
From the discussion with contributions from
Stephen Burke and Akos Frohner

Use Cases

You might want a web tool which could present information for a given VO without
having a credential for that VO, or a user might want to collect information to be used in
a subsequent step where a different credential would be in use.

Another case would be using a service indirectly via another service which has more/
different rights to the user themselves. A current example would be that myproxies have
an access control rule which specifies which WMSes (and indeed FTSes) can use them for
proxy renewal - that right is keyed to the DN of the WMS and not related to the
user.Hence having picked a WMS you need to find a myproxy which trusts it (potentially
as well as trusting you, but at the moment that isn't restricted). With the new service
providers you can do that with direct LDAP queries, but it would be nice if SD would
support it. Similarly you could imagine a situation in which the FTS was authorised to
write to an SE, but the user wasn't authorised to write directly, to allow datarates to be
managed.

Authz might be time-related, e.g. you can only use a service out of office hours (condor
pool?), but you might want to discover it anyway.

I quite often use lcg-infosites to query for resources for VOs I'm not a member of if I'm
trying to debug a problem for someone else - it would be much less useful without the
VO option.

Thoughts on authz

Thinking some more: you talk about alternative security models, but I think your
conceptualisation is pretty much bound to the concept of a VOMS proxy. Firstly, it's not
obvious that there is a local credential at all. A trivial example would be a service to
which you type a password; a more complex one could be a myproxy in password mode,
where you tell the service how to retrieve the credential but you don't have it locally
yourself. Or there could be some indirect context, e.g. the service deduces your VO (or
equivalent) from your ip address using rules you don't have access to.

Secondly, even if there is a credential there's no reason to assume that you can extract
the relevant information from it. An obvious example is an ssh key; that contains no
information at all about how it can be used. Or there may be information, but not in a
form that would let you do the matching - a kerberos ticket is probably in that category.
Or even in our standard grid world you may have a plain globus proxy which gets
mapped to a VO via a grid map file (or gets rejected),
but from which you can't extract the VO.

I think the basic point I would make is that service discovery is not an authz *decision*,
it's just a selection on something you hope will be fairly highly correlated with the
decision the service will make if you ask it. What the service will publish are not the real
internal authz rules (e.g. gridmap file, ban list, ...) but some kind of edited summary,
constrained by the rules of GLUE (or other info model) syntax, privacy laws, security
considerations and pragmatics - at the start of EDG we published every allowed user DN,



but now we don't because a) it's illegal and b) it's impractical with 10,000 users. So it's
perfectly possible that the rule you match against in the info system has no direct
relation at all to your actual authorisation credential/token/whatever, but will correlate
with the eventual authz decision in a probably simplified way via something the user or
the software is likely to know - e.g. maybe the info system publishes "LCG" and people
"just know" that that collectively means the atlas, cms, lhcb and alice VOs. The model
where we have a local VOMS proxy from which you can easily extract the information
(primary VO name, primary FQAN) which are directly used in the real authz decision,
and which can be and are directly published in the info system, is in fact an extremely
special case, albeit the one we're currently most familiar with!

Other points

There was a lot of discussion in the past in the OGF security groups to represent the
authorization information in some simple way.

In our client tools we use gridsite to parse the VOMS FQANs, however I can imaging one
using the VOMS libraries or even a SAML assertion from Sibboleth to gather the
attributes.

SD may need to scan tens of thousands of services, and authz policy engines may well
be rather slow

In the current EGEE service discovery API the authorization restriction is an explicit
parameter, the service discovery does not pick it up from the security context. This
simplifies dependencies and allows more flexibility on the actual security mechanism that
you might want to use.

Having decided on something you should then find it easier to see what needs to go in
the API to reproduce the same behaviour, although it will depend on how generic/
extensible you want to be. For example, for the current GLUE practice and likely
extensions the best answer would probably be to pass a list of strings and an optional
matching function, which would default to string equality - then you just match the list of
strings against the list of ACBRs and keep the result if anything matches. A simple VO
match would correspond to a string of "VO:atlas" and the default matching rule, which
isn't especially taxing on the user.

Why not only one or at maximum a list of strings (i.e. VOMS FQANs)?


	From the discussion with contributions from Stephen Burke and Akos Frohner
	Use Cases
	Thoughts on authz
	Other points


