
GWD-R.94 Andre Merzky
SAGA-RG CCT/LSU

Version: 1.0 RC.5 May 18, 2010

SAGA API Extension: Messaging API

Status of This Document

This document provides information to the grid community, proposing a stan-
dard for an extension to the Simple API for Grid Applications (SAGA). As such
it depends upon the SAGA Core API Specification [2]. This document is sup-
posed to be used as input to the definition of language specific bindings for this
API extension, and as reference for implementors of these language bindings.
Distribution of this document is unlimited.

Copyright Notice

Copyright c© Open Grid Forum (2007). All Rights Reserved.

Abstract

This document specifies a Messaging API extension to the Simple API for Grid
Applications (SAGA), a high level, application-oriented API for grid application
development. This Messaging API is motivated by a number of use cases col-
lected by the OGF SAGA Research Group in GFD.70 [3], and by requirements
derived from these use cases, as specified in GFD.71 [4]). The API provides
a wide set of communication pattern, and targets widely distributed, loosely
coupled, heterogeneous applications.

GWD-R.94 May 18, 2010

Contents

1 Introduction 3

1.1 Notational Conventions . 3

1.2 Security Considerations . 3

2 Requirements 4

2.1 Use Case derived Requirements 5

3 SAGA Messaging API 10

3.1 General API Structure . 10

3.2 Endpoint URLs . 11

3.3 Endpoint State Model . 11

3.4 Endpoint Properties . 12

3.5 Message Properties . 17

3.6 Message Memory Management 18

3.7 Asynchronous Notification and Connection Management 19

3.8 Specification . 19

3.9 Specification Details . 26

3.10 Examples . 35

4 Intellectual Property Issues 36

4.1 Contributors . 36

4.2 Intellectual Property Statement 36

4.3 Disclaimer . 37

4.4 Full Copyright Notice . 37

References 38

saga-core-wg@ogf.org 2

GWD-R.94 Introduction May 18, 2010

1 Introduction

A significant number of SAGA use cases [3] cover data visualization systems.
The common communication mechanism for this set of use cases seems to be
the exchange of large messages between different applications. These applica-
tions are thereby often demand driven, i.e. require asynchronous notification of
incoming messages, and react on these messages independent from their origin.
Also, these use cases often include some form of publish-subscriber mechanism,
where a server provides data messages to any number of interested consumers.

This API extension is tailored to provide exactly this functionality, at the same
time keeping coherence with the SAGA Core API Look-&-Feel, and keeping
other Grid related boundary conditions (in particular middleware abstraction
and authentication/authorization) in mind. The applicability of this package
is, however, not at all limited to visualization use cases. Instead, the goal is
to define a general purpose and easy to use API for event driven exchange of
potentially large binary blobs of data.

It is important to note that this API is not intended to replace MPI [1]: where
MPI is explicitely targeting tightly coupled parallel (as in ’distributed, but co-
located, mostly SIMD’) applications, the SAGA Messaging API targets loosely
coupled (as in ’widely distributed, heterogeneous, mostly MIMD’) applications,
and is thus targeting a completely different set of communication patterns.

1.1 Notational Conventions

In structure, notation and conventions, this documents follows those of the
SAGA Core API specification [2], unless noted otherwise.

1.2 Security Considerations

As the SAGA API is to be implemented on different types of Grid (and non-
Grid) middleware, it does not specify a single security model, but rather provides
hooks to interface to various security models – see the documentation of the
saga::context class in the SAGA Core API specification [2] for details.

A SAGA implementation is considered secure if and only if it fully supports
(i.e. implements) the security models of the middleware layers it builds upon,
and neither provides any (intentional or unintentional) means to by-pass these
security models, nor weakens these security models’ policies in any way.

saga-core-wg@ogf.org 3

GWD-R.94 Requirements May 18, 2010

2 Requirements

The SAGA Core API specification defines a stream API package, whose purpose
is to facilitate inter-process communication for distributed applications. The
paradigm provided is basically that of BSD sockets: a stream_server instance
can be created to accept incoming client connections, by calling serve(). The
connection themself are represented by stream instances, which can connect()
to stream_servers. The stream instances then allow to read() and write()
binary data.

That scheme is very general, and universally implementable on most middle-
wares. Experience shows, however, that most application scenarios build addi-
tional layers on top of BSD stream like APIs. Those layers usually provide

• protocols,
• simplified bootstrapping,
• higher level communication patterns,
• message encapsulation,
• message ordering,
• message verification,
• reliability,
• atomicity,
• error recovery,

or some subset thereof. Providing these features is non trivial and error prone,
and results in large amount of duplicated application code. For that reason,
most applications actually rely on third party implementations, like readily
available p2p libraries, COM systems, etc. There exists, however, no commonly
available infrastructure which covers multiple of the above properties, and is
available for Grid environments, or other widely distributed infrastructures.

The goal of this API specification is thus to

• provide a uniform API to a wide variety of communication systems, to
simplify their usage with applications;

• define a general purpose communication API which fosters the implemen-
tation and deployment of communication libraries on Grid environments;

• define communication patterns beyond MPI and P2P, the two dominant
distributed message exchange systems in use today;

• do all that in the scope of the SAGA Look-&-Feel, so as to easy appli-
cation integration, application portability, and seamless integration with
other distributed API packages, such as security (saga::session and
saga::context).

saga-core-wg@ogf.org 4

GWD-R.94 Requirements May 18, 2010

According to these goals, and in reference to the SAGA use cases [3], the SAGA
Messaging API should provide

1. diverse communication patterns;
2. diverse channel options: reliability, ordering, verification, atomicity, ...;
3. message abstraction (with arbitrary sized messages);
4. asynchronous communication and notification; and
5. extremely simple application bootstrapping.

It seems obvious that no single existing communication library will be able to
provide the complete scope of the SAGA API. Implementations of this API
are thus encouraged, or even required, to bind against different communication
libraries – but that again is a declared goal of this API specification. Also, as
discussed in detail in section 2.4 of the SAGA Core API specification [2], and
also in the SAGA Core Experience Document (to be published), the design of
the SAGA API enables and encourages implementations with multiple backend
bindings, and in particular with late bindings.

