
GFD-R-P.90 Tom Goodale, Cardiff
SAGA-CORE-WG Shantenu Jha, UCL1

Hartmut Kaiser, LSU
Thilo Kielmann, VU1

Pascal Kleijer, NEC
Andre Merzky, VU/LSU1

John Shalf, LBNL
Christopher Smith, Platform

Version: 1.0 May 12, 2009

A Simple API for Grid Applications (SAGA)

Status of This Document

This document provides information to the grid community, proposing the core
components for an extensible Simple API for Grid Applications (SAGA Core
API). It is supposed to be used as input to the definition of language specific
bindings for this API, and by implementors of these bindings. Distribution is
unlimited.

Copyright Notice

Copyright c© Open Grid Forum (2007). All Rights Reserved.

Abstract

This document specifies the core components for the Simple API for Grid Ap-
plications (SAGA Core API), a high level, application-oriented API for grid
application development. The scope of this API is derived from the require-
ments specified in GFD.71 (”A Requirements Analysis for a Simple API for
Grid Applications”). It will in the future be extended by additional API exten-
sions.

1editor

GFD-R-P.90 May 12, 2009

Contents

1 Introduction 4

1.1 How to read this Document . 4

1.2 Notational Conventions . 5

1.3 Security Considerations . 5

2 General Design Considerations 6

2.1 API Scope and Design Process 6

2.2 The SIDL Interface Definition Language 10

2.3 Language Binding Issues . 15

2.4 Compliant Implementations . 17

2.5 Object Management . 19

2.6 Asynchronous Operations and Concurrency 24

2.7 State Diagrams . 25

2.8 Execution Semantics and Consistency Model 26

2.9 Optimizing Implementations, Latency Hiding 27

2.10 Configuration Management . 28

2.11 The ’URL Problem’ . 28

2.12 Miscellaneous Issues . 30

3 SAGA API Specification – Look & Feel 32

3.1 SAGA Error Handling . 34

3.2 SAGA Base Object . 52

3.3 SAGA URL Class . 58

3.4 SAGA I/O Buffer . 66

3.5 SAGA Session Management . 82

saga-core-wg@ogf.org 2

GFD-R-P.90 May 12, 2009

3.6 SAGA Context Management . 88

3.7 SAGA Permission Model . 94

3.8 SAGA Attribute Model . 108

3.9 SAGA Monitoring Model . 122

3.10 SAGA Task Model . 148

4 SAGA API Specification – API Packages 171

4.1 SAGA Job Management . 172

4.2 SAGA Name Spaces . 204

4.3 SAGA File Management . 250

4.4 SAGA Replica Management . 276

4.5 SAGA Streams . 291

4.6 SAGA Remote Procedure Call 312

5 Intellectual Property Issues 323

5.1 Contributors . 323

5.2 Intellectual Property Statement 324

5.3 Disclaimer . 324

5.4 Full Copyright Notice . 325

A SAGA Code Examples 326

References 333

saga-core-wg@ogf.org 3

GFD-R-P.90 Introduction May 12, 2009

1 Introduction

This document specifies SAGA CORE, the Core of the Simple API for Grid
Applications. SAGA is a high-level API that directly addresses the needs of
application developers. The purpose of SAGA is two-fold:

1. Provide an simple API that can be used with much less effort compared to
the vanilla interfaces of existing grid middleware. A guiding principle for
achieving this simplicity is the 80–20 rule: serve 80 % of the use cases with
20 % of the effort needed for serving 100 % of all possible requirements.

2. Provide a standardized, common interface across various grid middleware
systems and their versions.

1.1 How to read this Document

This document is an API specification, and as such targets implementors of
the API, rather than its end users. In particular, this document should not be
confused with a SAGA Users’ Guide. This document might be useful as an API
reference, but, in general, the API users’ guide and reference should be published
as separate documents, and should accompany SAGA implementations. The
latest version of the users guide and reference can be found at http://saga.
cct.lsu.edu

An implementor of the SAGA API should read the complete document carefully.
It will very likely be insufficientunlikely be sufficient to extract the embedded
SIDL specification of the API and implement a SAGA-compliant API. In par-
ticular, the general design considerations in Section 2 give essential, additional
information to be taken into account for any implementation in order to be
SAGA compliant.

This document is structured as follows. This Section focusses on the formal
aspects of an OGF recommendation document. Section 2 outlines the general
design considerations of the SAGA API. Sections 3 and 4 contain the SAGA API
specification itself. Section 5 gives author contact information and provides dis-
claimers concerning intellectual property rights and copyright issues, according
to OGF policies. Finally, Appendix A gives illustrative, non-normative, code
examples of using the SAGA API.

saga-core-wg@ogf.org 4

http://saga.cct.lsu.edu
http://saga.cct.lsu.edu

GFD-R-P.90 Introduction May 12, 2009

1.2 Notational Conventions

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD
NOT, RECOMMENDED, MAY, and OPTIONAL are to be interpreted as described in
RFC 2119 [6].

1.3 Security Considerations

As the SAGA API is to be implemented on different types of grid (and non-grid)
middleware, it does not specify a single security model, but rather provides
hooks to interface to various security models – see the documentation of the
saga::context class in Section 3.6 for details.

A SAGA implementation is considered secure if and only if it fully supports
(i.e. implements) the security models of the middleware layers it builds upon,
and neither provides any (intentional or unintentional) means to by-pass these
security models, nor weakens these security models’ policies in any way.

saga-core-wg@ogf.org 5

GFD-R-P.90 General Design Considerations May 12, 2009

2 General Design Considerations

This section addresses those aspects of the SAGA API specification common to
most or all of the SAGA packages as defined in Sections 3 and 4.

2.1 API Scope and Design Process

The scope and requirements of the SAGA API have been defined by OGF’s
Simple API for Grid Applications Research Group (SAGA-RG). The SAGA-RG
has collected as broad as possible a set of use cases which has been published as
GFD.70 [17]. The requirements for the SAGA API were derived from this use
cases document, an analysis of which has been published as GFD.71 [18]. The
formal specification and resulting document is the work of the SAGA-CORE
Working Group which was spawned from the SAGA-RG.

2.1.1 Requirements from the SAGA Requirement Analysis

The SAGA Requirement Analysis [18] lists the following functional and non-
functional requirements of the SAGA API:

Functional Requirements

• Job submission and management should be supported by the SAGA API.

• Resource discovery should be supported by the SAGA API.

• Data management should be supported by the SAGA API.

• Efficient data access should be supported by the SAGA API.

• Data replication should be supported by the SAGA API.

• Persistent storage of application specific information should be supported
by the SAGA API.

• Streaming of data should be supported by the SAGA API.

• Support for messages on top of the streaming API should be considered
by the SAGA API.

• Asynchronous notification should be supported by the SAGA API.

• Application level event generation and delivery should be supported by
the SAGA API.

saga-core-wg@ogf.org 6

GFD-R-P.90 General Design Considerations May 12, 2009

• Application steering should be supported by the SAGA API, but more
use cases would be useful.

• GridRPC should be supported by the SAGA API.

• Further communication schemes should be considered as additional use
cases are submitted to the group.

• Access to data-bases does not currently require explicit support in the
SAGA API.

Non-functional Requirements

• Asynchronous operations should be supported by the API.

• Bulk operations should be supported by the API.

• The exception handling of the API should allow for application level error
recovery strategies.

• The SAGA API should be implementable on a variety of security infras-
tructures.

• The SAGA API should expose only a minimum of security details, if any
at all.

• Auditing, logging and accounting should not be exposed in the API.

• Workflows do not require explicit support on API level.

• QoS does not require explicit support on API level.

• Transactions do not require explicit support on API level.

2.1.2 Requirement Adoption Strategy

The use cases expressed the above requirements different levels of importance
or urgency. This reflects the fact that some functionality is considered more
important or even vital (like file access and job submission) while other func-
tionality is seen as ”nice to have” by many use cases (like application steering).
Also, the group of active people in the SAGA specification process constitutes
a specific set of expertise and interest – and this set is, to some extent, reflected
in the selection of SAGA packages specified in this document.

For example, as there were no use cases from the enterprise user community,
nor was there any active participation from that community in the SAGA stan-
dardization process, no enterprise specific API package is included here. This

saga-core-wg@ogf.org 7

GFD-R-P.90 General Design Considerations May 12, 2009

does not imply that we consider them unnecessary, but rather reflects the wish
and need to derive the API on real use cases, and to avoid the creation of an
API from perceived use cases, and half-baked expertise.

Scope of the SAGA API

As various sides expressed their need for the availablity of a useful (i.e. imple-
mentable and usable) API specification as quickly as possible, the SAGA-CORE-
WG decided to follow a two-phase approach. The SAGA API, as described in
this document, covers all requirements that are considered both urgent and suffi-
ciently well understood to produce an API. Addressing the other the less urgent
or well understood requirements is deferred to future versions, or extensions, of
the SAGA API. Based upon this reasoning, areas of functionality (from now on
referred to as packages) that are included in SAGA API are the following:

• jobs
• files (and logical files)
• streams
• remote procedure calls [19]
• auxiliary API’s for

– session handle and security context
– asynchronous method calls (tasks)
– access control lists
– attributes
– monitoring
– error handling

Possible extensions to be included in future SAGA versions or extensions are:

• steering and extended monitoring
• possibly combining logical/physical files (read on logical files)
• persistent information storage (see, e.g. the GAT Advert Service [2])
• GridCPR [11]
• task dependencies (simple work flows and task batches)
• extensions to existing classes, based on new use cases

The packages as listed above do not imply a hierarchy of API interfaces: all
packages are motivated by their use cases; there is no split into ’lower level’
and ’higher level’ packages. The only exception is the group of auxiliary APIs,
which is considered orthogonal to the non-auxiliary SAGA packages.

saga-core-wg@ogf.org 8

GFD-R-P.90 General Design Considerations May 12, 2009

Dependencies between packages have been kept to a minimum, so as to allow
each package to be used independently of any other; this will also allow partially
conformant API implementations (see below).

