
GFD-R-P.144 Steve Fisher, Antony Wilson and Arumugam Paventhan
SAGA-WG Rutherford Appleton Laboratory, UK

Version: 1.1 July 15, 2009

SAGA API Extension: Service Discovery API

Status of This Document

This document provides information to the grid community, proposing a stan-
dard for an extension to the Simple API for Grid Applications (SAGA). As such
it depends upon the SAGA Core API Specification [3]. This document is in-
tended to be used as input to the definition of language specific bindings for this
API extension, and as reference for implementors of these language bindings.
Distribution of this document is unlimited.

Copyright Notice

Copyright c© Open Grid Forum (2007-2009). All Rights Reserved.

Document Change History

The following changes have been made in version 1.1 of this document:

• All attribute names are now consistent with the style of the main SAGA
specification.

• Attributes: “InformationServiceUrl”, “ImplementationVersion” and “In-
terfaceVersion” have been added.

• A multi-valued attribute: “Capabilities” has been added. Consequently
the description of the “Type” attribute has been simplified.

Abstract

This document specifies a Service Discovery API extension to the Simple API
for Grid Applications (SAGA), a high level, application-oriented API for grid
application development. This Service Discovery API is motivated by a number
of Use Cases collected by the OGF SAGA Research Group in GFD.70 [4], and
by requirements derived from these Use Cases, as specified in GFD.71 [5]). It
allows users to find services with minimal prior knowledge of the grid or grids
they plan to use.

GFD-R-P.144 July 15, 2009

Contents

1 Introduction 3

1.1 Notational Conventions . 3

1.2 Security Considerations . 3

2 SAGA Service Discovery API 4

2.1 Introduction . 4

2.2 Specification . 6

2.3 Specification Details . 9

2.4 Examples . 17

3 Intellectual Property Issues 19

3.1 Contributors . 19

3.2 Intellectual Property Statement 19

3.3 Disclaimer . 20

3.4 Full Copyright Notice . 20

References 21

saga-core-wg@ogf.org 2

GFD-R-P.144 Introduction July 15, 2009

1 Introduction

Most of the SAGA use cases [4] exhibit a need for service discovery (SD) -
though it is sometimes described in other terms, such as searching for resources,
or even searching for components. It would appear that the real need is to
discover services. The fact that these services may make use of certain resources
or components is not the prime interest of the the end user – ultimately access
will be via the interface offered by the service.

This API extension is tailored to provide exactly this functionality, at the same
time keeping coherence with the SAGA Core API look & feel, and keeping other
Grid related boundary conditions (in particular middleware abstraction and
authentication/authorization) in mind.

1.1 Notational Conventions

In structure, notation and conventions, this documents follows those of the
SAGA Core API specification [3], unless noted otherwise.

1.2 Security Considerations

As the SAGA API is to be implemented on different types of Grid (and non-
Grid) middleware, it does not specify a single security model, but rather provides
hooks to interface to various security models – see the documentation of the
saga::context class in the SAGA Core API specification [3] for details.

A SAGA implementation is considered secure if and only if it fully supports
(i.e. implements) the security models of the middleware layers it builds upon,
and neither provides any (intentional or unintentional) means to by-pass these
security models, nor weakens these security models’ policies in any way.

saga-core-wg@ogf.org 3

GFD-R-P.144 SAGA Service Discovery API July 15, 2009

2 SAGA Service Discovery API

2.1 Introduction

The SAGA Service Discovery API provides a mechanism to locate services.

The main SAGA APIs assume that certain URLs are known and will be passed
in to the API calls. For example, the constructor for the saga::job::job-
service class takes the URL of a resource manager. The specification of the

job service class allows the implementation to find the resource manager if no
URL is provided. A user could therefore delegate to the job service the task of
choosing a suitable resource manager or, if more control on the choice of resource
manager is required, the user could use the service discovery API directly and
pass in the URL of the resource manager. It is likely that an implementation
of the job service would itself use the service discovery API to locate a resource
manager when none has been specified. Another example where the user needs
to locate a service is to make a saga::rpc::rpc call.

It is expected that this SD API will make use of various information systems
or other service discovery mechanisms. The quality of the information returned
will depend upon the quality of the data in the back-end system or systems.

2.1.1 Service Model

The API is based upon the GLUE (version 1.3) model of a service [1] as sum-
marized in figure 1. This service model is also compatible with GLUE 2.0 [2].