A second inspection of the enumerated list of requirements above shows that a
number of requirements is immediately solved by applying the SAGA Look-&-
Feel to the Messaging API: in particular item (3) and (4) (message abstraction,
and asynchronous communication and notification) are intrinsically provided by
SAGA, with saga::buffer representing messages, saga::task instance repre-
senting asynchronous operations, and saga::metric and saga::callback pre-
senting means for asynchronous notification. We also would like to refer to
the SAGA Advert API Extension (to be published), which allows for simple
bootstrapping of distributed applications, and may be of use for the purposes
discussed in this document, too. The advert API will, however, not be able to
provide all means for bootstrapping communication patterns, and thus is not
discussed in more detail here 1.

2.1 Use Case derived Requirements

More specific requirements come from the relatively large set of use cases within
the SAGA group. In particular, those use cases allow to more specifically specify
the scope of the required API properties listed above. Table 1 lists specific
property examples to be covered by the Messaging API.

1We would like to encourage both implementors and users of the Messaging API to check
the Advert API, as it should seamlessly integrate with the Messaging API, and solve boot-
strapping and application coordination in many communication related use cases.

saga-core-wg@ogf.org 5

GWD-R.94 Requirements May 18, 2010

Use Case API Properties Requirements

#2: Cyber Infrastructure • message encapsulation ◦ ordered messages
◦ large binary data

• channel options ◦ secure end-to-end

#3: DIVA • message encapsulation ◦ message encryption
◦ ordered messages
◦ async delivery
◦ low latency delivery
◦ fault tolerance
◦ typed messages
◦ large binary data

• channel options ◦ QoS negotiation
◦ secure end-to-end
◦ low latency delivery
◦ protocol transparency

• communication pattern ◦ dynamic node migration
◦ group bootstrapping

#13: RoboGrid • channel options ◦ secure end-to-end

#15: Hybrid Monte Carlo • message encapsulation ◦ async delivery
Molecular Dynamics ◦ typed messages

• channel options ◦ QoS ensurance
◦ secure end-to-end

• communication pattern ◦ dynamic node addition

#16: Collaborative • message encapsulation ◦ message encryption
Visualization ◦ ordered messages

◦ async delivery
◦ low latency delivery
◦ typed messages
◦ large binary data

• channel options ◦ QoS negotiation

Use Case requirements (cont.)

saga-core-wg@ogf.org 6

GWD-R.94 Requirements May 18, 2010

Use Case API Properties Requirements

◦ secure end-to-end
◦ low latency delivery
◦ protocol transparency

• communication pattern ◦ dynamic node addition
◦ node scalability
◦ group bootstrapping

#17: UCoMS Project • message encapsulation ◦ message encryption
◦ low latency delivery
◦ large binary data

• channel options ◦ secure end-to-end
◦ protocol transparency

• communication pattern ◦ group bootstrapping

#18: Interactive • message encapsulation ◦ ordered messages
Visualization ◦ reliable delivery

◦ async delivery
◦ low latency delivery
◦ large binary data

• channel options ◦ QoS negotiation
◦ low latency delivery
◦ protocol transparency

• communication pattern ◦ group bootstrapping

#19: Interactive Image • message encapsulation ◦ message encryption
Reconstruction ◦ message signatures

◦ typed messages
◦ large binary data

• channel options ◦ QoS negotiation
◦ secure end-to-end
◦ protocol transparency

• communication pattern ◦ group bootstrapping

Use Case requirements (cont.)

saga-core-wg@ogf.org 7

GWD-R.94 Requirements May 18, 2010

Use Case API Properties Requirements

#20: Reality Grid • message encapsulation ◦ ordered messages
◦ unordered messages
◦ async delivery
◦ low latency delivery
◦ typed messages
◦ large binary data

• channel options ◦ secure end-to-end
◦ low latency delivery
◦ protocol transparency

• communication pattern ◦ dynamic node addition
◦ node scalability
◦ group bootstrapping

#22: Computational • message encapsulation ◦ ordered messages
Steering of Ground ◦ unordered messages
Water Pollution ◦ async delivery
Simulations ◦ low latency delivery

◦ typed messages
◦ large binary data

• channel options ◦ secure end-to-end
◦ low latency delivery
◦ protocol transparency

• communication pattern ◦ dynamic node addition
◦ group bootstrapping

#23: Visualization • message encapsulation ◦ message encryption
Service for the ◦ message signatures
Grid ◦ ordered messages

◦ unordered messages
◦ async delivery
◦ low latency delivery
◦ typed messages
◦ large binary data

• channel options ◦ secure end-to-end
◦ low latency delivery
◦ protocol transparency

Use Case requirements (cont.)

saga-core-wg@ogf.org 8

GWD-R.94 Requirements May 18, 2010

Use Case API Properties Requirements

• communication pattern ◦ dynamic node addition
◦ group bootstrapping

Table 1: Use Case driven requirements to the Messaging API. Use
cases are from [3].

Table 1 confirms our earlier impression that the set of requirements varies widely.
While we discussed earlier that no single backend will be able to cover the
whole scope of requirements, the table also suggests that no single application
will make use of all features to be provided by the Messaging API. The ex-
pected overlap both between backend properties and application requirements
is, however, so large, that it seems unwise to try to split the API package into
significantly smaller units. Instead, we decided to design the API such that its
components can be configured, and are inherently flexible enough, so that they
are able to function well in the wide variety of use cases at hand. However, if
that approach turns out to have a negative impact on simplicity and usability
of the API, we will re-evaluate that design decision for the next version of this
API in favor of additional semantically more specific API components.

saga-core-wg@ogf.org 9

GWD-R.94 SAGA Messaging API May 18, 2010

3 SAGA Messaging API

The SAGA Messaging API provides a mechanism to communicate opaque mes-
sages between applications. The intent of the API package is to provide a
higher level abstraction on top of the SAGA Stream API: while the exchange of
opaque messages is in fact the main motivation for the SAGA Stream API, it
still requires a considerable amount of user level code in order to implement this
use case2. In contrast, this Messaging API extension guarantees that message
blocks of arbitrary size are delivered completely and intact, without the need
for additional application level coordination, synchronization, or protocol.

Any compliant implementation of the SAGA Messaging API will imply the
utilization of a communication protocol – that may, in reality, limit the inter-
operability of implementations of this API. This document will, however, not
address protocol level interoperability – other documents outside the SAGA API
scope may address it separately.3

This SAGA API extension inherits the object, async and monitorable inter-
faces from the SAGA Core API [2]. It CAN be implemented on top of the
SAGA Stream API [ibidem].