The term CORE in SAGA CORE refers to the fact that the scope of the API
encompasses an initial required set of API objects and methods, which is per-
ceived to be essential to the received use cases. It is important to reiterate, that
the term, , does not imply any hierarchy of API packages, such as CORE and
SHELL packages etc. We will drop the use of CORE when referring to the API
and use the term in the context of the Working Group.

2.1.3 Relation to OGSA

The SAGA API specification effort has often been compared to, and seen as
overlapping in scope and functionality to the OGSA standardization effort [10].
This perceived overlap in scope and functionality is misleading for the following
reasons:

• OGSA applies to the service and middleware level.

SAGA applies to the application level.

• OGSA aims at service and middleware developers.

SAGA aims at application developers.

• OGSA is an architecture.

SAGA is an API.

• OGSA strives to be complete, and to fully cover any potential grid service
in its architectural frame.

SAGA is by definition incomplete (80:20 rule), and aims to cover the
mostly used grid functionalities at the application level.

• OGSA cannot sensibly interface to SAGA.

SAGA implementations can interface to (a subset of) OGSA compliant
services (and in fact usually will do so).

For these and more reasons we think that SAGA and OGSA are complementary,
but by no means competitive. The only commonality we are aware of is the
breadth of both approaches: both OGSA and SAGA strive to cover more than
one specific area of middleware and application functionality, respectively.

There have been discussions between the SAGA and OGSA groups of the OGF,
which tried to ensure that the SAGA specification does not imply any specific

saga-core-wg@ogf.org 9

GFD-R-P.90 General Design Considerations May 12, 2009

middleware properties, and in particular does not imply any state management
which would contradict OGSA based middleware. Until now, we are not aware
of any such conflict, and will continue to ensure seemless implementability on
OGSA based middleware.

2.2 The SIDL Interface Definition Language

For the SAGA API, an object oriented (OO) approach was adopted, as it is
easier to produce a procedural API from an OO API than the converse, and
one of the goals of SAGA is to provide APIs which are as natural as possible in
each implementation language. Advanced OO features such as polymorphism
were avoided, both for simplicity and also to avoid complications when mapping
to procedural languages.

The design team chose to use SIDL, the Scientific Interface Definition Lan-
guage [4], for specifying the API. This provides a programming-language neu-
tral represention of the API, but with well-defined syntax and clear mapping to
implementation languages.

This document, however, slightly deviates from the original SIDL language def-
inition. This section gives a brief introduction to SIDL, describes the respective
deviations used, and also contains a number of notes to implementors on how
to interpret this specification.

SIDL, from the Babel project, is similar to COM and CORBA IDL, but has
an emphasis on scientific computing, with support for multi-dimensional arrays,
etc. Although the SAGA specification does not use these features extensively,
the multilanguage scope of Babel for mappings from SIDL to programming
languages appealed to the authors of this specification.

The key SIDL concepts used in this document are:

package: specifies a name space (see note below)
interface: set of methods
class: stateful object and the associated set of methods
method: service that can be invoked on a object
type: constraint to value of method parameters

SIDL supports single inheritance of classes, and multiple inheritance of inter-
faces.

Method definitions have signatures, which define which parameters are accepted
on method invocation. These parameters can be:

• in: input parameter, passed by value, assumed constant

saga-core-wg@ogf.org 10

GFD-R-P.90 General Design Considerations May 12, 2009

• out: output parameter, passed by reference
• inout: input and output parameter, passed by reference

2.2.1 Deviations from SIDL in this Document

SIDL has the notion of packages, which are equivalent to Java packages or C++
name spaces. Packages are used in this specification, for the purpose of cross
referencing different API sections. The packages are not required to show up
in the implementation’s class names or name spaces, apart from the top level
’saga’ name space.

SIDL also has the notion of ’versions’, which are actually required on packages.
We do not use versions in this specification, as the specification itself is ver-
sioned, and we do not intend to introduce versioning on classes and interfaces.

SIDL allows multi-dimensional arrays, in the form array<type,dim>. As SAGA
uses only one-dimensional arrays, this document uses the simplified notation
array<type>.

SIDL defines a string to be a char*. We feel, however, that strings have more
powerful and native expressions in some languages (such as C++, Perl and
Java), and use string for these types. char*, conventionally used for binary
inout memory chunks, is expressed in this document as array<byte>.

This specification defines all method calls as void (or rather does not spec-
ify any return type for method calls at all). Instead of explicit return values,
we define out parameters, which are in SIDL parameters which are passed by
reference. However, for this specification we expect language bindings to use
the first specified output parameter as return value of function calls where ap-
propriate, in particular for the synchronous versions of the function calls. The
asynchronous versions will, by their very nature, stick to the out parameter
scheme, as described in Section 3.10.

2.2.2 Default Parameter Values

This document, in several places, adds default values in the SIDL part of the API
specification. It is up to the language bindings to exploit any native means for
default parameter values. If this is not possible, the language binding CAN ab-
stain from default parameter values. Also, if asynchronous method calls require
additional parameters, which might affect the handling of default parameters
in languages such as C and C++, the language binding CAN deviate from this
document in that respect.

saga-core-wg@ogf.org 11

GFD-R-P.90 General Design Considerations May 12, 2009

2.2.3 Constness

SIDL method parameters specified as in parameters are considered to be const,
and MUST NOT be changed by the implementation. The SAGA language
bindings SHOULD utilize language mechanisms to enforce constness of these
parameters, if possible.

To our knowledge, SIDL does not allow the specification of constness at method
level. This means, SIDL does not permit a specification of which methods must
leave the state of the object unchanged. We considered the introduction of
const modifiers, to achieve consistent semantics over different implementations.
However, a short analysis of various implementation techniques convinced us
that requiring method constness would raise significant limitations to SAGA
implementors (e.g. for implementations with late binding), with no immediately
visible advantage to SAGA users. Hence, we waived any method level constness
requirements for now, but this topic might get picked up in future versions of
the API, e.g. with respect to object serialization (which implies known and
consistent object state at serialization points).

2.2.4 Attributes and Metrics

The SIDL sections in this specification contain additional normative information
which are inserted as SIDL comments. In particular these are definitions for
attributes and metrics. Format definitions and meaning for these entities and
specifications can be found in Section 3.8 ”SAGA Attributes Interface” and
Section 3.9 ”SAGA Monitoring Model”, respectively.

2.2.5 Method Specification Details

All methods defined in the SIDL specification sections are further explained
in the ’Specification Details’ sections in this document. These details to
method specifications are normative. They are formatted as follows (example
taken from the saga::file class):

saga-core-wg@ogf.org 12

GFD-R-P.90 General Design Considerations May 12, 2009

- read

Purpose: reads up to len_in bytes from the file into

the buffer.

Format: read (inout buffer buf,

in int len_in = -1,

out int len_out);

Inputs: len_in: number of bytes to be read

InOuts: buf: buffer to read data into

Outputs: len_out: number of bytes successfully

read

PreCond: -

PostCond: - the data from the file are available in the

buffer.

Perms: Read

Throws: NotImplemented

BadParameter

IncorrectState

PermissionDenied

AuthorizationFailed

AuthenticationFailed

Timeout

NoSuccess

Notes: - the actual number of bytes read into buffer

is returned in len_out. It is not an error

to read less bytes than requested, or in fact

zero bytes, e.g. at the end of the file.

- errors are indicated by returning negative

values for len_out, which correspond to

negatives of the respective POSIX ERRNO error

code.

- the file pointer is positioned at the end of

the byte area successfully read during this

call.

- the given buffer must be large enough to

store up to len_in bytes, or managed by the

implementation - otherwise a ’BadParameter’

exception is thrown.

- the notes about memory management from the

buffer class apply.

- if the file was opened in write-only mode (i.e.

no ’Read’ or ’ReadWrite’ flag was given), this

method throws an ’PermissionDenied’ exception.

- if len_in is smaller than 0, or not given,

the buffer size is used for len_in.

If that is also not available, a

’BadParameter’ exception is thrown.

- similar to read (2) as specified by POSIX

saga-core-wg@ogf.org 13

GFD-R-P.90 General Design Considerations May 12, 2009

The following sections are used in these detailed specifications of class methods:

Purpose: the aim of the method
Format: the SIDL prototype of the method
Inputs: descriptions of in parameters
InOuts: descriptions of inout parameters
Outputs: descriptions of out parameters
PreCond: conditions for successful invocation
PostCond: effects of successful invocation
Perms: permissions required for the method
Throws: list of exceptions the method can throw
Notes: other details

PreCond’ition: an example for a precondition is a specific object state. An
implementation MUST check these Preconditions, and MUST refuse to execute
the method if they are not met, and throw an exception accordingly.

PostCond’tion: an example for a postcondition is a changed object state. An
implementation MUST ensure that the postconditions are met upon successful
method invocation, and MUST flag an error otherwise.

Throws: the exceptions listed in this section are the only SAGA exceptions
which can be thrown by the method.

Perms: this section lists the permissions required to perform the method. If
that permission is not available to the caller, a PermissionDenied exception
MUST be thrown by the implementation.

Notes: can contain, for example, references to the origin and use of the method,
conditions on which exceptions are to be raised, semantic details of invocations,
consistency implications of invocations, and more. These Notes are normative!

2.2.6 Inheritance

The SAGA API specification limits class inheritance to single inheritance – a
class can, nevertheless, implement multiple interfaces. Similar to the original
SIDL syntax, this document uses the qualifiers extends to signal inheritance
relations of a class, and implements to signal an interface to be provided by a
class.

Almost all SAGA classes implement the saga::object interface (which pro-
vides, for example, a unique instance id and the saga::error_handler inter-
face), but the classes usually implement several other interfaces as well.

saga-core-wg@ogf.org 14

GFD-R-P.90 General Design Considerations May 12, 2009

For inherited classes and implemented interfaces holds: if methods are over-
loaded (i.e. redefined with the same name), the semantics of the overloaded
methods from the base class still apply (i.e. all Notes given on the detailed
method description apply). This also holds for CONSTRUCTORs and DESTRUCTORs,
and also, for example, for a close() which is implicitly called on the base class’
destruction.

