
GWD-R.96 Andre Merzky11
. Andre Luckow
SAGA-WG Derek Simmel
Version: 1.0 RC.2 December 2, 2009

Editor

SAGA Extension: Checkpoint and Recovery API (CPR)

Status of This Document

This document provides information to the grid community, proposing a stan-
dard for an extension to the Simple API for Grid Applications (SAGA). As such
it depends upon the SAGA Core API Specification [2], on the GridCPR Use
Case document [1]and the GridCPR architecture document [3]. This document
is supposed to be used as input to the definition of language specific bindings for
this API extension, and as reference for implementors of these language bind-
ings. Distribution of this document is unlimited.

Copyright Notice

Copyright c© Open Grid Forum (2007). All Rights Reserved.

Abstract

FIXME: real citations!

This document specifies the an Checkpoint and Recovery (CPR) API extension
to the Simple API for Grid Applications (SAGA), a high level, application-
oriented API for grid application development. This CPR API is motivated by
a number of use cases collected by the GridCPR Working Group in GFD.92
(”Use Cases for Grid Checkpoint and Recovery”). Scope and semantics of the
SAGA CPR API extension is motivated by the GridCPR architecture docu-
ment GFD.93 (”An Architecture for Grid Checkpoint and Recovery (GridCPR)
Services and a GridCPR Application Programming Interface”).

Contents

1 Introduction 2
11

GWD-R.96 December 2, 2009

1.1 Notational Conventions . 2

1.2 Security Considerations . 2

2 SAGA CPR API 3

2.1 Introduction . 3

2.2 Specification . 4

2.3 Specification Details . 13

3 Intellectual Property Issues 14

3.1 Contributors . 14

3.2 Intellectual Property Statement 14

3.3 Disclaimer . 15

3.4 Full Copyright Notice . 15

References 15

saga-wg@ogf.org 2

GWD-R.96 Introduction December 2, 2009

1 Introduction

This document specifies an API for the initiation and management of application
checkpointing and recovery operations.

1.1 Notational Conventions

In structure, notation and conventions, this documents follows those of the
SAGA Core API specification [2], unless noted otherwise.

1.2 Security Considerations

As the SAGA API is to be implemented on different types of Grid (and non-
Grid) middleware, it does not specify a single security model, but rather provides
hooks to interface to various security models. In that respect, the SAGA CPR
extension covered in this document does not differ from trhe SAGA Core API
specification [2], and the Security Considerations from that document apply.

saga-wg@ogf.org 3

GWD-R.96 SAGA CPR API December 2, 2009

2 SAGA CPR API

2.1 Introduction

This document specifies an API for the initiation and management of application
checkpointing and recovery operations. The scope and semantics of this API
are motivated by the GridCPR architecture document [3]. Its capabilities fall
in the following categories:

A – checkpoint and recovery operations

A.1 – specification of application checkpointing capabilities and policies

A.2 – issuing notification of checkpointing requests

A.3 – receiving notification of checkpointing requests

A.4 – issuing notification of recovery requstes

A.5 – receiving notification of recovery requstes

B – management of checkpoints

B.1 – description of checkpoints and checkpoint meta data

B.2 – location and movement of checkpoints

B.3 – security, consistency and lifetime management of checkpoints

The capabilites referenced under A are, at least partly, already included in the
SAGA Core Job API, so it seems sensible to define the remaining capabilies in A
also as part of the SAGA Core Job API. This document does that by specifying
an additional interface (checkpointable) which can optinally be implemented by
the saga::job class.

The capabilities listed under B are closely related to the management of files and
logical files, which, in the SAGA Core API, share the abstraction of an hierachi-
cal name_space. It seems sensible to define the CPR checkpoint management
capabilities in the same framework. This document does that by defining a
checkpoint namespace, with the classes cpr_dir and cpr_entry.