3.1 General API Structure

Communication channels are not directly visible on API level, but their end-
points are represented by stateful instances of the endpoint class. That end-
point can connect to a communication channel, accept connections from a com-
munication channel, and send, receive and test for messages on that commu-
nication channel. What exact type of channel the endpoint interfaces to is
determined by:

• the URL used to open the channel; and
• the channel properties specified by the endpoint instances.

The type of channel behind the endpoint determines

• the set of connected endpoints on the channel (one or more);
• the properties of messages received on the channel.

2Code is needed to run a protocol on the base SAGA stream, and to manage messages to
be sent/received.

3DISCUSSION (AM): This is very similar to, say, saga::job, where we also
assume a specific backend which will in practice limit interoperation: jobs sub-
mitted to one backend are unlikely to be manageable by an application binding
to another backend. That is what we have URLs for, right?

saga-core-wg@ogf.org 10

GWD-R.94 SAGA Messaging API May 18, 2010

The channel properties mentioned above allow the API to span the wide range of
communication patterns targeted by this API. For example, those properties de-
termine if the channel is reliable/unreliable, if message arrive ordered/unordered,
verified/unverified/signed, exactly-once/at-least-once/at-most-once, etc. Obvi-
ously, some combinations of channel properties will not be implementable4 (e.g.
UnReliable AND ExactlyOnce), but should otherwise allow to specify the re-
quired communication characteristics.

The most important property of any communication channel is its Topology: it
determines the overall communication pattern, such as the number of endpoints
connected to one channel, the policy of message forwarding to multiple other
endpoints, etc. The supported Topology values are ’Peer-to-Peer’, ’Point-to-
Point’, ’Multicast’, and ’Publish-Subscriber’. The value ’Any’ leaves it to the
API implementation to determine the suitable communication topology.5

Messages are encapsulated in instances of the message class – a derivate of
saga::buffer which adds some additional inspection properties (like message
id and origin). As those message instances manage pure byte buffers (see
saga::buffer specification in [2]), applications may usually want to derive that
class further to add structure to that byte buffer, as needed. This API speci-
fication stays, however, clear of defining data models or data formats, as that
would most certainly blow the this API out of scope. Instead, domain specific
data models and data formats are ensured to be easily added on application
level, by deriving domain specific versions from the message class.

3.2 Endpoint URLs

The endpoint URLs used in the SAGA Messaging API follow the conventions
layed out for the SAGA Stream API [2]: the URL’s schema should allow the
application to pick interoperable backends, but any backend MUST perform
semantically exactly as specified in this document.

3.3 Endpoint State Model

The state model for message endpoint instances is very simple: an endpoint
gets constructed in Closed state. A successful call to serve(), serve_once()

4or at least will not make much sense
5DISCUSSION (AM): Well, those are all we have right now, really. We should

check carefully if we want to support more patterns explicitely, or if we leave the
rest to implicit specification via the other properties – but then we could also
consider to add properties like ’NumberOfEndpoints’, ’MessageForwardingPol-
icy’, etc, to be able to really fully specify, for example, the difference between
PublishSubscriber and PeerToPeer.

saga-core-wg@ogf.org 11

GWD-R.94 SAGA Messaging API May 18, 2010

Closed

Open

external

endpoint::close()

endpoint::connect()

endpoint::serve()

Initial State

CONSTRUCTOR

Figure 1: The SAGA Messaging endpoint state model

or connect() moves it into Open state, where it can send and receive messages.
The endpoint stays in Open state as long as the backend is accepting connections,
or is accepting and delivering messages – otherwise (e.g. if the peer disconnects
on a Point-to-Point connection, or if a channel closes on a Publish-Subscriber
backend), the endpoint is being moved back into the ’Closed’ state. An explicit
call to close() does also move the endpoint back into the Closed state.

Note that a result ’Open’ for a get_state() check on an endpoint is no guar-
antee that messages can be successfully transmitted: there is always a race
condition of checking the state versus actually sending the message. Thus, the
test(), send() and recv() operations can always throw an IncorrectState
exception.6 7

3.4 Endpoint Properties

As described above: the exact type of communication channel which is serving
a specific endpoint instance is determined by the endpoint’s URL, and by the
properties set on the endpoint at creation time. As all properties of endpoint in-
stances are specified at the creation time of that instance, they remain constant
for the lifetime of an endpoint, and apply to all connections on that endpoint.

6DISCUSSION (AM): Should there be versions of these calls which do not
throw, but return errors? Try/Catch can be costly, and send/recv is all about
performance. Also, we do that for file I/O!

7DISCUSSION (AM): One could imagine additional states, such as ’Serving’ or
’Dropped’. ’Serving’ would then be left by the endpoint if the maximum number
of clients have been accepted. But a more detailed state model gets really com-
plicated if multiple clients can connect, or connect/disconnect/drop/reconnect.

saga-core-wg@ogf.org 12

GWD-R.94 SAGA Messaging API May 18, 2010

Two endpoints which communicate with each other MUST have compatible
properties 8 – otherwise the connection setup with connect() MUST fail. End-
points can, however, specify the value ’Any’ for the individual the properties,
to leave that specific property unspecified. Once a client is connected, the end-
point attributes MUST show the actually used values for the properties, which
then MUST remain constant. Those values will be used from that point on as
if they had been specified by the application initially.

The individual endpoint properties and their respective values are described
below.

3.4.1 Connection Topology

The Messaging API as presented here allows for four different connection topolo-
gies: PointToPoint, Multicast, PublishSubscriber, and PeerToPeer.9

• Any Topology:

leave the selection of a connection topology to the adaptor. The URL
schema may limit the set of applicable topologies.

• PointToPoint Topology:

two parties can interchange messages in both directions (both endpoints
can send() and recv() messages). An PointToPoint endpoint can only
have one remote connection at any time. All additional connection at-
tempts via connect() MUST fail with an IncorrectState exception.
All additional incoming connections on a serve() MUST be declined.

• Multicast Topology:

The initiating endpoint calls serve() – that endpoint is called ’Server’.
’Client’ endpoints can connect() to that server. Messages sent by the
Server endpoint are received by all Client endpoints. Messages sent by
any Client endpoint are received only by the Server endpoint. At most
one endpoint in that topology can act as a Server – calling connect()
on that endpoint MUST MUST cause an ’IncorrectState’ exception. The
attempt to add a second Server to the topology MUST also cause an
’IncorrectState’ exception.

