_file.read (10, buffer, &bufflen);

77

78 if (bufflen == 10)

79 {

80 std::cout << "head: " << buffer << std::endl;

81 }

82 }

83 }

84

saga-core-wg@ogf.org 205

GWD-R.72 SAGA Code Examples August 18, 2006

85 // catch any possible error - see elsewhere for better

86 // examples of error handling in SAGA

87 catch (const saga::exception & e)

88 {

89 std::cerr << "Oops! SAGA error: " + e.what () + std::endl;

90 }

91

92 return;

93 }

94 --

95 --

96 Example 2b: C

97 -------------

98 char* head (const char* url)

99 {

100 SAGA_File my_file = SAGA_File_create (url);

101

102 if (NULL == my_file)

103 {

104 fprintf (stderr, "Could not create SAGA_File "

105 "for %s: %s\n",

106 url, SAGA_Session_get_error (theSession));

107 return (NULL);

108 }

109

110 off_t size = SAGA_File_get_size (my_file);

111

112 if (size < 0)

113 {

114 fprintf (stderr, "Could not determine file size "

115 "for %s: %s\n",

116 url, SAGA_Session_get_error (theSession));

117 return (NULL);

118 }

119 else if (size > 10)

120 {

121 char buffer[11];

122 size_t bufflen;

123

124 ssize_t ret = SAGA_File_read (my_file, 10, buffer,

125 &bufflen);

126

127 if (ret < 0)

128 {

129 fprintf (stderr, "Could not read file %s: %s\n",

130 url, SAGA_Session_get_error (theSession));

131 return (NULL);

132 }

133

134 if (bufflen == 10)

saga-core-wg@ogf.org 206

GWD-R.72 SAGA Code Examples August 18, 2006

135 {

136 buffer [11] = ’\0’;

137 printf ("head: ’%s’\n", buffer);

138 return (buffer);

139 }

140 else

141 {

142 fprintf (stderr, "head: short read: %d\n", bufflen);

143 return (NULL);

144 }

145 }

146

147 fprintf (stdout, "head: file is too small %d\n", size);

148

149 return (NULL);

150 }

151

152 --

153 Example 2c: Java

154 ----------------

155

156 import saga*;

157

158 class MyClass

159 {

160 // open a file. if its size is > 10, then read the first

161 // 10 bytes into a string, print it, end return it.

162 string head (URI uri)

163 {

164 try

165 {

166 saga::file f (uri);

167

168 if (10 <= f.get_size ())

169 {

170 FileInputStream in (uri);

171 byte[] buffer = new buffer[10];

172 int res = in.read (buffer);

173

174 if (10 == res)

175 {

176 System.out.println ("head: " + buffer);

177 }

178 else

179 {

180 System.err.println ("head: read is short! " + res);

181 }

182

183 return new string (buffer);

184 }

saga-core-wg@ogf.org 207

GWD-R.72 SAGA Code Examples August 18, 2006

185 else

186 {

187 System.out.println ("file is too small: " + size);

188 }

189 }

190

191 // catch any possible error - see elsewhere for better

192 // examples of error handling in SAGA

193 catch (...)

194 {

195 System.out.println ("Oops!");

196 }

197

198 return null;

199 }

200 }

201

202

203 --

204 Example 2d: Perl (’normal’ error handling)

205 --

206

207 sub head ($)

208 {

209 my $url = shift;

210 my $my_file = new saga::file (url)

211 or die ("can’t create file for $url: $!\n");

212

213 my $size = my_file->get_size ();

214

215 if (size > 10)

216 {

217 my $buffer = my_file->read (10)

218 or die ("can’t read from file $url: $!\n");

219

220 if (length ($buffer == 10))

221 {

222 print "head: ’$buffer’\n";

223 return ($buffer);

224 }

225 else

226 {

227 printf "head: short read: %d\n" ($buffer);

228 }

229 }

230 else

231 {

232 print "file $url is too short: $size\n";

233 }

234

saga-core-wg@ogf.org 208

GWD-R.72 SAGA Code Examples August 18, 2006

235 return (undef);

236 }

237

238 --

239 Example 2e: Perl (exceptions)

240 -----------------------------

241

242 sub head ($$)