ServiceData

Service

Site

Figure 1: ER diagram of Service Model

saga-core-wg@ogf.org 4

GFD-R-P.144 SAGA Service Discovery API July 15, 2009

The figure indicates that a Site may host many Services and a Service has
multiple ServiceData entries associated with it. Each ServiceData entry is rep-
resented by a key and a value, thus allowing any set of keyword/value pairs to
be associated with an instance of a Service. In addition, a Service has a many-
to-many relationship with itself. This allows the model to describe groupings of
services.

It is possible that the Service Discovery API may be incompatible with a future
version of GLUE. This issue will be addressed, if necessary, in a future revision
of this document.

2.1.2 Classes

The SAGA Service Discovery API consists of a discoverer class with a sin-
gle method: list_services. This method returns a list of objects of the
service_description class, filtered according to several specified filters.

The service_description class has three methods. One of these, get_url,
is all that most people will use to obtain the address registered for the ser-
vice. In the case of a Web Service, this will be the service endpoint. It also
implements the saga::attributes interface, and thus exposes additional Read-
Only properties of the service, such as its type and uid. These might be used
by those who wish to generate a web page of services, or need detailed infor-
mation for other purposes. There is a method get_related_services that
returns the set of related service_descriptions, which represent related ser-
vices. Finally, there is a method get_data to access the set of further key value
pairs. This method returns a service_data object, which also implements the
saga::attributes interface giving ReadOnly access to all the key names and
values in the service_data object.

By making the service_description implement the saga::attributes inter-
face, and by referencing a separate service_data object holding the key value
pairs, potential key name clashes between the sets of pre-defined and free-form
attributes are avoided.

saga-core-wg@ogf.org 5

GFD-R-P.144 SAGA Service Discovery API July 15, 2009

2.2 Specification

package saga.sd {

class discoverer : implements saga::object
{
CONSTRUCTOR (in session session,

in url url = "",
out discoverer dis);

DESTRUCTOR (in discoverer dis);

list_services (in string service_filter,
in string data_filter,
in string authz_filter,
out array<service_description> services);

list_services (in string service_filter,
in string data_filter,
out array<service_description> services);

}

class service_description : implements saga::object
implements saga::attributes

{
// no CONSTRUCTOR
DESTRUCTOR (in service_description sdesc);

get_url (out string url);
get_related_services (out array<service_description>

services);
get_data (out service_data data);

// Attributes:
//
// name: Url
// desc: url to contact the service
// mode: ReadOnly
// type: String
// notes: The get_url call obtains the same information.
//
// name: Capabilities
// desc: identifiable aspects of functionality
// mode: ReadOnly
// type: Vector String

saga-core-wg@ogf.org 6

GFD-R-P.144 SAGA Service Discovery API July 15, 2009

// notes: The specification imposes no rules on the
// values of this field except that it MUST
// NOT be an empty string. An appendix of the
// GLUE 2 specification[2] lists some possible
// values.

//
// name: Type
// desc: type of service
// mode: ReadOnly
// type: String
// notes: The specification imposes no rules on the
// values of this field except that it MUST
// NOT be an empty string.
//
// name: Uid
// desc: unique identifier of service
// mode: ReadOnly
// type: String
// notes: The specification imposes no rules on the
// values of this field except that it MUST
// NOT be an empty string.
//
// name: Site
// desc: name of site
// mode: ReadOnly
// type: String
// notes: The specification imposes no rules on the
// values of this field except that it MUST
// NOT be an empty string.
//
// name: Name
// desc: name of service - not necessarily unique
// mode: ReadOnly
// type: String
// notes: The specification imposes no rules on the
// values of this field except that it MUST
// NOT be an empty string.
//
// name: Implementor
// desc: name of the organisation providing the
// implementation of the service.
// mode: ReadOnly
// type: String
// notes: The specification imposes no rules on the
// values of this field except that it MUST
// NOT be an empty string.