2.1.1 Checkpoint URLs

The checkpoint URLs are those URLs which identify cpr_entry and cpr_dir
instances (and thus not the URLs pointing to the physical locations of the indi-
vidual checkpoint files). As this document expects the underlying middleware
to adhere to the CPR Architecture described in [?], we recommend the usage

saga-wg@ogf.org 4

GWD-R.96 SAGA CPR API December 2, 2009

of the scheme gridcpr:// – but that is really up to the implementation, as the
required semantics can very likely also be provided by systems which do not
follow [?].

2.2 Specification

package saga.cpr
{
enum flags
{
None = 0, // same as in name_space::flags
Overwrite = 1, // same as in name_space::flags
Recursive = 2, // same as in name_space::flags
Dereference = 4, // same as in name_space::flags
Create = 8, // same as in name_space::flags
Excl = 16, // same as in name_space::flags
Lock = 32, // same as in name_space::flags
CreateParents = 64, // same as in name_space::flags
Truncate = 128, // same as in file::flags
Append = 256, // same as in file::flags
Read = 512, // same as in file::flags
Write = 1024, // same as in file::flags
ReadWrite = 2048, // same as in file::flags
Binary = 4096 // same as in file::flags

}

class cpr_job_description : implements saga::job_description
// from job_description saga::attributes
// from job_description saga::object
// from object saga::error_handler

{
// Attributes:
//
// name: CPRPolicy
// desc: checkpoint policy
// type: Enum
// mode: ReadWrite
// value: ’’
// notes: - the attribute can have the values:
// - External: checkpoints are triggered by an
// external application
// - Internal: checkpoints are triggered by the
// job internally.

saga-wg@ogf.org 5

GWD-R.96 SAGA CPR API December 2, 2009

// - an application with ’Timed’ CPR policy can
// still create internally and externally
// triggered checkpoints.
//
// name: CPRFrequency
// desc: checkpoint frequency for ’Timed’ CPR policy
// type: Int
// mode: ReadWrite
// value: ’86400’
// notes: - specifies the number of seconds between two
// consecutive timed checkpoints.
// - Defaults to one checkpoint per day.
// - The value is ignored if CPR policy is not
// set to ’Timed’
//
// name: CPRSequence
// desc: sequence of checkpoint types
// type: String
// mode: ReadWrite
// value: ’’
// notes: - the attribute is a sequence of the letters
// - ’F’: Full checkpoint
// - ’I’: Incremental checkpoint
// (diff to last Full checkpoint)
// - ’i’: Incremental checkpoint
// (diff to last checkpoint)
// - the sequence is repeated infinitely
// - Incremental checkpoints are always relative
// to some preceding checkpoint. That implies
// that the first checkpoint is *always* a
// full checkpoint.
// - Examples:
// - "F" : allways do full checkpoints
// - "FIFI": alternate full and incremental
// Checkpoints
// - "i" : always do incremental checkpoint,
// using the previous (incremental)
// CP as base. First CP will be
// full.
// - This attribute is informational, to optimize
// the checkpoint management. The application
// and backend need to ensure that this
// sequence is actually applied. To
// simplify that, the SAGA CPR implementation
// SHOULD put the attributes value into the
// application’s environment, as

saga-wg@ogf.org 6

GWD-R.96 SAGA CPR API December 2, 2009

// ’SAGA_CPR_SEQUENCE’.
// - If application and backend do not actually
// apply this sequence, it MUST NOT imply
// invalid checkpoints.
// - SAGA CPR implementation MAY be able to
// enforce this sequence.
//
// name: CPRTimeToLive
// desc: lifetime for checkpoint files
// type: Int
// mode: ReadWrite
// value: ’2500000’
// notes: - specifies the number of seconds
// checkpoints are guaranteed to be valid
// - Defaults 2.500.000 seconds (ca 29 days)
// - the value can be changed for each individual
// checkpoint - see the respective cpr_entry
// attribute with the same name.
// - the SAGA CPR implementation SHOULD make sure
// that no Full checkpoints are deleted for
// which derived Incremental checkpoints still
// exist.
// - for application internal checkpoints, the
// application itself is responsible to
// enforce that checkpoint location. To
// simplify that, the SAGA CPR implementation
// SHOULD put the attributes value into the
// application’s environment, as
// ’SAGA_CPR_TIME_TO_LIVE’.
//
// name: CPRHistoryLength
// desc: number of checkpoints to keep
// type: Int
// mode: ReadWrite
// value: ’-1’
// notes: - specifies the number of previous generations
// of checkpoints to be kept in the system. If
// that number is exceeded, the backend MAY
// delete older checkpoints.
// - Negative values specify an unlimited number
// of generations to be kept.
// - the SAGA CPR implementation MUST make sure
// that no Full checkpoints are deleted for
// which derived Incremental checkpoints still
// exist.
// - Defaults to -1.