2.2.7 The SAGA Interfaces

For some SAGA objects, such as for saga::logical file, SAGA interfaces,
like the attribute interface, can allow access to remote entities. These methods
should thus (a) also be availabe asynchronously, and (b) allow to apply the per-
mission interface. However, asynchronous method calls and permissions make
no sense for other, local SAGA objects, in particular on the SAGA Look-&-Feel
level.

Thus, instead of implementing the saga::async and saga::permissions in-
terface in the various interfaces in general, this specification defines that SAGA
implementations MUST apply the following rules:

• SAGA classes and interfaces, which implement the saga::async interface,
and thus implement the SAGA task model, MUST also implement that
task model for the methods defined in the following interfaces:

– saga::attributes

– saga::permissions

– saga::monitorable

– saga::steerable

• SAGA classes and interfaces, which implement the saga::permissions
interface, and thus implement the SAGA permission model, MUST also
implement that permission model for the methods defined in the following
interfaces:

– saga::attributes

– saga::monitorable

– saga::steerable

2.3 Language Binding Issues

The abstract SAGA API specification, as provided by this document, is lan-
guage independent, object oriented, and specified in SIDL. Normative bindings
for specific languages, both object oriented and procedural, will be defined in
additional documents.

saga-core-wg@ogf.org 15

GFD-R-P.90 General Design Considerations May 12, 2009

This document contains several examples illustrating the use of the API, and
these have naturally been shown in specific languages, such as C++. These
examples should not be taken as normative, but merely as illustrative of the use
of the API. When normative language bindings are available, these examples
may be revised to reflect these bindings. In order to give an impression of
the Look-&-Feel in other languages, Appendix A lists some of the examples in
different languages. Again, Appendix A is illustrative, not normative.

Language bindings of the SAGA API shall provide the typical Look-&-Feel
of the respective programming language. This comprises the syntax for the
entitities (objects, methods, classes, etc.), but also, to some degree, semantic
details for which it makes sense to vary them with the programming language.
We summarize the semantic details here.

• In this document, flags are denoted as bitfields (specifically, integer enums
which can be combined by logical AND and OR). This is for notational
convenience, and a language binding should use the most natural mecha-
nism available.

• Language bindings MAY want to express array style arguments as variable
argument lists, if that is appropriate.

• This document specifies file lengths, buffer lengths and offsets as int types.
We expect implementations to use suitably large native data types, and to
stick to language specific types where possible (such as size_t for buffer
lengths in C, and off_t for file lengths in C). The SAGA language bindings
MUST include the types to be used by the implementations. In particular,
64 bit types SHOULD be used if they are available.

• The SAGA attribute interface defines attribute keys to be strings. The
SAGA monitorable interface defines metric names to be strings. At the
same time, many attributes and metrics are predefined in this specifi-
cation. In order to avoid typos, and improve interoperability between
multiple implementations, we expect language bindings to exploit native
mechanisms to have these predefined attributes and metric names spec-
ified as literal constants. For example, in C/C++ we would expect the
following defines for the stream package (amongst others):

#define SAGA_METRIC_STATE "state"
#define SAGA_STREAM_NODELAY "nodelay"

• Language bindings MAY define additional constants for special parameter
values. For example, in C/C++ we would expect the following defines for
timeout values (amongst others):

#define SAGA_WAIT_FOREVER -1.0
#define SAGA_NOWAIT 0.0

• Object lifetime management may be language specific. See Section 2.5.3.

saga-core-wg@ogf.org 16

GFD-R-P.90 General Design Considerations May 12, 2009

• Concurrency control may be language specific. See Section 2.6.4.

• Thread safety may be language specific. See Section 2.6.5.

2.4 Compliant Implementations

A SAGA implementation MUST follow the SAGA API specification, and the
language binding(s) for its respective programming language(s), both syntacti-
cally and semantically. With respect to syntax, the language binding documents
overrule this document, in case of contradictions. This means that any method
MUST be implemented with the syntax and with the semantics specified in this
document and the applicable language bindings, or not be implemented at all
(i.e. MUST then throw the NotImplemented exception).

The NotImplemented exception MUST, however, be used only in necessary
cases, for example if an underlying grid middleware does not provide some ca-
pability, and if this capability can also not be emulated. The implementation
MUST carefully document and motivate the use of the NotImplemented excep-
tion.

An implementation of the SAGA API is “SAGA compliant” if it implements
all objects and methods of the SAGA API specification, possibly using the
NotImplemented exception, as outlined above.

An implementation of the SAGA API is “partially SAGA compliant” if it im-
plements only some packages, but implements those completely. It is, as with
compliant implementations, acceptable to have methods that are not imple-
mented at all (and thus throw a NotImplemented error).

All other implementations of the SAGA API are “not SAGA compliant”.

The SAGA Look-&-Feel classes and interfaces (see Section 3) (exception, er-
ror handler, object, url, session, context, permissions, buffer, attri-
butes, callback, metric, monitorable, steerable, async, task, and task -
container) SHOULD be implemented completely for an implementation to be
compliant. A partially compliant implementation SHOULD implement those
SAGA Look-&-Feel classes and interfaces which are used by the packages the
implementation intends to provide.

It may, however, not always be possible to implement the Look-&-Feel classes
completely independent from the middleware, at least to a full extent. In par-
ticular permissions, attributes, monitorable, steerable, async, and task
may need explicit support from the backend system, when used by functional
API packages. In such cases, methods in these four packages MAY throw a
NotImplemented exception. In all other cases in the SAGA Look-&-Feel MUST
NOT throw a NotImplemented exception.

saga-core-wg@ogf.org 17

GFD-R-P.90 General Design Considerations May 12, 2009

Note that the exposure of additional (e.g. backend specific) classes, methods, or
attributes within the SAGA API (e.g. within the saga name space) is considered
to break SAGA compliance, unless explicitly allowed by this specification, as
such extensions would bind applications to this specific implementation, and
limit their portability, the latter being a declared goal of the SAGA approach.

The SAGA CORE Working Group will strive to provide, along with the language
binding documents, complicance tests for implementors. It should also be noted
that the SAGA language binding documents MAY specify deviations from the
API syntax and semantics specified in this documents. In this case, the language
binding specification supersedes this language independent specification. The
language binding specifications MUST strive to keep the set of differences to
this specification as small as possible.

2.4.1 Early versus late binding

An implementation may choose to use late binding to middleware. This means
that the middleware binding might change between subsequent SAGA calls.
For example, a file.open() might be performed via the HTTP binding, but
a subsequent read() on this file might fail, and instead be performed with
GridFTP.

Late binding has some advantages in terms of flexibility and error recovery.
However, it implies a certain amount of object state to be kept on client side,
which might have semantic consequences. For example, a read() operation
might fail on HTTP for some reasons, but might succeed via GridFTP. The
situation might be reversed for write(). In order to allow alternating access
via both protocols, the file pointer information (e.g. the file object state) must
be held on client side.

It is left to a later experience document about the SAGA API implementations
to discuss potential problems arising from early/late binding implementations,
with respect to semantic conformance to the SAGA API specification. It should
be noted here that method-level constness would represent a major obstacle for
late binding implementations.

Late binding MUST NOT delay the check of error conditions if this is seman-
tically required by the specification. For example, a file.open() should check
for the existence of the file, even if the implementation may bind to a different
middleware on subsequent operations on this file.

saga-core-wg@ogf.org 18

GFD-R-P.90 General Design Considerations May 12, 2009

2.5 Object Management

The API specification in Sections 3 and 4 defines various kinds of objects. Here,
we describe generic design considerations about managing these objects.

2.5.1 Session Management

The specification introduces a saga::session object, which acts as session
handle. A session thereby identifies objects and operations which are sharing
information, such as security details. Also, objects and methods from different
sessions MUST NOT share any information. This will allow an application
to communicate with different grids and VOs at the same time, or to assume
different IDs at the same time. Many applications, however, will have no need
for explicit session handling. For those cases, a default SAGA session is used if
no explicit saga::session object is created and used.

Any SAGA object is associated with a session at creation time, by using the
respective saga::session instance as first argument to the constructor. If the
session argument is omitted, the object is associated with the default session.
SAGA objects created from other SAGA objects (such as a saga::file instance
created by calling open() on a saga::directory instance) inherit the parent’s
session. The remainder of the document refers to the default session instance
as theSession.

A saga::context instance is used to encapsulate a virtual identity, such as a
Globus certificate or an ssh key pair. Multiple context instances can be asso-
ciated with one session, and only that context information MUST be used to
perform any operation in this session (i.e. on objects associated with this ses-
sion). If no saga::context instances are explicitly added to a SAGA session,
the SAGA implementation MAY associate one or more default contexts with
any new session, including the default session. In fact, the default session can
ONLY use these default contexts.

2.5.2 Shallow versus Deep Copy

Copy operations on SAGA objects are, by default, shallow. This applies, for
example, when SAGA objects are passed by value, or by assignment operations.
Shallow copy means that the orginal object instance and the new (copied) in-
stance share state. For example, the following code snippet

Code Example

1 saga::file f1 (url); // file pointer is at 0

2 saga::file f2 = f1; // shallow copy

saga-core-wg@ogf.org 19

GFD-R-P.90 General Design Considerations May 12, 2009

3

4 cout << "f1 is at " << f1.seek (0, Current) << "\n";

5 cout << "f2 is at " << f2.seek (0, Current) << "\n";

6

7 f1.seek (10, Current); // change state

8

9 cout << "f1 is at " << f1.seek (0, Current) << "\n";

10 cout << "f2 is at " << f2.seek (0, Current) << "\n";

would yield the following output (comments added):

f1 is at 0

f2 is at 0 -> shallow copy of f1

f1 is at 10 -> state of f1 changes

f2 is at 10 -> state of f2 changes too: it is shared

The SAGA API allows, however, to perform deep copies on all SAGA objects,
by explicitly using the clone() method. The changed code snippet:

Code Example

1 saga::file f1 (url); // file pointer is at 0

2 saga::file f2 = f1.clone(); // deep copy

3

4 cout << "f1 is at " << f1.seek (0, Current) << "\n";

5 cout << "f2 is at " << f2.seek (0, Current) << "\n";

6

7 f1.seek (10, Current); // change state

8

9 cout << "f1 is at " << f1.seek (0, Current) << "\n";

10 cout << "f2 is at " << f2.seek (0, Current) << "\n";

would then yield the following output (comments added):

f1 is at 0

f2 is at 0 -> deep copy of f1

f1 is at 10 -> state of f1 changes

f2 is at 0 -> state of f2 did not change, it is not shared

saga-core-wg@ogf.org 20

GFD-R-P.90 General Design Considerations May 12, 2009

SAGA language bindings MAY deviate from these semantics if (and only if)
these semantics would be non-intuitive in the target language.