• PublishSubscriber Topology:

Endpoints participating in a PublishSubscriber topology can interchange
messages in both directions (all endpoints can send() and recv() mes-
sages). Messages sent by any endpoint are always received by all other
endpoints connected to that channel. Note that a PublishSubscriber

8DISCUSSION (AM): define ’compatible properties’ ! Should that be ’the
same’ properties’?

9DISCUSSION (AM): check for more. Should that be extensible? How?

saga-core-wg@ogf.org 13

GWD-R.94 SAGA Messaging API May 18, 2010

endpoints connected to some channel remain Open even if no other end-
points are subscribed (i.e. connected) to that channel.

Calling serve() on a PublishSubscriber endpoint implies the creation of
a publishing channel. If close() is called on that endpoint, all other end-
points subscribed to that channel are disconnected. The PublishSubscriber
topology has the same limitation as the Multicast topology: at most one
endpoint can act as a server.

• PeerToPeer Topology:

On PeerToPeer networks, connectivity is transitive. That means that,
for example, if an endpoint A is connected to an endpoint B, which in
turn is connected to an endpoint C, then messages from A will also arrive
at C. Multiple endpoints can call serve() and connect(), in any order.
PeerToPeer networks can get disconnected (in our example: if B fails):
the backend MAY be able to continue to deliver messages from A to C
and vice versa, but that is not guaranteed.

In either topology, the number of clients connecting to an applications endpoint
can be limited by an integer argument to serve(). This argument is optional
and defaults to -1 (unlimited). serve() can be called multiple times though,
to allow additional connections. serve_once() allows to add connections one
at the time. A connect() call always implies the setup of a single connection.

Client Addressing:
In all topologies, senders can uniquely identify receivers on send() operations.
If they do so, only that specific receiver will receive the respective message,
regardless of the topology used by the endpoints (i.e. also in the Multicast,
PeerToPeer and PublishSubscriber cases). A message always carries an identifier
of the originating endpoint, thus messages can be answered (i.e. sent back) to
the originating endpoint.

If an implementation is not able to support that feature, i.e. if it does not allow
to identify individual endpoints as a message sender or receiver, any attempt to
do so MUST result in an NoSuccess exception.

3.4.2 Reliability

The use cases addressed by the SAGA Messaging API cover a variety of reliable
and unreliable message transfers. The level of reliability required for the message
transfer is specified by an endpoint property. It defaults to Reliable.

The available reliability levels are:

Any: leave selection of the reliability level to the
implementation.

saga-core-wg@ogf.org 14

GWD-R.94 SAGA Messaging API May 18, 2010

UnReliable: messages MAY (or may not) reach the remote
clients.

Consistent: UnReliable, but if a message arrives at one client
it MUST arrive at all clients.

SemiReliable: messages MUST arrive at at least
one client.

Reliable: all messages MUST arrive at
all clients.

Note that, for PointToPoint Topology, and in fact in all cases where exactly
two endpoints are interconnected, SemiReliable degenerates to Reliable, and
Consistent degenerates to Unreliable.

A Reliable implementation can obviously provide all use cases. SemiReliable
or Consistent implementations also cover the Unreliable use case.

Consistent and SemiReliable, and more so Reliable semantics, do often
imply a significant protocol overhead, which in particular may affect message
latencies. An application should carefully evaluate what reliability requirements
it actually has.

3.4.3 Atomicity

Many transport protocols guarantee that messages arrive exactly once. There
are, however, many use cases where that is not strictly required. The Atomicity
flag specifies that, and allows for more efficient policies.

The available atomicity levels are:

Any: leave selection of the atomicity level to the
implementation.

AtMostOnce: messages arrive exactly once, or not at all.
AtLeastOnce: messages are guaranteed to arrive,

but may arrive more than once.
ExactlyOnce: message arrive exactly once.

Obviously, an implementation which serves messages ExactlyOnce can serve all
three use cases.

There are seemingly incompatible combinations of Reliability and Atomicity,
such as for example ’UnReliable & ExactlyOnce’. Although such a property
set makes not much sense semantically, it can be provided by a ’Reliable &
ExactlyOnce’ implementation.

saga-core-wg@ogf.org 15

GWD-R.94 SAGA Messaging API May 18, 2010

AtLeastOnce, and more so ExactlyOnce semantics, do often imply a signifi-
cant protocol overhead, which in particular may affect message latencies. An
application should carefully evaluate what atomicity requirements it actually
has.

3.4.4 Correctness and Completeness

Some applications in the SAGA Messaging use cases are able to handle incorrect
and incomplete messages (e.g. for MPEG streams). The level of correctness
required for the message transfer can be specified by the Correctness property.
It defaults to Verified.

The available correctness levels are:

Any: leave selection of the correctness level to the
implementation.

Unverified: no correctness nor completeness of messages
is guaranteed.

Verified: Any message that is received is guaranteed
to be correct and complete.

Signed: Any message that is received is guaranteed
to be verified and signed.

Encrypted: Any message that is received is guaranteed
to be signed and encrypted.

Signed messages are also guaranteed to be verified, but the implementation
MUST additionally guarantee that the message has not changed on its way from
the sender to the receiver. That us usually ensured by using a cryptographically
secure message signature. The implementation MUST document what signature
types are used.

Encrypted messages are also guaranteed to be signed, but the implementation
MUST additionally guarantee that the message communication channel is en-
crypted. The implementation MUST document what encryption types are used.

Correctness and completeness is usually be provided by adding a checksum to
the message, and by verifying that checksum before delivery. That procedure
usually implies significant memory, compute and latency overheads. An appli-
cation should careful evaluate what correctness requirements it actually has.

saga-core-wg@ogf.org 16

GWD-R.94 SAGA Messaging API May 18, 2010

3.4.5 Message Ordering

Many applications will be able to handle out-of-order messages without prob-
lems; other applications will require messages to arrive in order. The Ordering
property allows to specify that requirement. It defaults to Ordered.

The available ordering levels are:

Any: leave selection of the ordering level to the
implementation.

Unordered: messages arrive in any order.
Ordered: messages send from one client to another client

arrive in the same order as they have been sent.
GloballyOrdered: messages send from any client to any other client

arrive in the same order as they have been sent.

In Ordered mode, the order of sent messages is only preserved locally – global
ordering is not guaranteed to be preserved:

Assume three endpoints A, B and C, all connected to each other with
PublishSubscriber, Reliable, ExactlyOnce, Verified, Ordered. If A

sends two messages [a1, a2], in this order, it is guaranteed that both B

and C receive the messages in this order [a1, a2]. If, however, A sends a
message [a1] and then B sends a message [b1], C may receive the mes-
sages in either order, [a1, b1] or [b1, a1].