243 {

244 my $session = shift;

245 my $url = shift;

246

247 eval

248 {

249 my $my_file = new saga::file (session, url);

250 my $size = my_file->get_size ();

251

252 if (size > 10)

253 {

254 my $buffer = my_file->read (10);

255 my $bufflen = length ($buffer);

256

257 if (bufflen == 10)

258 {

259 print "head: ’$buffer’\n";

260 return ($buffer);

261 }

262 else

263 {

264 printf "head: short read: %d \n", length ($buffer);

265 }

266 }

267 else

268 {

269 print "file $url is too short: $size\n";

270 }

271 }

272

273 if ($@ =~ /^saga/i)

274 {

275 print "catched saga error: $@\n" if $@;

276 }

277

278 return (undef);

279 }

280

281 --

282 Example 2f: Fortran

283 -------------------

284

saga-core-wg@ogf.org 209

GWD-R.72 SAGA Code Examples August 18, 2006

285 TBD

286

287 --

288 Example 2g: Python

289 ------------------

290 # Python example

291 def head (session,url):

292

293 try:

294 # get type and other infos

295 my_file = saga.file(session,url)

296 size = my_file.get_size()

297

298 if (size > 10):

299 (buffer, bufflen) = my_file.read (10)

300 if (bufflen == 10):

301 print "head: ", buffer

302 return(buffer)

303 else

304 print "head: short read: ", bufflen

305

306 # catch any possible error - see elsewhere for better

307 # examples of error handling in SAGA

308 except saga.Exception, e:

309 print "Oops! SAGA error: ", e.what()

310

311 +---+

312

saga-core-wg@ogf.org 210

GWD-R.72 Known Issues & Feedback August 18, 2006

B Known Issues & Feedback

The document is currently a working draft. We would appreciate feedback to
any inconsistencies, errors, types, additions etc.

A number of FIXME’s are visible through the text. Also, below is a list of
known open issues included. There is no need to report these marked issues
again, as we are already aware of those – unless of course the reader deems
these known issues as incomplete or incorrect.

We appreciate your feedback either by email to the SAGA Research Group mail-
ing list, at saga-rg@ggf.org, or as individual email to the following authors:
andre@merzky.net, s.jha@ucl.ac.uk, and kielmann@cs.vu.nl. If wished,
comments are handled anonymously, but they will eventually be made public.

30) ACLs!

- Later, after we get input from the security area and GFS

- we actually got that input for files/name spaces, so that

should be done!

- TODO THILO

-> re-check with Osama Tatebe

36) - examples are not normative for language binding

- provide one examples in various languages

- TODO TOM: Fortran

- DONE HARTMUT: Python

-> TODO

55) check strawman for references

- OPEN

-> TODO

82) Explain sidl.SIDLException !

- OPEN

- TODO

139) complete ’Throws’ sections

- TODO

140) add default values to detailed prototypes

- TODO

142) check if all places are documented which can use ERRNO codes

- TODO

143) check if ReadError and WriteError are needed and used correctly

saga-core-wg@ogf.org 211

GWD-R.72 Known Issues & Feedback August 18, 2006

- TODO

144) apply pre- and post-conditions for all methods which imply state

sharing: add_task(), CONSTRUCTOR(), DESTRUCTOR() etc.

- TODO

145) fix author details

- TODO

146) default param values need explicit documentation in details

- TODO

saga-core-wg@ogf.org 212

GWD-R.72 Known Issues & Feedback August 18, 2006

References

[1] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann,
A. Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schütt, E. Sei-
del, and B. Ullmer. The Grid Application Toolkit: Towards Generic and
Easy Application Programming Interfaces for the Grid. Proceedings of the
IEEE, 93(3):534–550, 2005.

[2] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough,
D. Pulsipher, and A. Savva. Job Submission Description Language (JSDL)
Specification V1.0. Grid Forum Document GFD.56, 2005. Global Grid
Forum.

[3] Babel Project. Scientific Interface Definition Language (SIDL). http:
//www.llnl.gov/CASC/components/babel.html .

[4] S. Bradner. Key Words for Use in RFCs to Indicate Requirement Levels.
RFC 2119, Internet Engineering Task Force (IETF), 1997. http://www.
ietf.org/rfc/rfc2119.txt/.