If a SAGA object gets (deeply) copied by the clone method, its complete state
is copied, with the exception of:

• the object id (a new id is assigned, see Section 3.2),

• information about previous error conditions (is not copied, see Section 3.1),

• callbacks on metrics (are not copied, see Section 3.9).

• the session the object was created in (is shallow copied, see Section 3.5),

Not copying previous error conditions disambiguates error handling. Not copy-
ing the session ensures that the same session is continued to be shared between
objects in that session, as intended. Not copying registered callbacks is required
to ensure proper functioning of the callback invocation mechanism, as callbacks
have an inherent mechanism to allow callbacks to be called exactly once. Copy-
ing callbacks would undermine that mechanism, as callbacks could be called
more than once (once on the original metric, once on the copied metric).

Note that a copied object will, in general, point to the same remote instance.
For example, the copy of a saga::job instance will not cause the spawning of a
new remote job, but will merely create a new handle to the same remote process
the first instance pointed to. The new object instance is just a new handle which
is in the same state as the original handle – from then on, the two handles have
a life of their own. Obviously, operations on one SAGA object instance may
still in fact influence the copied instance, e.g. if cancel() is called on either
one.

Note also, that the deep/shallow copy semantics is the same for synchronous
and asynchronous versions of any SAGA method call.

2.5.3 Object State Lifetime

In general, the lifetime of SAGA object instances is defined as natively expected
in the respective languages, so it is usually explicitly managed, or implicitly de-
fined by scoping, or in some languages implicitly managed by garbage collection
mechanisms.

The SAGA API semantics, in particular asynchronous operations, tasks, and
monitoring metrics require, however, that the state of certain objects must be
able to survive the lifetime of the context in which they were created. As state

saga-core-wg@ogf.org 21

GFD-R-P.90 General Design Considerations May 12, 2009

in these situations is shared with the original object instance, this may imply
in some languages that the respective objects must survive as well.

In particular, object state MUST be available in the following situations:

• The state of a saga::object instance MUST be available to all tasks
created on this object instance.

• The state of a saga::object instance MUST be available to all metrics
created on this object instance.

• The state of a saga::session instance MUST be available to all objects
created in this session.

• The state of a saga::context instance MUST be available to all sessions
this context instance was added to.

• The state of the default session MUST be available to the first invocation
of any SAGA API method, and SHOULD be available for the remaining
lifetime of the SAGA application.

Due to the diversity of lifetime management used in existing programming lan-
guages, this document can not prescribe a single mechanism to implement ob-
jects or object states that survive the context they were created in. It is subject
to individual language binding documents to prescribe such mechanisms, and
to define responsibilities for object creation and destruction, both for SAGA
implementations and for application programs, in order to match requirements
and common-sense in the respective languages.

The SAGA specification implies that object state is shared in the following
situations:

• an asynchronous operation is invoked on an object, creating a task in-
stance;

• a SAGA object is passed as argument to a (synchronous or asynchronous)
method call.

Those method calls that deviate from these semantics denote this in their
PostCond’itions (e.g. prescribe that a deep copy of state occurs).

2.5.4 Freeing of Resources and Garbage Collection

The destruction of objects in distributed systems has its own subtle problems, as
has the interruption of remote operations. In particular it cannot be assumed

saga-core-wg@ogf.org 22

GFD-R-P.90 General Design Considerations May 12, 2009

that a destructor can both return timely and ensure the de-allocation of all
(local and remote) resources. In particular, as a remote connection breaks, no
guarantees whatsoever can be made about the de-allocation of remote resources.

In particular for SAGA tasks, which represent asynchronous remote opera-
tions, we expect implementations to run into this problem space, for example
if cancel() is invoked on this task. To have common semantic guidelines for
resource de-allocation, we define:

1. On explicit or implicit object destruction, and on explicit or implicit in-
terruption of synchronous and asynchronous method invocations, SAGA
implementations MUST make a best-effort attempt to free associated re-
sources immediately1.

2. If the immediate de-allocation of resources is not possible, for whichever
reasons, the respective interrupting or destructing methods MUST return
immediately, but the resource de-allocation MAY be delayed indefinitely.
However, as of (1), the best effort strategy to free these resources eventu-
ally MUST stay in place.

3. Methods whose semantics depend on successful or unsuccessful de-allo-
cation of resources (such as task.cancel() or file.close()) allow for
an optional float argument, which defines a timeout for this operation
(see Section 2.6.3). If resource de-allocation does not succeed within this
timeout period, a NoSuccess exception MUST be thrown. Negative values
imply to wait forever. A value of zero (the default) implies that the method
can return immediately; no exception is thrown, even if some resources
could not be de-allocated. In any case, the best-effort policy as described
above applies.

SAGA implementations MUST motivate and document any deviation from this
behaviour. See also Section 2.4 on compliant implementations.

2.5.5 Destructors and close()

Destructors are implying a call to close() of the respective object (if a close()
is defined for that class), unless, as described above, tasks are still using the re-
spective resources – then the close is delayed until the last of these tasks is
destroyed (see 2.5.3). It must be noted that, unlike when using a direct call
to close(), exceptions occuring on such an implicit close() cannot be com-
municated to the application: throwing exceptions in destructors is, in general,
considered unclean design, and is in many languages outright forbidden. Thus,

1Immediately in the description above means: within the expected response time of the
overall system, but not longer.

saga-core-wg@ogf.org 23

GFD-R-P.90 General Design Considerations May 12, 2009

an explicit close() should be used by the application if feedback about even-
tual error conditions is required. Otherwise, an implicit close() on object
destruction will silently discard such error conditions (exceptions).

2.6 Asynchronous Operations and Concurrency

In this section, we describe the general design considerations related to asyn-
chronous operations, concurrency control, and multithreading.

2.6.1 Asynchronous Function Calls

The need for asynchronous calls was explicitly stated by the use cases, as reason-
able synchronous behaviour cannot always be expected from grids. The SAGA
task interface allows the creation of an asynchronous version of each SAGA API
method call. The SIDL specification lists only the synchronous version of the
API methods, but all classes implementing the task interface MUST provide
the various asynchronous methods as well. Please see Section 3.10 for details
on the task interface.

2.6.2 Asynchronous Notification

Related to this topic, the group also discussed the merits of callback and polling
mechanisms and agreed that a callback mechanism should be used in SAGA to
allow for asynchronous notification. In particular, this mechanism should allow
for notification on the completion of asynchronous operations, i.e. task state
changes. However, polling for states and other events is also supported.

2.6.3 Timeouts

Several methods in the SAGA API support the synchronization of concurrent
operations. Often, those methods accept a float timeout parameter. The
semantics of this parameter MUST be as follows:

timeout < 0.0 – wait forever
timeout = 0.0 – return immediately
timeout > 0.0 – wait for this many seconds

These methods MUST not cause a Timeout exception as the timeout period
passes, but MUST return silently. For a description of the Timeout exception,
see Section 3.1.

saga-core-wg@ogf.org 24

GFD-R-P.90 General Design Considerations May 12, 2009

The various methods often define different default timeouts. For timeouts
on close() methods, the description of resource de-allocation policies in Sec-
tion 2.5.4 is also relevant.

2.6.4 Concurrency Control

Although limited, SAGA defines a de-facto concurrent programming model,
via the task model and the asynchronous notification mechanism. Sharing of
object state among concurrent units (e.g. tasks) is intentional and necessary
for addressing the needs of various use cases. Concurrent use of shared state,
however, requires concurrency control to avoid unpredictable behavior.

(Un)fortunately, a large variety of concurrency control mechanisms exist, with
different programming languages lending themselves to certain flavors, like ob-
ject locks and monitors in Java, or POSIX mutexes in C-like languages. For
some use cases of SAGA, enforced concurrency control mechanisms might be
both unnecessary and counter productive, leading to increased programming
complexity and runtime overheads.

Because of these constraints, SAGA does not enforce concurrency control mech-
anisms on its implementations. Instead, it is the responsibility of the application
programmer to ensure that her program will execute correctly in all possible or-
derings and interleavings of the concurrent units. The application programmer
is free to use any concurrency control scheme (like locks, mutexes, or monitors)
in addition to the SAGA API.

2.6.5 Thread Safety

We expect implementations of the SAGA API to be thread safe. Otherwise, the
SAGA task model would be difficult to implement, and would also be close to
useless. However, we acknowledge that specific languages might have trouble
with (a) expressing the task model as it stands, and (b) might actually be
successful to implement the API single threaded, and non-thread safe. Hence,
we expect the language bindings to define if compliant implementations in this
language MUST or CAN be thread safe – with MUST being the default, and
CAN requiring good motivation.

2.7 State Diagrams

Several objects in SAGA have a state attribute or metric, which implies a state
diagram for these objects. That means, that instances of these objects can

saga-core-wg@ogf.org 25

GFD-R-P.90 General Design Considerations May 12, 2009

undergo well defined state transitions, which are either triggered by calling spe-
cific methods on these object instances, or by calling methods on other object
instances affecting these instances, or are triggered by internal events, for ex-
ample by backend activities. State diagrams as shown in Figure 1 are used to
define the available states, and the allowed state transitions. These diagrams
are normative.

wait()
cancel()

synchronous

task::Async

construction

run()
intern

Initial State

State Diagram Legend:

into another state.
state, and have an immediate transition
All stateful objects start with an initial

Allowed state transition, directional.

State, named.

RunningNew

Final State

Done

wait()

method()

intern

method causing the transition
method not causing the transition,
but reacting on it

transition caused by the backend

CONSTRUCTOR()

descriptive notenote

All states with transitions to ’Final State’ are

The last state transition any stateful

That state cannot be left until object destruction.
object can undergo is into a final state.

called ’Final States’.