saga-wg@ogf.org 7

GWD-R.96 SAGA CPR API December 2, 2009

//
// name: CPRBaseLocation
// desc: cpr_directory to be used for storing
// checkpoints
// type: URL
// mode: ReadWrite
// value: ’any:///#UserID#/#JobID#/’
// notes: - specifies the cpr_directory to be used when
// registering the checkpoint files.
// - if the directory does not exist, it is
// created, as are its parents.
// - the ’#UserID#’ wildcard can be used to
// specify the value of the UserID attribute
// - the ’#JobID#’ wildcard can be used to
// specify the value of the job’s jobid.
// - for application internal checkpoints, the
// application itself is responsible to
// enforce that checkpoint location. To
// simplify that, the SAGA CPR implementation
// SHOULD put the attributes value into the
// application’s environment, as
// ’SAGA_CPR_BASE_LOCATION’.
//
// name: CPRBaseName
// desc: cpr_directory to be used for storing
// checkpoints
// type: URL
// mode: ReadWrite
// value: ’#JobID#.#Generation#.cpr
// notes: - specifies the cpr_entry name to be used
// when registering the checkpoint files.
// - if the entry exists when the checkpoint is
// to be created, its content is overwritten!
// - The following wildcards are available:
// - ’#JobID#’ : as for CPRBaseLocation
// - ’#UserID#’: as for CPRBaseLocation
// - ’#Generation#’: number of snapshot.
// - Generation numbering starts at 0, and MAY be
// padded with zeros to a fixed length.
//

}

class cpr_job_service : implements saga::job_service
// from job_service saga::object
// from job_service saga::async
// from object saga::error_handler

saga-wg@ogf.org 8

GWD-R.96 SAGA CPR API December 2, 2009

{
create_job (in job_description jd_start,

in job_description jd_rec,
out job job);

}

class cpr_job : extends saga::job,
implements saga::steerable

// from job saga::task
// from job saga::async
// from job saga::attribute
// from task saga::object
// from task saga::monitorable
// from object saga::error_handler

{
list_checkpoints (out array<string> urls);

// cpr actions
checkpoint (in url url = "",

in int id = -1);
recover (in url url = "",

in int id = -1);
// implies run() if New

// manage locality of checkpoints
cpr_stage_out (in url url = "",

in int id = -1);
cpr_stage_in (in url url = "",

in int id = -1);

cpr_last (out url url);
cpr_list (out array<url> url);

// Metrics:
// name: Checkpoint
// desc: to be fired when an application level
// checkpoint is requested
// mode: ReadWrite
// unit: 1
// type: String
// value: ’’
// notes: - the metric acts as trigger
// - the value can optionally be set to
// an cpr_entry URL to be used for the
// resulting checkpoint

saga-wg@ogf.org 9

GWD-R.96 SAGA CPR API December 2, 2009

//
// name: Checkpointed
// desc: to be fired when application level
// checkpoint is finished
// mode: ReadWrite
// unit: 1
// type: Trigger
// value: ’’
//
// name: Recover
// desc: to be fired when application level
// recovery is requested
// mode: ReadWrite
// unit: 1
// type: String
// value: ’’
// notes: - the metric acts as trigger
// - the value can optionally be set to
// an cpr_entry URL to be used for the
// recovery
//
// name: Recovered
// desc: to be fired when application level
// recovery is finished
// mode: ReadWrite
// unit: 1
// type: Trigger
// value: ’’