If GloballyOrdered, that order is preserved, which implies either a global syn-
chronization mechanism, or exact global timestamps.

Ordering, and in particular global ordering, usually implies significant memory,
compute and latency overheads. An application should careful evaluate what
ordering requirements it actually has.

3.5 Message Properties

Messages, as instances of saga::messaging::message, are containers for opaque
binary blobs of data. Any domain or application specific structure on the mes-
sage data, i.e. any data model of data format, is out of scope for this API
specification. Deriving new message classes from saga::messaging::message
should, however, allow to trivially add support for specifically formatted mes-
sages.

This specification does not make any asumptions about message byte ordering
– we consider that information to be part of the data model and data format. If

saga-core-wg@ogf.org 17

GWD-R.94 SAGA Messaging API May 18, 2010

byte ordering is preserved depends on the specific data model and format used,
but may also depend the specific implementation of this API implementation.
Implementation SHOULD thus document any byte ordering implications.

3.6 Message Memory Management

The saga::messaging::message class is derived from the saga::buffer class
of the SAGA Core API. It thus follows the semantics of the saga::buffer class,
also in respect to memory management. Details can be found in Section 3.4 of
the SAGA Core API specification [2]. The notes below describe additional
constraints introduced by the SAGA Messaging API.

Sending Messages: if the message data block is larger than the specified size
of the message instance, the transmitted message is truncated, and no error
is returned. For application managed message buffers, the application MUST
ensure that the given message size is indeed the accessible size of the given
message data block, otherwise the behavior of the send() is undefined.

Receiving Messages: if the received message is larger than the size of the given
message instance, the message is truncated, and no error is returned. Unless
the backend is able to transparently handle that situation, e.g. by moving the
remainder of the message data into a new message, there is no way to receive
the remainder of the message, which is then to be discarded. For application
managed message buffers, the application MUST ensure that the given message
size is indeed the accessible size of the given message block – otherwise the
behavior of the recv() call is undefined.

An implementation managed message instance MUST refuse to perform a set_size()
or set_data() operation, throwing an IncorrectState exception. A message
put under implementation memory management always remains under imple-
mentation memory management, and cannot be used for application level mem-
ory management anymore. Also, a message under application memory manage-
ment cannot be put under implementation management later, i.e. set_size()
cannot be called with negative arguments – that would raise a BadParameter
exception.

If an implementation runs out of memory while receiving a message into a
implementation managed message instance, a NoSuccess exception with the
error message ’’insufficient memory’’ MUST be thrown.

saga-core-wg@ogf.org 18

GWD-R.94 SAGA Messaging API May 18, 2010

3.7 Asynchronous Notification and Connection Manage-
ment

Event driven applications are a major use case for the SAGA Messaging API –
asynchronous notification is thus very important for this API extension. That
feature is, in general, provided via the monitoring interface defined in the SAGA
Core API Specification [2].

The available metrics on the endpoint class allow to monitor the endpoint
instance for connecting, disconnecting and dropping client connections, for state
changes, and of course for incoming messages. All metrics will allow to identify
the respective remote party by its connection URL, which will be stored in the
RemoteID field of the context associated with a metric change – that context is
only available when using callbacks though. Alternatively, that remote party is
also identifiable via the message instance itself, which can expected for sender
and receiver URL (the receiver URL will usually be the endpoint URL which
received the message).

Native remote endpoint URLs are not always available – the implementation
SHOULD in this case assign an internal URL for each client, to allow to iden-
tify clients uniquely. If the implementation can not reliably distinguish client
endpoints (e.g. on some Peer-to-Peer or Publish-Subscriber backends), then it
MUST leave the respective context attribute empty, and throw a DoesNotExist
exception on the message inspection.

3.8 Specification

package saga.message
{
enum state
{
Open = 1,
Closed = 2

}

enum topology
{
Any = 0,
PointToPoint = 1,
Multicast = 3,
PublishSubscriber = 2,
PeerToPeer = 4

saga-core-wg@ogf.org 19

GWD-R.94 SAGA Messaging API May 18, 2010

}

enum reliability
{
Any = 0,
UnReliable = 1,
Consistent = 3,
SemiReliable = 2,
Reliable = 4

}

enum atomicity
{
Any = 0,
AtMostOnce = 1,
AtLeastOnce = 2,
ExactlyOnce = 3

}

enum correctness
{
Any = 0,
Unverified = 1,
Verified = 2

}

enum ordering
{
Any = 0,
Unordered = 1,
Ordered = 2,
GloballyOrdered = 3

}

class message : implements saga::buffer
// from buffer saga::object
// from object saga::error_handler

{
get_sender (out url sender);
get_id (out string id);

// Attributes (extensible):
//
// notes: - an application can attache arbitrary
// attributes to a message. Those attributes

saga-core-wg@ogf.org 20

GWD-R.94 SAGA Messaging API May 18, 2010

// MUST be handled as part of the message,
// i.e. attributes set on a message to be
// sent MUST also be available on the receiving
// side.
// - if an endpoint implementation can not
// support attributes, e.g. because the
// underlying protocol does not allow that
// feature, all set_attribute operations MUST
// throw a ’NoSuccess’ exception. This
// includes set_attribute("ID")
// - in either case, the two default attributes,
// ’ID’ and ’Sender’, MUST always be available
// for get_attribute(), but MAY have empty
// values.
//
// name: ID
// desc: identifying string, not unique, set by application
// type: String
// mode: ReadWrite
// value: ’’
// notes: - an application can tag messages with a id
// string. If not set, the attribute defaults to an
// empty string.
//
// name: Sender
// desc: URL identifying the sending endpoint
// type: String
// mode: Read
// value: ’’
// notes: - if the endpoint backend is able to uniquely
// identify the sending endpoint, this attribute
// SHOULD contain an URL identifying it. That URL
// SHOULD be usable to create a new endpoint instance
// to communicate with the sender of the message.