Description of a state transition:

intern

Figure 1: The SAGA state diagrams follow the notations shown here.

2.8 Execution Semantics and Consistency Model

A topic related to concurrency control concerns execution semantics of the op-
erations invoked via SAGA’s API calls. Unlike Section 2.6, here we are dealing
with the complete execution “chain,” reaching from the client API to the server
side, based on whichever service or middleware layer is providing access to the
server itself.

SAGA API calls on a single service or server can occur concurrently with (a)
other tasks from the same SAGA application, (b) tasks from other SAGA ap-
plications, or also (c) calls from other, independently developed (non-SAGA)
applications. This means that the user of the SAGA API should not rely on
any specific execution order of concurrent API calls. However, implementa-
tions MUST guarantee that a synchronous method is indeed finished when the
method returns, and that an asynchronous method is indeed finished when the
task instance representing this method is in a final state. Further control of
execution order, if needed, has to be enforced via separate concurrency control

saga-core-wg@ogf.org 26

GFD-R-P.90 General Design Considerations May 12, 2009

mechanisms, preferably provided by the services themselves, or on application
level.

Most SAGA calls will invoke services that are remote to the application pro-
gram, hence becoming vulnerable to errors caused by remote (network-based)
invocation. Therefore, implementors SHOULD strive to implement “At Most
Once” semantics, enforcing that, in case of failures, an API call either fails
(does not get executed), or succeeds, but never gets executed more than once.
This seems to be (a) generally supported by most grid middleware, (b) im-
plementable in distributed systems with reasonable effort, and (c) useful and
intuitively expected by most end users. Any deviation from these semantics
MUST be carefully documented by the implementation.

Beyond this, the SAGA API specification does not prescribe any consistency
model for its operations, as we feel that this would be very hard to implement
across different middleware platforms. A SAGA implementation MAY specify
some consistency model, which MUST be documented. A SAGA implementa-
tion SHOULD always allow for application level consistency enforcement, for
example by use of of application level locks and mutexes.

2.9 Optimizing Implementations, Latency Hiding

Distributed applications are usually very sensistive to communication latencies.
Several use cases in SAGA explicitly address this topic, and require the SAGA
API to support (a) asynchronous operations, and (b) bulk operations, as both
are commonly accepted latency hiding techniques. The SAGA task model (see
Section 3.10) provides asynchronous operations for the SAGA API. Bulk oper-
ations have no explicit expression in SAGA. Instead, we think that implemen-
tations should be able to exploit the concurrency information available in the
SAGA task model to transparently support bulk optimizations. In particular,
the saga::task_container allows to run multiple asynchronous operations at
the same time – implementations are encouraged to apply bulk optimizations in
that situation. A proof-of-concept implementation in C++ demonstrates that
bulk optimizations for task containers are indeed implementable, and perform
very well [13]. We feel that this leaves the SAGA API simple, and at the same
time allows for performance critical use cases.

Other optimizations are more explicit in the API, most notably the additional
I/O operations for the saga::file class – those are described in more detail in
Section 4.3.

Implementations are encouraged to exploit further optimizations; these MUST
NOT change the semantics of the SAGA API though.

saga-core-wg@ogf.org 27

GFD-R-P.90 General Design Considerations May 12, 2009

2.10 Configuration Management

Defining deployment and configuration related parts of an API normatively
raises a number of issues, such as:

• As different SAGA implementations bind to different middleware, that
middleware might need configuration information, such as the location of
a GridRPC config file (see [19]), or the location of a service endpoint.

• If such configuration information is to be provided by the end user, the
end user might face, eventually, a plethora of SAGA implementation and
middleware specific configuration files, or environment variables, or other
configuration mechanisms, which would break the SAGA abstraction from
the middleware for the end user.

• Defining a SAGA configuration file format might succeed syntactically
(e.g. ini file format), but must fail semantically, as it will be impossible to
foresee on which middleware SAGA gets implemented, and to know which
configuration information that middleware requires.

This leaves the dilemma that a configuration mechanism seems impossible to
define generically, but by leaving it undefined, we break the abstraction SAGA
is supposed to provide to the end user.

For the time being, this problem is left to (a) the middleware developers, (b)
to the SAGA implementors, and (c) to the SAGA deployment (i.e. system
administrators). Experience gathered by these groups will hopefully allow to
revise this topic, and to define a generic, simple, and abstract approach to the
configuration problem.

2.11 The ’URL Problem’

The end user might expect the SAGA API, as a high level and simple API, to
handle protocol specific issues transparently. In particular, she might expect
that SAGA gracefully and intelligently handles a URL such as

http://host.net//tmp/file

even if HTTP as a protocol is, in fact, not available at host.net, but for example
the FTP protocol is.

However, this innocently looking problem has far reaching consequences, and in
fact is, to the best of our knowledge, unresolved. Consider the following server
setup on host.net:

saga-core-wg@ogf.org 28

GFD-R-P.90 General Design Considerations May 12, 2009

FTP server root: /var/ftp/pub/
HTTP server root: /var/http/htdocs/

The entities described by the two URLs

http://host.net//tmp/file
ftp://host.net//tmp/file

hence refer to different files on host.net! Even worse: it might be (and often is)
impossible to access the HTTP file space via the FTP service, and vice versa.

Similar considerations hold for file names relative to the user’s home directory.
Consider:

http://host.net/~user/tmp/file

This URL may point to

file:////home/user/public_html/tmp/file

and not, as could have been expected, to

file:////home/user/tmp/file

Hence, a reliable translation of URLs between different protocols (or protocol
schemes) is only possible, if the exact server setup of all affected protocol serving
services is known. This knowledge is often not available.

Further, even if a correct translation of protocols and hence URLs suceeds, there
is no guarantee that the referred file is actually available via this protocol, with
the same permissions etc. – this again depends on the service configuration.

SAGA ’solution’ to the ’URL Problem’

1. A SAGA compliant implementation MAY be able to transparently trans-
late URLs, but is not required to do so. Further, this behaviour CAN vary
during the runtime of the program.

2. A SAGA compliant implementation MUST provide the translate method
as part of the saga::url class. That method allows the end user to check
if a specific URL translation can be performed.

3. The SAGA API specification allows the use of the placeholder ’any’ (as in
any://host.net/tmp/file). A SAGA compliant implementation MAY
be able to choose a suitable protocol automatically, but CAN decline the
URL with an IncorrectURL exception.

4. Abstract name spaces, such as the name space used by replica systems, or

saga-core-wg@ogf.org 29

GFD-R-P.90 General Design Considerations May 12, 2009

by grid file systems, hide this problem efficiently and transparently from
the end user. We encourage implementations to use such name spaces.

5. A URL which cannot be handled for the stated reasons MUST cause the
exception IncorrectURL to be thrown. Note that this holds only for
those cases where a given URL cannot be handled as such, e.g. because
the protocol is unsupported, any:// cannot be handled, or a necessary
URL translation failed. The detailed error message SHOULD give advice
to the end user which protocols are supported, and which types of URL
translations can or cannot be expected to work. The IncorrectURL ex-
ception is thus listed on all methods which handle URLs as parameters,
but is not individually motivated in the detailed method specifications.

6. Any other error related to the URL (e.g. invalid file name) MUST be
indicated by the exceptions as listed in the method specifications in this
document (in most cases a BadParameter exception) is applicable.

We are aware that this ’solution’ is sub-optimal, but we also think that, if
cleverly implemented with the help of information services, service level setup
information, and global name spaces, this approach can simplify the use of
the SAGA API significantly. We will carefully watch the work of related OGF
groups, such as the global naming efforts in the Grid FileSystem Working Group
(GFS-WG), and will revise this specification if any standard proposal is put
forward to address the described problem.

Note that SAGA, unlike other Grid APIs such as the GAT[2], is fully adopting
RFC 3986[5]: URLs which include a scheme can, according to that RFC, not
express relative locations. The following two URLs are thus expected to point
to the same location:

gridftp://remote.host.net/bin/date
gridftp://remote.host.net//bin/date

2.12 Miscellaneous Issues

2.12.1 File Open Flags

For files, flags are used to specify if an open is truncating, creating, and/or
appending to an existing entity. For jobs, and in particular for file staging, the
LSF scheme is used (e.g. ’url >> local_file’ for appending a remote file to a
local one after staging). We are aware of this seeming inconsistency. However,
we think that a forceful unification of both schemes would be more awkward to
use, and at the same time less useful.

saga-core-wg@ogf.org 30

GFD-R-P.90 General Design Considerations May 12, 2009

2.12.2 Byte Ordering

Applications on grids as inherent homogeneous environments will often face
different native byte orders on different resources. In general, SAGA always
operates in the locally native byte ordering scheme, unless explicitely notified.
The byte oriented I/O interfaces (files and streams) are naturally ignorant to
the byte ordering. Finally, any byte order conversion on data exchange beween
two SAGA applications, e.g. by using files, streams or remote procedure calls,
must be taken care of in application space, unless noted otherwise.

saga-core-wg@ogf.org 31

GFD-R-P.90 SAGA API Specification – Look & Feel May 12, 2009

3 SAGA API Specification – Look & Feel

The SAGA API consists of a number of interface and class specifications. The
relation between these is shown in Figure 2 on Page 33. This figure also marks
which interfaces are part of the SAGA Look-&-Feel, and which classes are com-
bined into packages.

This and the next section form the normative part of the SAGA Core API spec-
ification. It has one subsection for each package, starting with those interfaces
that define the SAGA Look-&-Feel, followed by the various, capability-providing
packages: job management, name space management, file management, replica
management, streams, and remote procedure call.

The SAGA Look-&-Feel is defined by a number of classes and interfaces which
ensure the non-functional properties of the SAGA API (see [18] for a complete
list of non-functional requirements). These interfaces and classes are intended
to be used by the functional SAGA API packages, and are hence thought to be
orthogonal to the functional scope of the SAGA API.

