
GWD-R.xx Andre Merzky
SAGA-WG CCT/LSU

Version: 0.1 September 18, 2011

SAGA Resource Management API

Status of This Document

This document provides information to the grid community, proposing a stan-
dard for an extension to the Simple API for Grid Applications (SAGA). As such
it depends upon the SAGA Core API Specification [1]. This document is sup-
posed to be used as input to the definition of language specific bindings for this
API extension, and as reference for implementors of these language bindings.
Distribution of this document is unlimited.

Copyright Notice

Copyright c© Open Grid Forum (2007). All Rights Reserved.

Abstract

This document specifies a Resource Management API extension package for the
Simple API for Grid Applications (SAGA), a high level, application-oriented
API for distributed application development. This Resource Management (RM)
API is motivated by a number of use cases collected by the former OGF SAGA
Research Group in GFD.70 [2], and by requirements derived from these use
cases, as documented in GFD.71 [3]). Also, the SAGA community has been
receiving additional new use cases, in particular related to virtualized resources,
pilot jobs, and advanced reservation, which call for a revision of the existing
SAGA approch to resource and job management.

Contents

1 Introduction 3

1.1 Notational Conventions . 4

1.2 Security Considerations . 4

GWD-R.xx September 18, 2011

2 SAGA Resource API 5

2.1 Overview . 5

2.2 Specification . 7

2.3 Specification Details . 14

3 Intellectual Property Issues 16

3.1 Contributors . 16

3.2 Intellectual Property Statement 16

3.3 Disclaimer . 16

3.4 Full Copyright Notice . 16

References 18

saga-wg@ogf.org 2

GWD-R.xx Introduction September 18, 2011

1 Introduction

For dynamic resource provisioning scenarios, the saga::job::service class
from SAGA Core [1] proves to be insufficient, as it does not expose the means
to manipulate resource state and lifetime – that is, however, at the very heart
of a number of SAGA use cases.

First of all, we have seen an increasing acceptance and uptake of the pilot job
paradigm. Amongst others, pilot job implementations based on SAGA have
been relatively successfull, as they portably provide the pilot job paradigm on
a variety of infrastructures, for concurrent use. Pilot jobs however are stateful,
and can thus not easily be modeld by the old job_service class.

Further, the new iteration of the DRMAA API specification (version 2.0) is
adding the capability for advanced reservation. DRMAA is one important spec-
ification upon which SAGA is originally built, and advanced reservation is,
although seldom provided on system level, a very desireable programming ab-
straction for several SAGA use cases, Advanced seservations have, however,
similar state properties as pilot jobs, although with different SLA’s: they be-
come available for a specific time frame in the future, and can be closed/freed
if not needed any longer.

Finally, but also prominently, there is a large set of cloud use cases, in particular
on the IaaS level, which seem to almost map to the saga::job package, apart
again from the notion of state which is attached to the dynamically provisioned
virtual resources.

So it seems prudent and timely to attempt a new and unified approach to
SAGA’s original job submission and management package, which should cover
that extendet set of use cases. Several boundary conditions for such an approch
apply, however:

• the new package should, as far as possible, be kept backward compatible
with the exitsing saga::job package;

• the new package should not force a unification the mentioned use cases,
but rather try to make semantic differences, where they exist, explicit.

This specification document defines that revised Resource API. Its concepts
go, however, somewhat beyond the set of dicussed use cases: it additionally
attemtps to make the extension suitable for data-intensive use cases, where data
resources are handled in par with compute resources, and where applications
can benefit from explicit and implicit expressions of data-compute affinities.

saga-wg@ogf.org 3

GWD-R.xx Introduction September 18, 2011

1.1 Notational Conventions

In structure, notation and conventions, this documents follows those of the
SAGA Core API specification [1], unless noted otherwise.

The names ’SAGA Resource API’ and ’SAGA Resource Management API’ are
used synonymously, and refer to different aspects of the same API defined in this
document. In general, the API will not be able to perform low level management
operations on remote resources, but is rather targeting the management of user
controled slices on those remote resources.

1.2 Security Considerations

As the SAGA API is to be implemented on different types of distributed mid-
dleware systems, it does not specify a single security model, but rather provides
hooks to interface to various security models – see the documentation of the
saga::context class in the SAGA Core API specification [1] for details.

A SAGA implementation is considered secure if and only if it fully supports
(i.e. implements) the security models of the middleware layers it builds upon,
and neither provides any (intentional or unintentional) means to by-pass these
security models, nor weakens these security models’ policies in any way.

saga-wg@ogf.org 4

GWD-R.xx SAGA Resource API September 18, 2011

2 SAGA Resource API

2.1 Overview

As discussed in the introduction, the SAGA Resorce Management introduces
a notion of stateful resources. Those resources can be reservations one some
systems’s queue, time slices of a system otherwise obtained, dynamically provi-
sioned physical or virtual hardware, or actually also classic, not time constrained
job submission endpoints (for backward compatibility, see below).