}

interface endpoint : implements saga::object
implements saga::async
implements saga::monitorable

// from object saga::error_handler
{
CONSTRUCTOR (in session session,

in string url = "",
in int topology = PointToPoint,
in int reliability = Reliable,

saga-core-wg@ogf.org 21

GWD-R.94 SAGA Messaging API May 18, 2010

in int atomicity = ExactlyOnce,
in int ordering = Ordered,
in int correctness = Verified,
out endpoint obj);

DESTRUCTOR (in endpoint obj);

// inspection methods
get_url (out url url);
get_receivers (out array<url> urls);

// management methods
serve (in int n = -1,

in float timeout = -1.0);
serve_once (in float timeout = -1.0,

out endpoint ep);
connect (in string url = "",

in float timeout = -1.0);
close (in url receiver = "");

// I/O methods
send (in message msg,

in url receiver = "");
test (in url sender = "",

in url receiver = "",
in float timeout = -1.0,
out int size);

recv (in url sender = "",
in url receiver = "",
in float timeout = -1.0,
inout message msg);

// Attributes:
//
// name: State
// desc: endpoint state in respect to the state diagram
// mode: ReadOnly
// type: Enum
// value: -
// notes: - possible values: ’Open’ or ’Closed’
//
// name: Topology
// desc: informs about the connection topology

saga-core-wg@ogf.org 22

GWD-R.94 SAGA Messaging API May 18, 2010

// of the endpoint
// mode: ReadOnly
// type: Enum
// value: -
//
// name: Reliability
// desc: informs about the reliability level
// of the endpoint
// mode: ReadOnly
// type: Enum
// value: -
//
// name: Atomicity
// desc: informs about the atomicity level
// of the endpoint
// mode: ReadOnly
// type: Enum
// value: -
//
// name: Correctness
// desc: informs about the message correctness
// of the endpoint
// mode: ReadOnly
// type: Enum
// value: -
//
// name: Ordering
// desc: informs about the message ordering
// of the endpoint
// mode: ReadOnly
// type: Enum
// value: -
//
//
// Metrics:
// name: State
// desc: fires if the endpoint’s state changes
// mode: Read
// unit: 1
// type: Enum
// value: ""
// notes: - has the literal value of the endpoints
// state attribute
//
// name: Connect
// desc: fires if a remote endpoint connects

saga-core-wg@ogf.org 23

GWD-R.94 SAGA Messaging API May 18, 2010

// mode: Read
// unit: 1
// type: String
// value: ""
// notes: - this metric can be used to perform
// authorization on the connecting receivers.
// - the value is the endpoint URL of the
// remote party, if known.
//
// name: Closed
// desc: fires if a client connection gets closed by
// the remote endpoint
// mode: Read
// unit: 1
// type: String
// value: ""
// notes: - the value is the endpoint url of the
// remote party, if known.
//
// name: Message
// desc: fires if a message arrives
// mode: Read
// unit: 1
// type: String
// value: ""
// notes: - the value is the endpoint id of the
// sending party, if known.
// - if that metric fires, the next call to test
// MUST succeed.

}

- class endpoint_simple : implements saga::endpoint
- // from endpoint saga::object
- // from endpoint saga::async
- // from endpoint saga::monitorable
- // from object saga::error_handler
- {
- CONSTRUCTOR (in session session,
- in string url = "",
- in int topology = PointToPoint,
- in int reliability = Reliable,
- in int atomicity = ExactlyOnce,
- in int ordering = Ordered,
- in int correctness = Verified,
- out sender obj);
- DESTRUCTOR (in sender obj);

saga-core-wg@ogf.org 24

GWD-R.94 SAGA Messaging API May 18, 2010

- }
-
- class endpoint_multicast : implements saga::endpoint
- // from endpoint saga::object
- // from endpoint saga::async
- // from endpoint saga::monitorable
- // from object saga::error_handler
- {
- CONSTRUCTOR (in session session,
- in string url = "",
- in int topology = Multicast,
- in int reliability = Reliable,
- in int atomicity = ExactlyOnce,
- in int ordering = Ordered,
- in int correctness = Verified,
- out sender obj);
- DESTRUCTOR (in sender obj);
- }
-
- class endpoint_pub_sub : implements saga::endpoint
- // from endpoint saga::object
- // from endpoint saga::async
- // from endpoint saga::monitorable
- // from object saga::error_handler
- {
- CONSTRUCTOR (in session session,
- in string url = "",
- in int topology = PublishSubscriber,
- in int reliability = Reliable,
- in int atomicity = ExactlyOnce,
- in int ordering = Ordered,
- in int correctness = Verified,
- out sender obj);
- DESTRUCTOR (in sender obj);
-
- // DISCUSS additional notion of channel
- list_channels (out array<std::string> channels);
-
- join (in string channel);
- leave (in string channel);
-
- // I/O methods
- send (in string channel,
- in message message);
- test (in string channel,
- in float timeout = -1.0,

saga-core-wg@ogf.org 25

GWD-R.94 SAGA Messaging API May 18, 2010

- out int size);
- recv (in string channel,
- in float timeout = -1.0,
- inout message message);
- }
-
- class endpoint_peer_to_peer : implements saga::endpoint
- // from endpoint saga::object
- // from endpoint saga::async
- // from endpoint saga::monitorable
- // from object saga::error_handler
- {
- CONSTRUCTOR (in session session,
- in string url = "",
- in int topology = PeerToPeer,
- in int reliability = UnReliable,
- in int atomicity = Unknown,
- in int ordering = UnOrdered,
- in int correctness = Verified,
- out sender obj);
- DESTRUCTOR (in sender obj);
- }
}

3.9 Specification Details

class message

The message object encapsulates a sequence of bytes to be communicated be-
tween applications. A message instance can be sent (by an endpoint calling
send()), or received (by an endpoint calling recv()). A message does not be-
long to a session, and a message object instance can thus be used in multiple
sessions, for multiple endpoints.

- get_sender
get_sender (out url sender);
Purpose: get the sender at which the message originated
Format: get_sender (out url sender);
Inputs: -
Outputs: sender url identifying the

saga-core-wg@ogf.org 26

GWD-R.94 SAGA Messaging API May 18, 2010

sending party
Throws: NotImplemented

DoesNotExist
Notes: - see nodes on client identification above.

class endpoint

The endpoint object represents a connection endpoint for the message exchange,
and can send() and recv() messages. It can be connected to other endpoints
(connect()), and can be connected to by other endpoints (serve()). All other
endpoints connected to the endpoint instance will receive the messages sent
on that endpoint instance, unless a specific client id is given on send(). The
endpoint instance will receive all messages sent by any of the other endpoints.