Section 2.4 contains important notes on the extent the SAGA Look-&-Feel needs
to be implemented by compliant implementations. The NotImplemented excep-
tion is listed for a number of method calls, but MUST only be used under the
circumstances described in 2.4. Similarly, the IncorrectURL exception is listed
when appropriate, but is not, in general, separately motivated or detailed – the
semantic conventions for this exception are as defined in Section 2.11.

saga-core-wg@ogf.org 32

GFD-R-P.90 SAGA API Specification – Look & Feel May 12, 2009

E
rr

o
r

H
a

n
d

li
n

g

F
u

n
c

ti
o

n
a

l
P

a
c

k
a

g
e

s
R

e
p

li
c

a
 M

a
n

a
g

e
m

e
n

t
N

a
m

e
 S

p
a

c
e

 M
n

g
m

t.
F

il
e

 M
a

n
a

g
e

m
e

n
t

S
tr

e
a

m
s

J
o

b
 M

a
n

a
g

e
m

e
n

t

L
o

o
k

 &
 F

e
e

l

T
a

s
k

 M
o

d
e

l
M

o
n

it
o

ri
n

g
 M

o
d

e
l

R
P

C

B
a

s
e

 O
b

je
c

t
A

tt
ri

b
u

te
 I

n
te

rf
a

c
e

I/
O

S
e

c
u

ri
ty

e
r
r
o
r
_
h
a
n
d
.

i
n
t
e
r
f
a
c
ei
m
p
l
e
m
e
n
t
s

i
n
h
e
r
i
t
s

c
l
a
s
s

a
s
y
n
c

r
p
c

m
e
t
r
i
c

t
a
s
k
_
c
o
n
t
.

t
a
s
k

s
t
e
e
r
a
b
l
e

m
o
n
i
t
o
r
a
b
l
e

c
a
l
l
b
a
c
k

j
o
b
_
s
e
r
v
i
c
e

j
o
b

j
o
b
_
s
e
l
f

l
o
g
i
c
a
l
_
f
i
l
e

n
s
_
d
i
r
e
c
t
o
r
y

f
i
l
e

s
t
r
e
a
m

s
t
r
e
a
m
_
s
e
r
v
.

n
s
_
e
n
t
r
y

d
i
r
e
c
t
o
r
y

l
o
g
i
c
a
l
_
d
i
r
.

j
o
b
_
d
e
s
c

i
o
v
e
c

p
a
r
a
m
e
t
e
r

c
o
n
t
e
x
t

s
e
s
s
i
o
n

p
e
r
m
i
s
s
i
o
n
s

U
R
L

b
u
f
f
e
r

a
t
t
r
i
b
u
t
e

o
b
j
e
c
t

e
x
c
e
p
t
i
o
n

Figure 2: The SAGA class and interface hierarchy.
added URL class, moved iovec and parameter.

saga-core-wg@ogf.org 33

GFD-R-P.90 SAGA Error Handling May 12, 2009

3.1 SAGA Error Handling

Note that these changes to the SAGA error handling should be backward com-
patible to the original specification, as far as they do not correct errors.

All objects in SAGA implement the error_handler interface, which allows
a user of the API to query for the latest error associated with a SAGA ob-
ject (pull). In languages with exception-handling mechanisms, such as Java,
C++ and Perl, the language binding MAY allow exceptions to be thrown in-
stead. If an exception handling mechanism is included in a language bind-
ing, the error handler MUST NOT be included in the same binding. Bind-
ings for languages without exception handling capabilities MUST stick to the
error_handler interface described here, but MAY define additional language-
native means for error reporting. This document describes error conditions in
terms of exceptions.

For objects implementing the error_handler interface, each synchronous method
invocation on that object resets any error caused by a previous method invoca-
tion on that object. For asynchronous operations, the error handler interface is
provided by the task instance performing the operation, and not by the object
which created the task. If an error occurs during object creation, then the error
handler interface of the session the object was to be created in will report the
error.

In languages bindings where this is appropriate, some API methods MAY return
POSIX errno codes for errors. This is the case in particular for read(), write()
and seek(), for saga::file and saga::stream. The respective method de-
scriptions provide explicit details of how errno error codes are utilized. In any
case, whenever numerical errno codes are used, they have to be conforming to
POSIX.1 [21].

Each SAGA API call has an associated list of exceptions it may throw. These
exceptions all extend the saga::exception class described below. The SAGA
implementation MUST NOT throw any other SAGA exception on that call.

SAGA exceptions can be hierarchical – for details, see below.

saga-core-wg@ogf.org 34

GFD-R-P.90 SAGA Error Handling May 12, 2009

3.1.1 Specification

package saga.error
{
enum exception_type
{
IncorrectURL = 1,
BadParameter = 2,
AlreadyExists = 3,
DoesNotExist = 4,
IncorrectState = 5,
PermissionDenied = 6,
AuthorizationFailed = 7,
AuthenticationFailed = 8,
Timeout = 9,
NoSuccess = 10,
NotImplemented = 11

}

class exception
{
CONSTRUCTOR (in object obj,

in string message,
out exception e);

CONSTRUCTOR (in string message,
out exception e);

DESTRUCTOR (void);

// top level exception information
get_message (out string message);
get_object (out object obj);
get_type (out exception_type t);

// recursive exception information
get_all_exceptions (out array<exception> elist);
get_all_messages (out array<string> mlist);

}

class incorrect_url : extends saga::exception { }
class bad_parameter : extends saga::exception { }
class already_exists : extends saga::exception { }
class does_not_exist : extends saga::exception { }
class incorrect_state : extends saga::exception { }

saga-core-wg@ogf.org 35

GFD-R-P.90 SAGA Error Handling May 12, 2009

class permission_denied : extends saga::exception { }
class authorization_failed : extends saga::exception { }
class authentication_failed : extends saga::exception { }
class timeout : extends saga::exception { }
class no_success : extends saga::exception { }
class not_implemented : extends saga::exception { }

interface error_handler
{
has_error (out boolean has_error);
get_error (out exception error);

}
}

3.1.2 Specification Details

SAGA provides a set of well-defined exceptions (error states) which MUST be
supported by the implementation. As to wether these error states are critical,
non-critical or fatal depends on, (a) the specific implementation (one imple-
mentation might be able to recover from an error while another implementation
might not), and (b) the specific application use case (e.g. the error ’file does
not exist’ may or may not be fatal, depending on whether the application really
needs information from that file).

In laguage bindings where this is appropriate, some SAGA methods do not raise
exceptions on certain error conditions, but return an error code instead. For
example, file.read() might return an error code indicating that not enough
data is available right now. The error codes used in SAGA are based on the
definitions for errno as defined by POSIX, and MUST be used in a semantically
identical manner.

For try/catch blocks which cover multiple API calls, on multiple SAGA ob-
jects, the get object() method allows to retrieve the object which caused the
exception to be thrown. In general, it will not be possible, however, to deter-
mine the method call which caused the exception post mortem. get object()
can also be used for exceptions raised by asynchronous method calls (i.e. on
task::rethrow(), to retrieve the object on which that task instance was cre-
ated.

This specification defines the set of allowed exceptions for each method explicitly
– this set is normative: other SAGA exceptions MUST NOT be thrown on
these methods. Also, implementations MUST NOT specify or use other SAGA
exceptions than listed in this specification.

saga-core-wg@ogf.org 36

GFD-R-P.90 SAGA Error Handling May 12, 2009

Additionally, an implementation MAY throw other, non-SAGA exceptions, e.g.
on system errors, resource shortage etc. These exception SHOULD only signal
local errors, raised by the SAGA implementation, not errors raised by the Grid
backend. SAGA implementations MUST, translate grid middleware-specific
exceptions and error conditions into SAGA exceptions whenever possible, in
order to avoid middleware specific exception handling on applications level –
that would clearly contradict the intent of SAGA to be middleware independent.

In the SAGA language bindings, exceptions are either derived from the base
SAGA exception types, or are error codes with that specific name etc. Note
that the detailed description for saga::exception below does not list the
CONSTRUCTORs and DESTRUCTORs for all exception classes individually, but only
for the base exception class. The individual exception classes MUST NOT add
syntax or semantics to the base exception class.

The string returned by get_message() MUST be formatted as follows:

"<ExceptionName>: message"

where <ExceptionName> MUST match the literal exception type enum as de-
fined in this document, and message SHOULD be a detailed, human readable
description of the cause of the exception. The error message SHOULD include
information about the middleware binding, and information about the remote
entities and remote operation which caused the exception. It CAN contain new-
lines. When messages from multiple errors are included in the returned string,
then each of these messages MUST follow the format defined above, and the in-
dividual messages MUST be delimited by newlines. Also, intentation SHOULD
be used to structure the output for long messages.

saga-core-wg@ogf.org 37

GFD-R-P.90 SAGA Error Handling May 12, 2009

Hierarchical SAGA Exceptions

SAGA implemenations may be late binding, i.e. may allow to interface to
multiple backends at the same time, for a single SAGA API call. In such im-
plementations, more than one exception may be raised for a single API call.
This specification proposes an algorithm to determine the most ’interesting’ ex-
ceptions, which is to be throw by the API call. SAGA implementations MAY
implement other algorithms, but MUST document how it determines the ex-
ception to be thrown from the list of backend exceptions. Further, the thrown
exception MUST allow for inspection of the complete list of backend exceptions,
via get all exceptions(), and get all messages(). Further, the error mes-
sage of the thrown (top level) exception MUST include information about the
other (lower level) exceptions.

In the exception list returned by get all exceptions(), the top level (thrown)
exception MUST be included again, as first member of the list, to allow for a
uniform handling of all exceptions. To avoid infinite recursion, however, that
copy MUST NOT have any subexceptions, i.e. the list returned by a call to
get all exceptions() MUST be empty. See at the end of this section for an
extensive example.