saga-core-wg@ogf.org 7

GFD-R-P.144 SAGA Service Discovery API July 15, 2009

//
// name: ImplementationVersion
// desc: the version of the service implementation
// mode: ReadOnly
// type: String
// notes: The specification imposes no rules on the
// values of this field except that it MUST
// NOT be an empty string.
//
// name: InterfaceVersion
// desc: the version of the service interface.
// mode: ReadOnly
// type: String
// notes: The specification imposes no rules on the
// values of this field except that it MUST
// NOT be an empty string.
//
// name: RelatedServices
// desc: uids of related services
// mode: ReadOnly, optional
// type: Vector String
// value: -
// notes: This returns the uids of the related services.
// This is unlike the call get_related_services
// which returns an array of service_descriptions.
//
// name: InformationServiceUrl
// desc: url of the information service used to

obtain this service_description
// mode: ReadOnly
// type: String
// notes: This must have a valid URL syntax
//

}

class service_data : implements saga::object
implements saga::attributes

{
// no CONSTRUCTOR
DESTRUCTOR (in service_data sd);

// Attributes (extensible):
//
// no attributes pre-defined

}

saga-core-wg@ogf.org 8

GFD-R-P.144 SAGA Service Discovery API July 15, 2009

}

2.3 Specification Details

The API will typically use some underlying information system and should not
contact the services to check their availability. The user must expect that a
service provided by the Service Discovery API may not be available. Even
if the API were to contact a service to confirm its availability, by the time
the user attempts to use that service, it may have failed. Similarly the API
cannot be guaranteed to provide a complete set of matching services - it is the
responsibility of the implementation to apply any algorithm it chooses to return
a set of services.

The API may try to use an underlying information system but not be able to
access it. The precise behaviour is implementation dependent - for example
if it uses adapters it may try a different one. If no result can be returned
because of information system or other internal problems, it SHOULD throw
the NoSuccess exception. Note that an implementation MAY choose to return
search results from multiple backend services. In the case of an adaptor based
implementation, several adaptors may get queried at once, and the results may
be collated into a single list, if the specified URL does not limit the range of
usable adaptors.

class discoverer

The discoverer object is the entry point for service discovery. Apart from the
constructor and destructor it has one operation: list_services which returns
the list of descriptions of services matching the specified filter strings.

An implementation SHOULD return the results in a random order if there is
more than one result to avoid any tendency to overload particular services while
leaving others idle.

There are three filter strings: service_filter, data_filter and authz_filter
which act together to restrict the set of services returned. Each of the filter
strings uses SQL92 syntax as if it were part of a WHERE clause acting to se-
lect from a single table that includes columns as described below for that filter
type. SQL92 has been chosen because it is widely known and has the desired
expressive power. Multi-valued attributes are treated as a set of values.

Three strings are used, rather than one, as this clarifies the description of the
functionality, avoids problems with key values being themselves existing GLUE

saga-core-wg@ogf.org 9

GFD-R-P.144 SAGA Service Discovery API July 15, 2009

attributes, and facilitates implementation as it makes it impossible to specify
constraints that correlate, for example, service and authz information. Only
the following operators are permitted in expressions not involving multi-valued
attributes: IN, LIKE, AND, OR, NOT, =, >=, >, <=, <, <> in addition to column
names, parentheses, column values as single quoted strings, numeric values and
the comma. For a multi-valued attribute, the name of the attribute MUST
have the keyword ALL or ANY immediately before it, unless comparison with
a set literal is intended. For each part of the expression, the attribute name
MUST precede the literal value. An implementation SHOULD try to give an
informative error message if the filter string does not conform. It is, however,
sufficient to report in which filter string the syntax error was found.

The LIKE operator matches string patterns:

’%xyz’ matches all entries with trailing xyz

’xyz%’ matches all entries with leading xyz

’%xyz%’ matches all entries with xyz being a substring

The ESCAPE keyword can be used with LIKE in the normal way.

Column names are not case sensitive but values are.

No use-case has been identified for the operators >=, >, <=, < to be applied
to strings. An Implementation wishing to support these comparison operators
on strings MUST select a collation sequence. Alternatively, an implementation
CAN treat all string comparisons as true, or reject them as invalid SQL.

Service Filter

Column names in the service_filter are:

Capabilities identifiable aspects of functionality

Type type of service. This API does not restrict values of the service type – it
might be a DNS name, a URN or any other string.