- CONSTRUCTOR
Purpose: create a new endpoint object
Format: CONSTRUCTOR (

in session session,
in string url = "",
in int topology = PointToPoint,
in int reliability = Reliable,
in int atomicity = ExactlyOnce,
in int ordering = Ordered,
in int correctness = Verified,
out endpoint obj);

Inputs: session: session to be used for
object creation

url: specification for
connection setup (serving)

topology: flag defining connection
topology

reliability: flag defining transfer
reliability

ordering: flag defining message
ordering

correctness flag defining message
verification

Outputs: obj: new endpoint object
Throws: NotImplemented

IncorrectURL
AuthorizationFailed

saga-core-wg@ogf.org 27

GWD-R.94 SAGA Messaging API May 18, 2010

AuthenticationFailed
PermissionDenied
NoSuccess

PreCond: -
PostCond: - the endpoint is in ’New’ state, and can now

serve client connections (see serve()), or
connect to other endpoints (see connect()).

Notes: - the given URL can be used to specify the
protocol, network interface, port number etc
which are to be used for the serve() method.
The URL can be empty - the implementation
will then use default values. These defaults
MUST be documented by the implementation.

- the URL error semantics as defined in the SAGA
Core API specification applies.

-

- DESTRUCTOR
Purpose: Destructor for endpoint object.
Format: DESTRUCTOR (in endpoint obj)
Inputs: endpoint: object to be destroyed
Outputs: -
Notes: -

inspection methods:

- get_url
Purpose: get URL to be used to connect to this endpoint
Format: get_url (out url url);
Inputs: -
Outputs: url: contact URL of this

endpoint.
Throws: NotImplemented
Notes: - returns a URL which can be passed to another’s

endpoint constructor, or connect() method, to
set up a client connection to this endpoint.

- The return of a URL does not imply a guarantee
that a endpoint can successfully connect with
this URL (e.g. the URL may be outdated on
’Closed’ endpoints).

- get_receivers
Purpose: get the endpoint URLs of connected remote

saga-core-wg@ogf.org 28

GWD-R.94 SAGA Messaging API May 18, 2010

endpoints
Format: get_receivers (out array<url> urls);
Inputs: -
Outputs: urls: endpoint URLs of connected

remote endpoints.
PreCond: - the sender is in ’Open’ state.
Throws: NotImplemented

IncorrectState
Notes: - the method causes an ’IncorrectState’

exception if the sender instance is not in
’Open’ state.

- the returned list can never be empty, as the
endpoint would then not be in ’Open’ state.

- if a remote endpoint does not have a URL (e.g.
if it did not yet call serve()), the
returned array element is an empty string.
That allows to count the connected clients.

management methods:

- serve
Purpose: start to serve incoming client connections
Format: serve (in int n = -1,

in float timeout = -1.0);
Inputs: n: number of clients to

accept
timeout: seconds to wait

Outputs: -
Throws: IncorrectState

NoSuccess
PreCond: - the endpoint is not in ’Open’ state.
PostCond: - the endpoint is in ’Open’ state.
Notes: - a close()’ed endpoint can serve()’ed

again.
- ’n’ defines the number of clients to accept.
If that many clients have been accepted
successfully (e.g. messages could have been
sent to / received from these clients), the
serve call finishes.

- in the synchronous case, the call returns
whenever the requested number of client
successfully connected. Note that some of
these clients can have disconnected already
at that point.

saga-core-wg@ogf.org 29

GWD-R.94 SAGA Messaging API May 18, 2010

- connections which get refused, e.g. due to
differing endpoint property requirements, are
not counted against the connection limit.

- if ’n’ is set to ’-1’ (the default), no limit
on the number accepted clients is applied.
The call then blocks indefinitely.

- if the call blocked for longer that the time
given in timeout, it will return irrespective
of the number of connected clients.

- the timeout semantics as defined in the
SAGA Core API specification applies.

- connect
Purpose: connect to another endpoint
Format: connect (in float timeout = -1.0,

in string url);
Inputs: timeout: seconds to wait

url: specification for
connection setup

Outputs: -
Throws: IncorrectState

IncorrectURL
AuthorizationFailed
AuthenticationFailed
PermissionDenied
Timeout
NoSuccess

PreCond: -
PostCond: - the endpoint is in ’Open’ state.
Notes: - a close()’ed endpoint can be connect()’ed

again.
- if topology, reliability level, connection
topology or message ordering of the connecting
and connected endpoint do not match, the
method fails with a ’NoSuccess’ exception,
and a descriptive error message.

- the URL error semantics as defined in the
SAGA Core API specification applies.

- the timeout semantics as defined in the
SAGA Core API specification applies.

- close
Purpose: disconnect from all backend channels
Format: close (void);

saga-core-wg@ogf.org 30

GWD-R.94 SAGA Messaging API May 18, 2010

Inputs: timeout: seconds to wait
Outputs: -
PreCond: -
PostCond: - the endpoint is in ’Closed’ state.
Throws: NotImplemented

Timeout
NoSuccess

Notes: - it is no error to call close() on a ’Closed’
endpoint.

- a close()’ed endpoint can serve() or
connect() again.

- the timeout semantics as defined in the
SAGA Core API specification applies.

I/O methods:

- send
Purpose: send a message to all connected endpoints
Format: send (in message msg,

in url receiver = "");
Inputs: msg: message to send

receiver: url of client to receive
the message

Outputs: -
PreCond: - the endpoint is in ’Open’ state.
PostCond: -
Throws: NotImplemented

IncorrectState
BadParameter
IncorrectURL
AuthorizationFailed
AuthenticationFailed
PermissionDenied
Timeout
NoSuccess

Notes: - if the endpoint is not in ’Open’ state when
this method is called, an ’IncorrectState’
exception is thrown.

- if a nonempty receiver URL is given, only
the client identified by that URL is to
receive the message - all other clients MUST
NOT receive it. If the backend cannot
guarantee that, a BadParameter exception MUST
be thrown which explains the problem.

saga-core-wg@ogf.org 31

GWD-R.94 SAGA Messaging API May 18, 2010

- error reporting is non-trivial, as some
message transfer may succeed for some clients,
and not for others. For reliable transfers,
the method MUST raise the respective exception
with information about the clients the
transport failed for. For unreliable
transfer, the method MAY raise such an
exception if the implementation deems the
error condition severe enough to disrupt the
communication altogether (i.e. future messages
are unlikely to get through). Again, the
exception must then give detailed information
on the client(s) which failed.

- the implementation MUST carefully document its
possible error conditions.

- if the endpoint reached the ’Open’ state by
calling serve(), and did not yet call
connect(), no client endpoint may be connected
to this endpoint instance. That does not
cause an error, but the message is silently
discarded.