Enum exception type

The exception types available in SAGA are listed below, with a number of
explicit examples on when exceptions should be thrown. These examples are not
normative, but merely illustrative. As discussed above, multiple exceptions may
apply to a single SAGA API call, in the case of late binding implementations.
In that case, the implementation must pick one of the exceptions to be thrown
as ’top level’ exception, with all other exceptions as subordinate ’lower level’
exceptions. In general, that top level exception SHOULD be that exception
which is most interesting to the user (aka application). Although we are fully
aware of the fact that the notion of ’interesting’ is vague, and highly context
dependent, we propose the following mechanism to derive the top level exception
– implementation MAY use other schemes to determine the top level exception,
but MUST document that mechanism:

1. NotImplemented is only allowed as top level exception, if no other excep-
tion types are present.

2. Exceptions from a backend which previously performed a successfull API
call on the same remote entity, or on the same SAGA object instance, are
more interesting than exceptions from other backends, and are in partic-
ular more interesting than exceptions from backends which did not yet
manage to perform any successfull operation on that entity or instance.

saga-core-wg@ogf.org 38

GFD-R-P.90 SAGA Error Handling May 12, 2009

3. Errors which get raised early when executing the SAGA API call are less
interesting than errors which occur late. E.g. BadParameter from the
FTP backend is less interesting than PermissionDenied from the WWW
backend, as the WWW backend seemed to at least be able to handle the
parameters, to access the backend server, and to perform authentication,
whereas the FTP backend bailed out early, on the functions parameter
check.

In respect to item 3 above, the list of exceptions below is sorted, with the most
specific (i.e. interesting) exceptions listed first and least specific last. This list
is advisory, i.e. implementation MAY use a different sorting, which also may
vary in differrent contexts.

.

• IncorrectURL

This exception is thrown if a method is invoked with a URL argument that could
not be handled. This error specifically indicates that an implementation cannot
handle the specified protocol, or that access to the specified entity via the given
protocol is impossible. The exception MUST NOT be used to indicate any other
error condition. See also the notes to ’The URL Problem’ in Section 2.11.

Examples:

• An implementation based on gridftp might be unable to handle http-based
URLs sensibly, and might be unable to translate them into gridftp based
URLs internally. The implementation should then throw an IncorrectURL
exception if it encounters a http-based URL.

• A URL is well formed, but includes characters or path elements which are
not supported by the SAGA implementation or the backend. Then, an
IncorrectURL exception is thrown, with detailed information on why the
URL could not be used.

• BadParameter

This exception indicates that at least one of the parameters of the method call
is ill-formed, invalid, out of bounds or otherwise not usable. The error message
MUST give specific information on what parameter caused the exception, and
why.

Examples:

• a specified context type is not supported by the implementation

saga-core-wg@ogf.org 39

GFD-R-P.90 SAGA Error Handling May 12, 2009

• a file name specified is invalid, e.g. too long, or contains characters which
are not allowed

• an ivec for scattered read/write is invalid, e.g. has offsets which are out
of bounds, or refer to non-allocated buffers

• a buffer to be written and the specified lengths are incompatible
• an enum specified is not known
• flags specified are incompatible (ReadOnly and Truncate)

• AlreadyExists

This exception indicates that an operation cannot succeed because an entity to
be created or registered already exists or is already registered, and cannot be
overwritten. Explicit flags on the method invocation may allow the operation
to succeed, e.g. if they indicate that Overwrite is allowed.

Examples:

• a target for a file move already exists
• a file to be created already exists
• a name to be added to a logical file is already known
• a metric to be added to a object has the same name as an existing metric

on that object

• DoesNotExist

This exception indicates that an operation cannot succeed because a required
entity is missing. Explicit flags on the method invocation may allow the opera-
tion to succeed, e.g. if they indicate that Create is allowed.

Examples:

• a file to be moved does not exist
• a directory to be listed does not exist
• a name to be deleted is not in a replica set
• a metric asked for is not known to the object
• a context asked for is not known to the session
• a task asked for is not in a task container
• a job asked for is not known by the backend
• an attribute asked for is not supported

saga-core-wg@ogf.org 40

GFD-R-P.90 SAGA Error Handling May 12, 2009

• IncorrectState

This exception indicates that the object a method was called on is in a state
where that method cannot possibly succeed. A change of state might allow the
method to succeed with the same set of parameters.

Examples:

• calling read on a stream which is not connected
• calling run on a task which was canceled
• calling resume on a job which is not suspended

• PermissionDenied

An operation failed because the identity used for the operation did not have
sufficient permissions to perform the operation successfully. The authentication
and authorization steps have been completed successfully.

Examples:

• attempt to change or set a ReadOnly attribute
• attempt to change or update a ReadOnly metric
• calling write on a file which is opened for read only
• calling read on a file which is opened for write only
• although a user could login to a remote host via GridFTP and could be

mapped to a local user, the write on /etc/passwd failed.

• AuthorizationFailed

An operation failed because none of the available contexts of the used session
could be used for successful authorization. That error indicates that the resource
could not be accessed at all, and not that an operation was not available due to
restricted permissions. The authentication step has been completed successfully.

The differences between AuthorizationFailed and PermissionDenied are, admit-
tedly, subtle. Our intention for introducing both exceptions was to allow to dis-
tinguish between administrative authorization failures (on VO and DN level),
and backend related authorization failures (which can often be resolved on user
level).

The AuthorizationFailed exception SHOULD be thrown when the backend does
not allow the execution of the requested operation at all, whereas the Permis-
sionDenied exception SHOULD be thrown if the operation was executed, but
failed due to insufficient privileges.

saga-core-wg@ogf.org 41

GFD-R-P.90 SAGA Error Handling May 12, 2009

Examples:

• although a certificate was valid on a remote GridFTP server, the distin-
guished name could not be mapped to a valid local user id. A call to
file.copy() should then throw an AuthorizationFailed exception.

• AuthenticationFailed

An operation failed because none of the available session contexts could suc-
cessfully be used for authentication.

Examples:

• a remote host does not accept a X509 certificate because the respective
CA is unknown there. A call to file.copy() should then throw an Authen-
ticationFailed exception.

• Timeout

This exception indicates that a remote operation did not complete successfully
because the network communication or the remote service timed out. The time
waited before an implementation raises a Timeout exception depends on im-
plementation and backend details, and SHOULD be documented by the imple-
mentation. This exception MUST NOT be thrown if a timed wait() or similar
method times out. The latter is not an error condition and gets indicated by
the method’s return value.

saga-core-wg@ogf.org 42

GFD-R-P.90 SAGA Error Handling May 12, 2009

Examples:

• a remote file authorization request timed out
• a remote file read operation timed out
• a host name resolution timed out
• a started file transfer stalled and timed out
• an asynchronous file transfer stalled and timed out

• NoSuccess

This exception indicates that an operation failed semantically, e.g. the operation
was not successfully performed. This exception is the least specific exception
defined in SAGA, and CAN be used for all error conditions which do not indicate
a more specific exception specified above. The error message SHOULD always
contain some further detail, describing the circumstances which caused the error
condition.

Examples:

• a once open file is not available right now
• a backend response cannot be parsed
• a remote procedure call failed due to a corrupted parameter stack
• a file copy was interrupted mid-stream, due to shortage of disk space

• NotImplemented

If a method is specified in the SAGA API, but cannot be provided by a specific
SAGA implementation, this exception MUST be thrown. Object constructors
can also throw that exception, if the respective object is not implemented by
that SAGA implementation at all. See also the notes about compliant imple-
mentations in Section 2.4.

Examples:

• An implementation based on Unicore might not be able to provide streams.
The saga::stream_server constructor should throw a NotImplemented
exception for such an implementation.

Class exception

This is the exception base class inherited by all exceptions thrown by a SAGA
object implementation. Wherever this specification specifies the occurence of

saga-core-wg@ogf.org 43

GFD-R-P.90 SAGA Error Handling May 12, 2009

an instance of this class, the reader MUST assume that this could also be an
instance of any subclass of saga::exception, as specified by this document.

Note that saga::exception does not implement the saga::object interface.

- CONSTRUCTOR
Purpose: create the exception
Format: CONSTRUCTOR (in object obj,

in string message
out exception e);

Inputs: obj: the object associated with the
exception.

message: the message to be associated
with the new exception

InOuts: -
Outputs: e: the newly created exception
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

- CONSTRUCTOR
Purpose: create the exception, without associating

a saga object instance
Format: CONSTRUCTOR (in string message

out exception e);
Inputs: message: the message to be associated

with the new exception
InOuts: -
Outputs: e: the newly created exception
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

- DESTRUCTOR
Purpose: destroy the exception
Format: DESTRUCTOR (in exception e);
Inputs: e: the exception to destroy
InOuts: -

saga-core-wg@ogf.org 44

GFD-R-P.90 SAGA Error Handling May 12, 2009

Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

- get_message
Purpose: gets the message associated with the exception
Format: get_message (out string message);
Inputs: -
InOuts: -
Outputs: message: the error message
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: - the returned string MUST be formatted as

described earlier in this section.

- get_object
Purpose: gets the SAGA object associated with exception
Format: get_object (out object obj);
Inputs: -
InOuts: -
Outputs: obj: the object associated with the

exception
PreCond: - an object was associated with the exception

during construction.
PostCond: -
Perms: -
Throws: DoesNotExist

NoSuccess
Notes: - the returned object is a shallow copy of the

object which was used to call the method which
caused the exception.

- if the exception is raised in a task, e.g. on
task.rethrow(), the object is the one which the
task was created from. That allows the
application to handle the error condition
without the need to always keep track of
object/task relationships.

- an ’DoesNotExist’ exception is thrown when no
object is associated with the exception, e.g.

saga-core-wg@ogf.org 45

GFD-R-P.90 SAGA Error Handling May 12, 2009

if an ’NotImplemented’ exception was raised
during the construction of an object.

- get_type
Purpose: gets the type associated with the exception
Format: get_type (out exception_type type);
Inputs: -
InOuts: -
Outputs: type: the error type
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

- get_all_exceptions
Purpose: gets list of lower level exceptions
Format: get_all_exceptions (out array<exception> el);
Inputs: -
InOuts: -
Outputs: el: list of exceptions
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: - a copy of the exception upon which this

method is called MUST be the first element
of the list, but that copy MUST NOT return
any exceptions when get_all_exceptions()
is called on it.