Uid unique identifier of service

Site name of site the service is running at

Name name of service (not necessarily unique)

Implementor name of the organisation providing the implementation of the
service

saga-core-wg@ogf.org 10

GFD-R-P.144 SAGA Service Discovery API July 15, 2009

ImplementationVersion the version of the service implementation

InterfaceVersion the version of the service interface

RelatedServices the uids of services related to the one being looked for

Url the endpoint to contact the service - will normally be used (if at all) with
the LIKE operator

Some examples are:

• Type = ’org.ogf.saga.service.job’

• Site IN (’INFN-CNAF’, ’RAL-LCG2’)

• Type = ’org.glite.ResourceBroker’ \
AND Site LIKE ’%.uk’ \
AND Implementor = ’EGEE’

• ANY RelatedServices = ’someServiceUID’

Note the use of the ANY keyword in the last example as RelatedServices is
multi-valued.

Data Filter

Column names in the the data_filter string are matched against the service
data key/value pairs. No keys are predefined by this specification.

If values are specified as numeric values and not in single quotes, the service
data will be converted from string to numeric for comparison.

Data attributes may be multi-valued. If a data_filter string does not have
the correct syntax to accept multi-valued attributes, and a service has more
than one value for an attribute mentioned in the filter, that service MUST be
rejected.

Some examples are:

• source = ’RAL-LCG2’ OR destination = ’RAL-LCG2’

• RunningJobs >= 1 AND RunningJobs <= 5

saga-core-wg@ogf.org 11

GFD-R-P.144 SAGA Service Discovery API July 15, 2009

Authz Filter

The set of column names in the authz_filter is not defined. Instead the list
below shows a possible set of names and how they might be interpreted. Each
of these column names could reasonably be related to an authorization decision.
Implementations MAY reuse the attribute names defined for the saga::context
class.

Vo virtual organization - will often be used with the IN operator

Dn an X.509 “distinguished name”

Group a grouping of people within a Virtual Organization

Role values might include “Administrator” or “ProductionManager”

It is expected that many of the attributes used in the authz_filter will be
multi-valued.

Some examples, where VO is assumed to be multi-valued are:

• ANY Vo IN (’cms’, ’atlas’)

• Vo = (’dteam’)

Note the use of the set constructor in both examples. Being a set, (’aaa’,’bbbb’)
is of course the same as (’bbb’, ’aaa’).

The list_services operation is overloaded: the last parameter the authz_filter
may be omitted. If it is omitted the authorization filtering is performed on the
contexts in the session. This is quite different from including the authz_filter
parameter with an empty string which means that there is no authz filtering.

- CONSTRUCTOR
Purpose: create a new discoverer object
Format: CONSTRUCTOR (in session session,

in url url = "",
out discoverer dis);

Inputs: session: session handle
url: URL to guide the implementation

Outputs: dis: new discoverer object
Throws: NotImplemented

IncorrectURL

saga-core-wg@ogf.org 12

GFD-R-P.144 SAGA Service Discovery API July 15, 2009

DoesNotExist
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the url specified as in input parameter is to
assist the implementation to locate the
underlying information system such that it
can be queried.

- if the url is syntactically valid, but no
service can be contacted at that URL, a
’DoesNotExist’ exception is thrown.

- the semantics for the other exceptions is as
outlined in the SAGA Core API specification.

- note that the session parameter is optional,
as described in the SAGA Core API
specification, section 3.5.2. Also Section
2.2.2 of the same document applies to
url and its default value.

- DESTRUCTOR
Purpose: destructor for discoverer object
Format: DESTRUCTOR (in discoverer dis)
Inputs: dis: object to be destroyed
Outputs: -
Throws: -
Notes: -

- list_services
Purpose: return the set of services that pass the set of

specified filters
Format: list_services (in string service_filter,

in string data_filter,
in string authz_filter,
out array<service_description>

services);
Inputs: service_filter: filter on the basic service and

site attributes and on related
services

data_filter: filter on key/value pairs
associated with the service

authz_filter: filter on authorization
information associated with
the service

saga-core-wg@ogf.org 13

GFD-R-P.144 SAGA Service Discovery API July 15, 2009

Outputs: services: list of service descriptions
matching the filter criteria

Throws: BadParameter
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the last parameter, the authz_filter, may be
omitted. In this case an implicit
authz_filter is constructed from the contexts
of the session. Note that this is different
from an empty authz_filter, as that would
apply no authorization filter at all.

- if any filter has an invalid syntax, a
’BadParameter’ exception is thrown.

- if any filter uses invalid keys, a
’BadParameter’ exception is thrown. However
the data_filter never signals invalid
keys as there is no schema with permissible
key names.