}

class self : extends saga::cpr::job
implements saga::steerable

// from cpr::job saga::job::job
// from job::job saga::async
// from job::job saga::attributes
// from job::job saga::task
// from job::job saga::object
// from job::job saga::monitorable
// from job::job saga::permissions
// from job::job saga::error_handler

{
// no CONSTRUCTOR
DESTRUCTOR (in job_self obj);

}

class directory : extents saga::ns_directory

saga-wg@ogf.org 10

GWD-R.96 SAGA CPR API December 2, 2009

implements saga::attribute
// from ns::directory saga::ns_entry
// from ns_entry saga::object
// from ns_entry saga::async
// from object saga::error_handler

{
// open flags default to CreateParents and Lock
// for open on checkpoint files.

// additional inspection method
is_checkpoint (in url checkpoint,

out bool test);

// find checkpoints based on name and meta data
find (in string name_pattern,

in array<string> meta_pattern = (),
in int flags = None,
in string spec = "",
out array<string> urls);

set_parent (in url checkpoint,
in string url,
in int generations = 1);

get_parent (in url checkpoint,
in int generations = 1,
out string url);

get_file_num (in url checkpoint,
out int nfiles);

list_files (in url checkpoint,
out array<url> files);

add_file (in url checkpoint,
in url file,
out int id);

get_file (in url checkpoint,
in int id,
out url url);

open_file (in url checkpoint,
in int id = 0,
in int flags = CreateParents | Lock | ReadWrite,
out saga::file file);

saga-wg@ogf.org 11

GWD-R.96 SAGA CPR API December 2, 2009

open_file (in url checkpoint,
in url url,
in int flags = CreateParents | Lock | ReadWrite,
out saga::file file);

remove_file (in url checkpoint,
in int id);

remove_file (in url checkpoint,
in url url);

update_file (in url checkpoint,
in int id,
in url new);

update_file (in url checkpoint,
in url old,
in url new);

stage (in url checkpoint,
in int id,
in url target);

stage (in url checkpoint,
in url file,
in url target);

stage (in url checkpoint,
in url target);

}

class checkpoint : extends saga::ns_entry
implements saga::attribute

// from ns_entry saga::object
// from ns_entry saga::async
// from object saga::error_handler

{
// get parent checkpoint url
set_parent (in url parent,

in int generations = 1);

get_parent (in int generations = 1,
out string url);

saga-wg@ogf.org 12

GWD-R.96 SAGA CPR API December 2, 2009

get_file_num (out int nfiles);

list_files (out array<url> files);

add_file (in url file
out int id);

get_file (in int id,
out url url);

open_file (in int id = 0,
in int flags = CreateParents | Lock | ReadWrite,
out saga::file file);

open_file (in url url,
in int flags = CreateParents | Lock | ReadWrite,
out saga::file file);

remove_file (in int id);

remove_file (in url url);

update_file (in int id,
in url file_new);

update_file (in url url,
in url file_new);

stage (in int id,
in url target)

stage (in url url,
in url target);

stage (in url target);

// Attributes:
// time
// nfiles
// ttl
// mode (full, inc 1, inc 2)
// parent (url for cpr-entry)
// childs (array of cpr-entry urls)

}
}

saga-wg@ogf.org 13

GWD-R.96 SAGA CPR API December 2, 2009

2.3 Specification Details

2.3.1 The checkpointable Interface

A checkpointable job (saga::cpr_job) offers, compared to a normal saga::job,
some additional methods (checkpoint() and recover()) and metrics (Checkpoint,
Checkpointed, Recover

The SAGA CPR API defines a checkpoint (cpr_entry) to be a represent a
complate snapshot of a state of an application. An application (saga::job)
can consist of multiple proceses, and each process may write any number (0...n)
of checkpoint files; checkpoints thus represent a number of individual checkpoint
files. The files the checkpoint is comprised of are not managed by the appli-
cation, but by the middleware. The files are refered to by a integer number
FIXME: string?, and the application can open the individual files for reading
and/or writing.