2.1.1 Backward Compatibility

The SAGA RM API as defined by this document supercedes the SAGA Job API,
but is designed to be backward compatible: the saga::resource::compute

class extends the saga::job::service class, and thus allows for exactly the
same operations (and more). Semantically fully equivalent instances of the
saga::resource::compute class can also be created, either directly from a
job::service instance, or from that job service’s contact URL – that URL is
then used as that saga::resource::compute’s ID. All jobs which are created on
saga::resource::compute instances are also the well known saga::job::job

instances.

2.1.2 Resource States

Resources are stateful intities for this API, and state transitions follow a well
defined state model (see fig. 1).

2.1.3 Classes

The SAGA Job-Resource API consists of three main classes: a manager class,
which represents an entity which provides (i.e. finds, creates, destroys) resource
instances – which represent the second class of this API package. Multiple re-
source can be combined into a resource pool, which itself extends the resource

class by some pool management methods, but otherwise behaves equivalently.

Additionally, a resource::description class is used to inform the manager
of the properties od requested resource slices. Further, the resource class is
subclassed, to render compute, network and storage resources. A compute

resource inherits the old saga::job::service for backward compatibility, and
is indeed functionally very similar to it. The resource::pool class inherits the

saga-wg@ogf.org 5

GWD-R.xx SAGA Resource API September 18, 2011

Closed

Draining

Active

Accepting

Pending

Failed Expired

Final State

intern

destroy_*()intern

intern

intern

create_*()

Initial State

Figure 1: resource states and state transitions

compute class, but can also manage other resource subtypes. Effectively, a pool

acts as a collection of compute, data and network resources with job submission
capabilities.

saga-wg@ogf.org 6

GWD-R.xx SAGA Resource API September 18, 2011

2.2 Specification

package resource

{

class description : implements saga::attributes

{

// FIXME: use SAGA’s SIDL attribute notation

string type

string template = ’default’

enum machine_os

enum machine_arch

int cores

array<string> hostnames

long memory

time start

time end

time duration

string pj_executable

array<string> pj_args

array<string> pj_env

string pj_queue

bool dynamic = ’true’;

};

enum state

{

Unknown = 0, // wut?

Pending = 1, // will become active eventually

Accept = 2, // accepting jobs, jobs are queued

Active = 4, // accepting jobs, jobs can run

Draining = 5, // closing, not accepting new jobs

Closed = 6, // closed by user

Expired = 7, // closed by system

Failed = 8 // disappeared etc.

};

saga-wg@ogf.org 7

GWD-R.xx SAGA Resource API September 18, 2011

//

//

// The resource manager can translate resource requests into

// stateful resource handles. It also manages the

// persistency of those resource handles, and of resource

// pools.

//

class manager : implements saga::object,

implements saga::task::async

{

//--

CONSTRUCTOR (in session session,

in string url = "",

out manager obj);

DESTRUCTOR (in manager obj);

//--

// list known bigjob/vm/ar instances etc. (which can be opened)

list_ids (in string wildcard = "*",

out array<string> ids);

// list available templates (e.g. ’diane’

list_templates (out array<string> tmpls);

// human readable description of template

// (e.g. http://diane-project.org/)

get_details (int string tmpl);

//--

// create compute resource matching from requirements

create_compute (in description rd,

out compute jr);

// create compute resource from saga::job::service,

// --> ’backward interoperable’

create_compute (in saga::job::service js,

out compute jr);

// return resource handle for some known compute resource.

// (id can also be old fashioned job::services urls)

get_compute (in string id,

out compute jr);

saga-wg@ogf.org 8

GWD-R.xx SAGA Resource API September 18, 2011

// close compute resource

destroy_compute (in string id,

in bool drain);

//--

// network resources (tmpl = ether, myrinet, ...)

create_network (in int size, // number of hosts

in string template = "default",

out network nr);

get_network (in string id,

out network nr);

destroy_network (in string id);

//--

// storage resources (tmpl = disk, tape, s3, ...)

create_storage (in int size,

in string template = "default",

out storage sr);

get_storage (in string id,

out storage sr);

destroy_storage (in string id);

//--

}

saga-wg@ogf.org 9

GWD-R.xx SAGA Resource API September 18, 2011

//

//

// get_description adds resource_type=pool/compute/network/... etc.