- the semantics for the other exceptions is as
outlined in the SAGA Core API specification.

class service description

The service_description class implements the saga::attributes interface
and offers getter methods to obtain details of that service. The attributes are
based on those found in GLUE. In addition to the saga::attributes interface,
it has the methods listed below. This class has no CONSTRUCTOR as objects
of this type are created only by other objects in the service discovery API.

- DESTRUCTOR
Purpose: Destructor for service_data object.
Format: DESTRUCTOR (in service_description sdesc)
Inputs: sdesc object to be destroyed
Outputs: -
Throws: -
Notes: -

- get_url
Purpose: return the URL to contact the service

saga-core-wg@ogf.org 14

GFD-R-P.144 SAGA Service Discovery API July 15, 2009

Format: get_url (out string url);
Inputs: -
Outputs: url: URL to contact the service
Throws: -
Notes: - the URL may also be obtained using the

saga::attributes interface.

- get_related_services
Purpose: return the set of related services
Format: get_related_services (out array<service_description>

services);
Inputs: -
Outputs: services: set of related

service_description objects
Throws: AuthorizationFailed

AuthenticationFailed
Timeout
NoSuccess

Notes: - this function returns an array of
service_descriptions. Alternatively, the
saga::attributes interface may be used to get
the uids of the related services.

- the returned list can be empty.
- if the underlying information system is unable
to find one or more of the related services
an exception MUST NOT be thrown.

- get_data
Purpose: return a service_data object with the

ServiceData key/value pairs
Format: get_data (out service_data data);
Inputs: -
Outputs: data: a service_data object
Throws: -
Notes: - the returned service_data object may be

empty, i.e. has no attributes at all.

class service data

The service_data class implements the saga::attributes interface and of-
fers getter methods for the user to read key/value pairs defined by the service
publisher. Service publishers are completely free to define their own key names.

saga-core-wg@ogf.org 15

GFD-R-P.144 SAGA Service Discovery API July 15, 2009

Access to the keys and values is through the saga::attributes interface. The
class provides no other methods. This class has no CONSTRUCTOR, as it can
only be created by calling get_data on a service_description instance.

- DESTRUCTOR
Purpose: destructor for service_data object
Format: DESTRUCTOR (in service_data sd)
Inputs: sd object to be destroyed
Outputs: -
Throws: -
Notes: -

saga-core-wg@ogf.org 16

GFD-R-P.144 SAGA Service Discovery API July 15, 2009

2.4 Examples

This C++ example shows, using a possible C++ binding, how the SAGA service
discovery model can be used to retrieve services from the underlying informa-
tion system. All the SAGA job services (org.ogf.saga.service.job) with a name
of “CERN-PROD-rb” and accessible by a context of the current session and
for which the “RunningJobs” parameter is greater than 10 are requested. The
service objects returned from the list_services call are then queried for at-
tributes and key/values using its getter methods.

Note that this example is a little artificial as it would be more sensible to issue
a sufficiently precise query so that any service returned would be suitable and
then call get_url on the first service returned.

Code Example

1 #include <iostream>

2 #include <vector>

3 #include <string>

4 #include <saga.hpp>

5

6 using namespace std;

7

8 main () {

9 saga::sd::discoverer d (SAGA_DEFAULT_SESSION);

10 vector<string> attrib_names;

11 vector<string> attrib_values;

12

13 string svc_filter = "Type = ’org.ogf.saga.service.job’ AND

14 Name = ’CERN-PROD-rb’";

15 string data_filter = "RunningJobs > 10";

16

17 vector <saga::sd::service_description> slist =

18 d.list_services (svc_filter, data_filter);

19

20 cout << "Total number of services found = "

21 << slist.size() << endl;

22

23 for (unsigned int i = 0; i < slist.size (); i++) {

24 cout << "SERVICE #" << i << endl;

25 attrib_names = slist[i].list_attributes();

26 for (unsigned int j = 0; j < attrib_names.size (); j++) {

27 cout << " " << attrib_names[j]

28 << " = " << slist[i].get_attribute (attrib_names[j])

29 << endl;

30 }

31 }

32 }

saga-core-wg@ogf.org 17

GFD-R-P.144 SAGA Service Discovery API July 15, 2009

This C example is similar to the C++ one above but this time includes the
authz filter parameter. This is just an extract from a possible C binding.