[5] DRMAA Working Group. Open Grid Forum. http://forge.ogf.org/
sf/projects/drmaa-wg/.

[6] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw,
B. Horn, F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, and J. V.
Reich. The Open Grid Services Architecture, Version 1.0. Technical report,
Global Grid Forum, 2005. GFD.30.

[7] Grid Checkpoint and Recovery Working Group (GridCPR), Open Grid
Forum (OGF). http://forge.ogf.org/sf/projects/gridcpr-wg.

[8] F. Isaila and W. Tichy. Clusterfile: A flexible physical layout parallel file
system. Concurrency and Computation: Practice and Experience, 15(7–
8):653–679, 2003.

[9] JSDL Working Group. Open Grid Forum. http://forge.ogf.org/sf/
projects/jsdl-wg/.

[10] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID)
URN Namespace. RFC 4122, Internet Engineering Task Force (IETF),
2005. http://www.ietf.org/rfc/rfc4122.txt/ .

[11] A. Merzky and S. Jha. A Collection of Use Cases for a Simple API for Grid
Applications. Grid Forum Document GFD.70, 2006. Global Grid Forum.

[12] A. Merzky and S. Jha. A Requirements Analysis for a Simple API for Grid
Applications. Grid Forum Document GFD.71, 2006. Global Grid Forum.

saga-core-wg@ogf.org 213

http://www.llnl.gov/CASC/components/babel.html
http://www.llnl.gov/CASC/components/babel.html
http://www.ietf.org/rfc/rfc2119.txt/
http://www.ietf.org/rfc/rfc2119.txt/
http://forge.ogf.org/sf/projects/drmaa-wg/
http://forge.ogf.org/sf/projects/drmaa-wg/
http://forge.ogf.org/sf/projects/gridcpr-wg
http://forge.ogf.org/sf/projects/jsdl-wg/
http://forge.ogf.org/sf/projects/jsdl-wg/
http://www.ietf.org/rfc/rfc4122.txt/

GWD-R.72 Known Issues & Feedback August 18, 2006

[13] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and
H. Casanova. A GridRPC Model and API for End-User Applications. Grid
Forum Document GFD.52, 2005. Global Grid Forum.

[14] M. Pereira, O. Tatebe, L. Luan, and T. Anderson. Resource Names-
pace Service Specification. Working document, Grid File Systems Work-
ing Group, Open Grid Forum, 2006. http://forge.gridforum.org/
projects/gfs-wg/document/RNS-Proposed Final Draft-v1.10/en/10.

[15] H. Rajic, R. Brobst, W. Chan, F. Ferstl, J. Gardiner, J. P. Robarts,
A. Haas, B. Nitzberg, H. Rajic, and J. Tollefsrud. Distributed Resource
Management Application API Specification 1.0. Grid Forum Document
GFD.22, 2004. Global Grid Forum.

saga-core-wg@ogf.org 214

http://forge.gridforum.org/projects/gfs-wg/document/RNS-Proposed_Final_Draft-v1.10/en/10
http://forge.gridforum.org/projects/gfs-wg/document/RNS-Proposed_Final_Draft-v1.10/en/10

	Introduction
	How to read this Document
	Notational Conventions
	Security Considerations

	General Design Considerations
	API Scope and Design Process
	The SIDL Interface Definition Language
	Language Binding Issues
	Compliant Implementations
	Object Management
	Asynchronous Operations and Concurrency
	State Diagrams
	Execution Semantics, and Consistency Model
	Optimizing Implementations, Latency Hiding
	Configuration Management
	The 'URL Problem'
	Miscellaneous Issues

	SAGA API Specification
	SAGA Error Handling
	SAGA Base Object
	SAGA Session Handling
	SAGA Context
	SAGA Attribute Interface
	SAGA Monitoring Model
	SAGA Task Model
	SAGA Job Management
	SAGA Name Spaces
	SAGA File Management
	SAGA Replica Management
	SAGA Streams
	SAGA Remote Procedure Calls

	Intellectual Property Issues
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice

	SAGA Code Examples
	Known Issues & Feedback
	References