//

class resource : implements saga::monitorable

{

//--

// inspection and state management

get_state (out state s);

get_state_detail (out string sd);

get_id (out string id);

get_manager (out manager m);

get_description (out description rd);

reconfig (in description rd);

destroy (in bool drain);

wait (in double timeout = -1.0);

// metrics: state, state_detail

//--

}

saga-wg@ogf.org 10

GWD-R.xx SAGA Resource API September 18, 2011

//

//

//

//

class compute : implements saga::resource::resource

, implements saga::job::service

{

//--

// native JSDL support

submit (in string jsdl);

//--

// manage network on jr (jr.type == iaas)

attach_network (in string id,

in string iface = "eth0");

get_network_id (in string iface = "eth0",

out string id);

get_network_iface (in string id,

out string iface);

detach_network (in string id);

//--

// manage network on jr (jr.type == iaas)

attach_storage (in string id,

in string mnt = "/scratch");

get_storage_id (in string mnt = "/scratch",

out string id);

get_storage_mount (in string id,

out string mnt);

detach_storage (in string id);

//--

}

saga-wg@ogf.org 11

GWD-R.xx SAGA Resource API September 18, 2011

//

//

//

//

class network : implements saga::resource::resource

{

//--

}

//

//

//

//

class storage : implements saga::resource::resource

{

//--

// file staging, persistant over multiple job instances

stage_in (in url src,

in url tgt,

in bool rm_src = false);

stage_out (in url src,

in url tgt,

in bool rm_src = false);

//--

}

saga-wg@ogf.org 12

GWD-R.xx SAGA Resource API September 18, 2011

//

//

//

//

class pool : implements saga::resource::compute

{

//--

CONSTRUCTOR (out pool rp);

DESTRUCTOR (in pool rp);

//--

add (in resource r);

add (in string id);

remove (in resource r);

remove (in string id);

list (out array<string> ids);

get (out array<resource> rs);

//--

// set scheduler policy, such as

// default, round_robin, random, load, my_super_scheduler, ...

set_job_scheduler (in string s="default");

//--

}

}

saga-wg@ogf.org 13

GWD-R.xx SAGA Resource API September 18, 2011

2.3 Specification Details

2.3.1 saga::resource::description

//

//

// The resource description attributes define what slice of

// a resource should be made available at what time.

//

// Allowed values for ’type’:

// ’reservation’ : see DRMAAv2.0

// ’pilot_job’ : see TROYv1.0

// ’iaas’ : see OCCIv1.0

//

// Allowed values for ’template’

// ’diane’, ’condor’ : troy backend

// ’small’, ’large’ : EC2 machine template

// ’cluster globus’ : nimbus / FG resource template

//

// dynamic: can grow and shrink, depending on load etc

//

// Note: DRMAAv2.0 has a notion of ’slots’ which map to the

// notion of ’cores’ used here.

//

class description : implements saga::attributes

{

// FIXME: use SAGA’s SIDL attribute notation

string type

string template = ’default’

enum machine_os

enum machine_arch

int cores

array<string> hostnames

long memory

time start

time end

time duration

string pj_executable

array<string> pj_args

array<string> pj_env

saga-wg@ogf.org 14

GWD-R.xx SAGA Resource API September 18, 2011

string pj_queue

bool dynamic = ’true’;

};

saga-wg@ogf.org 15

GWD-R.xx Intellectual Property Issues September 18, 2011

3 Intellectual Property Issues

3.1 Contributors

This document is the result of the joint efforts of several contributors. The au-
thors listed here and on the title page are those committed to taking permanent
stewardship for this document. They can be contacted in the future for inquiries
about this document.

3.2 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover tech-
nology that may be required to practice this recommendation. Please address
the information to the OGF Executive Director.

3.3 Disclaimer

This document and the information contained herein is provided on an ”As
Is” basis and the OGF disclaims all warranties, express or implied, including
but not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

3.4 Full Copyright Notice

Copyright (C) Open Grid Forum (2007). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its

saga-wg@ogf.org 16

GWD-R.xx Intellectual Property Issues September 18, 2011

implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the OGF Document process must
be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

saga-wg@ogf.org 17

GWD-R.xx Intellectual Property Issues September 18, 2011

References

[1] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, A. Merzky, J. Shalf,
and C. Smith. A Simple API for Grid Applications (SAGA). Grid Forum
Document GFD.xx, 2007. Global Grid Forum.

[2] A. Merzky and S. Jha. A Collection of Use Cases for a Simple API for Grid
Applications. Grid Forum Document GFD.70, 2006. Global Grid Forum.

[3] A. Merzky and S. Jha. A Requirements Analysis for a Simple API for Grid
Applications. Grid Forum Document GFD.71, 2006. Global Grid Forum.

saga-wg@ogf.org 18

	Introduction
	Notational Conventions
	Security Considerations

	SAGA Resource API
	Overview
	Specification
	Specification Details

	Intellectual Property Issues
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice

	References