Code Example

1 SAGA_SD_Discoverer *sd =

2 SAGA_SD_create_discoverer (SAGA_DEFAULT_SESSION);

3

4 if (sd == NULL) {

5 fprintf (stderr, "Could not create SAGA SD object: %s",

6 SAGA_Session_get_error (SAGA_DEFAULT_SESSION));

7 return -1;

8 }

9

10 char service_filter[] = "Type = ’org.ogf.saga.service.job’ AND

11 Name = ’CERN-PROD-rb’";

12 char authz_filter[] = "Vo IN (’atlas’, ’dteam’)";

13 char data_filter[] = "RunningJobs > 10";

14

15 SAGA_SD_ServiceDescription *slist = SAGA_SD_list_services(

16 sd, service_filter, data_filter, authz_filter);

17

18 printf ("Total number of services found : %d\n", slist->size);

19

20 for (int i = 0; i < slist->size; i++) {

21 printf("SERVICE #%d\n", i);

22

23 SAGA_SD_Attribute *keys = SAGA_SD_list_attributes(slist[i]);

24

25 for (int j = 0; j < keys->size; j++) {

26 printf (" %s = %s\n", key->names[j],

27 SAGA_SD_get_attribute (slist[i], key->names[j]));

28 }

29

30 SAGA_SD_free_attributes (keys);

31 }

32

33 SAGA_SD_free_services (slist);

saga-core-wg@ogf.org 18

GFD-R-P.144 Intellectual Property Issues July 15, 2009

3 Intellectual Property Issues

3.1 Contributors

This document is the result of the joint efforts of several contributors. The au-
thors listed here and on the title page are those committed to taking permanent
stewardship for this document. They can be contacted in the future for inquiries
about this document.

Steve Fisher Antony Wilson
dr.s.m.fisher@gmail.com antony.wilson@stfc.ac.uk
Rutherford Appleton Lab Rutherford Appleton Lab
Chilton Chilton
Didcot Didcot
Oxon Oxon
OX11 0QX OX11 0QX
UK UK

Arumugam Paventhan
a.paventhan@gmail.com
Rutherford Appleton Lab
Chilton
Didcot
Oxon
OX11 0QX
UK

We wish to thank Pascal Kleijer (NEC Corporation) and Andre Merzky (Lousisiana
State Univerity) for making written comments on earlier drafts and encouraging
us to be true to the SAGA style.

3.2 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

saga-core-wg@ogf.org 19

GFD-R-P.144 Intellectual Property Issues July 15, 2009

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover tech-
nology that may be required to practice this recommendation. Please address
the information to the OGF Executive Director.

3.3 Disclaimer

This document and the information contained herein is provided on an ”As
Is” basis and the OGF disclaims all warranties, express or implied, including
but not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

3.4 Full Copyright Notice

Copyright (C) Open Grid Forum (2007-2009). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the OGF Document process must
be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

saga-core-wg@ogf.org 20

GFD-R-P.144 References July 15, 2009

References

[1] S. Andreozzi et al. GLUE Schema Specification version 1.3. https://forge.
gridforum.org/sf/go/doc14185?nav=1, 2007.

[2] S. Andreozzi et al. GLUE Schema Specification version 2.0. http://www.
ogf.org/documents/GFD.147.pdf, 2009.

[3] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, A. Merzky, J. Shalf,
and C. Smith. A Simple API for Grid Applications (SAGA). Grid Forum
Document GFD.90, 2008. Open Grid Forum.

[4] A. Merzky and S. Jha. A Collection of Use Cases for a Simple API for Grid
Applications. Grid Forum Document GFD.70, 2006. Global Grid Forum.

[5] A. Merzky and S. Jha. A Requirements Analysis for a Simple API for Grid
Applications. Grid Forum Document GFD.71, 2006. Global Grid Forum.

saga-core-wg@ogf.org 21

https://forge.gridforum.org/sf/go/doc14185?nav=1
https://forge.gridforum.org/sf/go/doc14185?nav=1
http://www.ogf.org/documents/GFD.147.pdf
http://www.ogf.org/documents/GFD.147.pdf

	Introduction
	Notational Conventions
	Security Considerations

	SAGA Service Discovery API
	Introduction
	Specification
	Specification Details
	Examples

	Intellectual Property Issues
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice

	References