- test
Purpose: test if a message is available for receive
Format: test (in url sender = "",

in float timeout = -1.0,
out int size);

Inputs: sender: url of client to check for
message from

timeout: seconds to wait
Outputs: size: size of incoming message
PreCond: - the endpoint is in ’Open’ state.
PostCond: -
Throws: NotImplemented

IncorrectState
BadParameter
IncorrectURL
NoSuccess

Notes: - if the endpoint is not in ’Open’ state when
this method is called, an ’IncorrectState’
exception is thrown.

- if the endpoint reached the ’Open’ state by
calling serve(), and did not call connect(),
no client endpoint may be connected to this
endpoint instance. That does not cause an

saga-core-wg@ogf.org 32

GWD-R.94 SAGA Messaging API May 18, 2010

error -- the method will wait for the
specified timeout. The implementation MUST
respect messages originating from connections
which have been established during the timeout
waiting time.

- if no message is available for recv() after
the timeout, the method returns (it does not
throw a ’Timeout’ exception). The returned
size then MUST be -1.

- if a message is available for recv(), the
returned size is set to the size of the
incoming messages data buffer. The size MUST
be a valid value to be used to construct a new
message object instance. The message for which
the size was returned MUST be the message
which is returned on the next initiated recv()
call.

- if any (synchronous or asynchronous) recv()
calls are in operation while test is called,
they MUST NOT be served with the incoming
message if size is returned as positive value.
Instead, the next initiated recv() call get
served.

- if multiple test() calls are simultaneous in
operation, only one can report an incoming
message.

- if a sender URL is specified, only messages
from that client are to be reported by test()
- all messages from other origins MUST be
ignored for the purpose of this call. The
message reported in this case MUST be the one
which will get derived by the next call to
recv(sender) with the same value for the
sender URL. If the backend cannot guarantee
that, a BadParameter exception MUST be thrown
which explains the problem.

- the timeout semantics as defined in the
SAGA Core API specification applies.

- recv
Purpose: receive a message from remote endpoints
Format: test (in url sender = "",

in float timeout = -1.0,
inout message msg);

Inputs: sender: url of client to check for

saga-core-wg@ogf.org 33

GWD-R.94 SAGA Messaging API May 18, 2010

message from
timeout: seconds to wait

InOuts: msg: received message
Outputs: -
PreCond: - the endpoint is in ’Open’ state.
PostCond: -
Throws: NotImplemented

IncorrectState
BadParameter
IncorrectURL
NoSuccess

Notes: - if the endpoint is not in ’Open’ state when
this method is called, an ’IncorrectState’
exception is thrown.

- if the endpoint reached the ’Open’ state by
calling serve(), and did not call connect(),
no client endpoint may be connected to this
endpoint instance. That does not cause an
error -- the method will wait for the
specified timeout. The implementation MUST
respect messages originating from connections
which have been established during the timeout
waiting time.

- if no message is available for recv() after
the timeout, the method will throw a TimeOut
exception. The application must use the
test() method to avoid this.

- if a message is available for recv(), the
notes to file.read from the SAGA Core API
apply in respect to interpreting and managing
the given buffer information.

- if multiple recv() calls are simultaneous in
operation, only one can report an incoming
message.

- if a sender URL is specified, only messages
from that client are to be received by this
method - all messages from other origins MUST
be ignored for the purpose of this call. If
the backend cannot guarantee that,
a BadParameter exception MUST be thrown which
explains the problem.

- the timeout semantics as defined in the
SAGA Core API specification applies.

saga-core-wg@ogf.org 34

GWD-R.94 SAGA Messaging API May 18, 2010

3.10 Examples

TO BE DONE

saga-core-wg@ogf.org 35

GWD-R.94 Intellectual Property Issues May 18, 2010

4 Intellectual Property Issues

4.1 Contributors

This document is the result of the joint efforts of many contributors, and in
particular implementors. The authors listed here and on the title page are
those taking responsibility for the content of the document, and all errors. The
editors (underlined) are committed to taking permanent stewardship for this
document and can be contacted in the future for inquiries.

Andre Merzky
andre@merzky.net
Center for Computation and
Technology
Louisiana State University
216 Johnston Hall
70803 Baton Rouge
Louisiana, USA

The initial version of the presented SAGA API was drafted by members of the
SAGA Research Group. Members of this group did not necessarily contribute
text to the document, but did contribute to its current state. Additional to the
authors listed above, we acknowledge the contribution of the following people,
in alphabetical order:

Andrei Hutanu (LSU), Hartmut Kaiser (LSU), Pascal Kleijer (NEC), Thilo
Kielmann (VU), Gregor von Laszewski (ANL), Shantenu Jha (LSU), and John
Shalf (LBNL).

4.2 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover tech-

saga-core-wg@ogf.org 36

GWD-R.94 Intellectual Property Issues May 18, 2010

nology that may be required to practice this recommendation. Please address
the information to the OGF Executive Director.

4.3 Disclaimer

This document and the information contained herein is provided on an ”As
Is” basis and the OGF disclaims all warranties, express or implied, including
but not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

4.4 Full Copyright Notice

Copyright (C) Open Grid Forum (2007). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the OGF Document process must
be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

saga-core-wg@ogf.org 37

GWD-R.94 References May 18, 2010

References

[1] J. Dongarra, S. Otto, M. Snir, and D. Walker. A message passing standard
for MPP and workstations. Communications of the ACM, 39(7):90, 1996.

[2] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, A. Merzky, J. Shalf,
and C. Smith. A Simple API for Grid Applications (SAGA). Grid Forum
Document GFD.xx, 2007. Global Grid Forum.

[3] A. Merzky and S. Jha. A Collection of Use Cases for a Simple API for Grid
Applications. Grid Forum Document GFD.70, 2006. Global Grid Forum.

[4] A. Merzky and S. Jha. A Requirements Analysis for a Simple API for Grid
Applications. Grid Forum Document GFD.71, 2006. Global Grid Forum.

saga-core-wg@ogf.org 38

	Introduction
	Notational Conventions
	Security Considerations

	Requirements
	Use Case derived Requirements

	SAGA Messaging API
	General API Structure
	Endpoint URLs
	Endpoint State Model
	Endpoint Properties
	Message Properties
	Message Memory Management
	Asynchronous Notification and Connection Management
	Specification
	Specification Details
	Examples

	Intellectual Property Issues
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice

	References