Checkpoints are organized in a SAGA namespace (i.e. saga::cpr_entry and
saga::cpr_dir inherit saga::ns_entry and saga::ns_dir). An additional
relationship between cpr_entries is stablished by their order in time: a check-
point taken directly before another checkpoint is named parent, a checkpoint
taken directly after another checkpoint is named child. The CPR middleware
SHOULD be able to identify parent/child relationships automatically – this can,
however, be enforced and also changed by using the set_parent()/remove_parent()
and set_child()/remove_child() methods. Also, a parent may have more
than one child, but a child may have only zero or one parent. This allows ef-
fectively for a tree of checkpoints, which allow applications to rewind to older
checkpoints, or to checkpoints with a different

The exact physical location of checkpoint files is, in general, not under appli-
cation control - it is, however, possible to ensure co-location of the job execu-
tion host and checkpoint files (cpr_stage_in(), by default fetching the last
checkpoint available), It is also possible to enforce the opposite, and to stage
out a checkpoint file to ensure its continued availability on node shutdown etc.
(cpr_stage_out(), also by default refering to the last checkpoint available).

saga-wg@ogf.org 14

GWD-R.96 Intellectual Property Issues December 2, 2009

3 Intellectual Property Issues

3.1 Contributors

This document is the result of the joint efforts of many contributors, and in
particular implementors. The authors listed here and on the title page are
those taking responsibility for the content of the document, and all errors. The
editors (underlined) are committed to taking permanent stewardship for this
document and can be contacted in the future for inquiries.

Andre Merzky
andre@merzky.net
Center for Computation and
Technology
Louisiana State University
216 Johnston Hall
70803 Baton Rouge
Louisiana, USA

The initial version of the presented SAGA API was drafted by members of the
SAGA Research Group. Members of this group did not necessarily contribute
text to the document, but did contribute to its current state. Additional to the
authors listed above, we acknowledge the contribution of the following people,
in alphabetical order:

Shantenu Jha (LSU), Thilo Kielmann (VU), Derek Simmel (PSC), and Nathan
Stone (PSC).

3.2 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover tech-

saga-wg@ogf.org 15

GWD-R.96 Intellectual Property Issues December 2, 2009

nology that may be required to practice this recommendation. Please address
the information to the OGF Executive Director.

3.3 Disclaimer

This document and the information contained herein is provided on an ”As
Is” basis and the OGF disclaims all warranties, express or implied, including
but not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

3.4 Full Copyright Notice

Copyright (C) Open Grid Forum (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the OGF Document process must
be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

References

[1] R. Badia, R. Hood, T. Kielmann, A. Merzky, C. Morin, S. Pickles, M. Sgar-
avatto, P. Stodghill, N. Stone, and H. Yeom. GFD.92 – Use-Cases and
Requirements for Grid Checkpoint and Recovery. OGF Informational Doc-
ument, Open Grid Forum, 2006.

[2] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, A. Merzky, J. Shalf,
and C. Smith. GFD.90 – A Simple API for Grid Applications (SAGA). OGF
Proposed Recommendation, Open Grid Forum, 2007. Global Grid Forum.

saga-wg@ogf.org 16

GWD-R.96 Intellectual Property Issues December 2, 2009

[3] N. Stone, D. Simmel, T. Kielmann, and A. Merzky. GFD.93 – An Archi-
tecture for Grid Checkpoint and Recovery Services. OGF Informational
Document, Open Grid Forum, 2007.

saga-wg@ogf.org 17

	Introduction
	Notational Conventions
	Security Considerations

	SAGA CPR API
	Introduction
	Specification
	Specification Details

	Intellectual Property Issues
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice

	References