- get_all_messages
Purpose: gets list of lower level error messages
Format: get_all_messages (out array<string> ml);
Inputs: -
InOuts: -
Outputs: ml: list of error messages
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: - a copy of the error message of the exception

upon which this method is called MUST be the
first element of the list.

saga-core-wg@ogf.org 46

GFD-R-P.90 SAGA Error Handling May 12, 2009

Interface error handler

The error handler interface allows the application to retrieve exceptions. An
alternative approach would be to return an error code for all method invocations.
This, however, would put a significant burdon on languages with exception han-
dling, and would also complicate the management of return values. Language
bindings for languages with exception support will thus generally not implement
the error handler interface, but use exceptions instead.

Implementations which are using the interface maintain an internal error state
for each class instance providing the interface. That error state is false by
default, and is set to true whenever an method invocation meets an error con-
dition which would, according to this specification, result in an exception to be
thrown.

The error state of an object instance can be tested with has errror(), and
the respective exception can be retrieved with get error(). The get error()
call clears the error state (i.e. resets it to false). Note that there is no other
mechanism to clear an error state – that means in particular that any successful
method invocation on the object leaves the error state unchanged. If two or more
subsequent operations on an object instance fail, then only the last exception
is returned on get error(). That mechanism allows to execute a number of
calls, and to check if they resulted in any error condition, somewhat similar to
try/catch statements in languages with exception support. However, it must
be noted that an exception does not cause subsequent methods to fail, and does
not inhibit their execution.

If get error() is called on an instance whose error state is false, an Incor-
rectState exception is returned, which MUST state explicitely that the get -
error() method has been invoked on an object instance which did not encounter
an error condition.

- has_error
Purpose: tests if an object method caused an exception
Format: has_error (out bool has_error);
Inputs: -
InOuts: -
Outputs: has_error: indicates that an exception was

caught.
PreCond: -
PostCond: - the internal error state is unchanged.
Perms: -
Throws: -
Notes: -

saga-core-wg@ogf.org 47

GFD-R-P.90 SAGA Error Handling May 12, 2009

- get_error
Purpose: retrieve an exception catched during a member

method invocation.
Format: get_error (out exception e);
Inputs: -
InOuts: -
Outputs: e: the caught exception
PreCond: - the internal error state is true.
PostCond: - the internal error state is false.
Perms: -
Throws: NotImplemented

IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the method throws the error/exception it is
reporting about.

- an ’IncorrectState’ exception is also thrown
if the internal error state is false.

saga-core-wg@ogf.org 48

GFD-R-P.90 SAGA Error Handling May 12, 2009

3.1.3 Examples

Code Example

1 //

2 //

3 // C++ examples for exception handling in SAGA

4 //

5 //

6

7 //

8 //

9 // simple exception handling

10 //

11 int main ()

12 {

13 try

14 {

15 saga::file f ("file://remote.host.net/etc/passwd");

16 f.copy ("file:///usr/tmp/passwd.bak");

17 }

18

19 catch (const saga::exception::PermissionDenied & e)

20 {

21 std::cerr << "SAGA error: No Permissions!" << std::endl;

22 return (-1);

23 }

24

25 catch (const saga::exception & e)

26 {

27 std::cerr << "SAGA error: "

28 << e.get_message ()

29 << std::endl;

30 return (-1);

31 }

32

33 return 0;

34 }

35

36

37 //

38 //

39 // recursive exception handling

40 //

41 int main ()

42 {

43 try

44 {

45 saga::file f ("any://remote.host.net/etc/passwd");

46 f.copy ("any:///usr/tmp/passwd.bak");

saga-core-wg@ogf.org 49

GFD-R-P.90 SAGA Error Handling May 12, 2009

47 }

48

49 // handle a specific error condition

50 catch (const saga::permission_denied & e)

51 {

52 ...

53 }

54

55 // handle all error conditions

56 catch (const saga::exception & e)

57 {

58 std::cerr << e.what () << std::endl;

59 // prints complete set of error messages:

60 // DoesNotExist: ftp adaptor: /etc/passwd does not exist

61 // DoesNotExist: ftp adaptor: /etc/passwd: does not exist

62 // DoesNotExist: www adaptor: /etc/passwd: access denied

63

64 // handle backend exceptions individually

65 std::list <saga::exception> el = e.get_all_exceptions ();

66

67 for (int i = 0; i < el.size (); i++)

68 {

69 saga::exception esub = el[i];

70 std::list <saga::exception> esubl = esub.get_all_exceptions ();

71 // subl MUST be empty for i==0

72 // subl MAY be empty for i!=0

73

74 switch (sub.get_type ())

75 {

76 // handle individual exceptions

77 case saga::exception::DoesNotExist:

78 ...

79 case saga::exception::PermissionDenied:

80 ...

81 }

82 }

83

84

85 // handle backend exception messages individually

86 std::list <saga::exception> ml = e.get_all_messages ();

87

88 for (int i = 0; i < ml.size (); i++)

89 {

90 std::cerr << ml[i] << std::endl;

91 }

92 // the loop above will result in

93 // DoesNotExist: ftp adaptor: /etc/passwd: does not exist

94 // DoesNotExist: www adaptor: /etc/passwd: access denied

95 }

96

saga-core-wg@ogf.org 50

GFD-R-P.90 SAGA Error Handling May 12, 2009

97 return 0;

98 }

99

100

101 //

102 //

103 // exception handling for tasks

104 //

105 int main ()

106 {

107 saga::file f ("file://remote.host.net/etc/passwd");

108

109 saga::task t = f.copy <saga::task::Async>

110 ("file:///usr/tmp/passwd.bak");

111

112 t.wait ();

113

114 if (t.get_state () == saga::task::Failed)

115 {

116 try {

117 task.rethrow ();

118 }

119 catch (const saga::exception & e)

120 {

121 std::cout << "task failed: "

122 << e.what ()

123 << std::endl;

124 }

125 return (-1);

126 }

127 return (0);

128 }

saga-core-wg@ogf.org 51

GFD-R-P.90 SAGA Base Object May 12, 2009

3.2 SAGA Base Object

The SAGA object interface provides methods which are essential for all SAGA
objects. It provides a unique ID which helps maintain a list of SAGA objects
at the application level as well as allowing for inspection of objects type and its
associated session.

The object id MUST be formatted as UUID, as standardized by the Open
Software Foundation (OSF) as part of the Distributed Computing Environment
(DCE). The UUID format is also described in the IETF RFC-4122 [16].

Note that there are no object IDs for the various SAGA exceptions, but only
one ID for the saga::exception base class. Also, it is not possible to inspect
a SAGA object instance for the availability of certain SAGA interfaces, as they
are fixed and well defined by the SAGA specification. Language bindings MAY,
however, add such inspection, if that is natively supported by the language.

3.2.1 Specification

package saga.object
{
enum object_type
{
URL = 1,
Buffer = 2,
Session = 3,
Context = 4,
Task = 5,
TaskContainer = 6,
Metric = 7,
NSEntry = 8,
NSDirectory = 9,
IOVec = 10,
File = 11,
Directory = 12,
LogicalFile = 13,
LogicalDirectory = 14,
JobDescription = 15,
JobService = 16,
Job = 17,
JobSelf = 18,
StreamService = 19,
Stream = 20,

saga-core-wg@ogf.org 52

GFD-R-P.90 SAGA Base Object May 12, 2009

Parameter = 21,
RPC = 22,

}

interface object : implements saga::error-handler
{
get_id (out string id);
get_type (out object_type type);
get_session (out session s);

// deep copy
clone (out object clone);

}
}

3.2.2 Specification Details

Enum object type

The SAGA object type enum allows for inspection of SAGA object instances.
This, in turn, allows to treat large numbers of SAGA object instances in con-
tainers, without the need to create separate container types for each specific
SAGA object type. Bindings to languages that natively support inspection on
object types MAY omit this enum and the get type() method.

SAGA extensions which introduce new SAGA objects (i.e. introduce new classes
which implement the saga::object interface) MUST define the appropriate
object type enums for inspection. SAGA implementations SHOULD support
these enums for all packages which are provided in that implementation, even
for classes which are not implented.

Interface object

- get_id
Purpose: query the object ID
Format: get_id (out string id);
Inputs: -
InOuts: -
Outputs: id: uuid for the object

saga-core-wg@ogf.org 53

GFD-R-P.90 SAGA Base Object May 12, 2009

PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

- get_type
Purpose: query the object type
Format: get_type (out object_type type);
Inputs: -
InOuts: -
Outputs: type: type of the object
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

- get_session
Purpose: query the objects session
Format: get_session (out session s);
Inputs: -
InOuts: -
Outputs: s: session of the object
PreCond: - the object was created in a session, either

explicitly or implicitly.
PostCond: - the returned session is shallow copied.
Perms: -
Throws: DoesNotExist
Notes: - if no specific session was attached to the

object at creation time, the default SAGA
session is returned.

- some objects do not have sessions attached,
such as job_description, task, metric, and the
session object itself. For such objects, the
method raises a ’DoesNotExist’ exception.

// deep copy:

- clone
Purpose: deep copy the object
Format: clone (out object clone);

saga-core-wg@ogf.org 54

GFD-R-P.90 SAGA Base Object May 12, 2009

Inputs: -
InOuts: -
Outputs: clone: the deep copied object
PreCond: -
PostCond: - apart from session and callbacks, no other

state is shared between the original object
and it’s copy.

Perms: -
Throws: NoSuccess
Notes: - that method is overloaded by all classes

which implement saga::object, and returns
a deep copy of the respective class type
(the method is only listed here).

- the method SHOULD NOT cause any backend
activity, but is supposed to clone the client
side state only.

- the object id is not copied -- a new id MUST
be asigned instead.

- for deep copy semantics, see Section 2.

3.2.3 Examples

Code Example

1 // c++ example

2

3 // have 2 objects, streams and files, and do:

4 // - read 100 bytes

5 // - skip 100 bytes

6 // - read 100 bytes

7

8 int out;

9 char data1[100];

10 char data2[100];

11 char data[100];

12

13 saga::buffer buf1 (data1, 100);

14 saga::buffer buf2 (data2, 100);

15 saga::buffer buf;

16

17 // create objects

18 saga::file f (url[1]);

19 saga::stream s (url[2]);

20

21 // f is opened at creation, s needs to be connected

22 s.connect ();

saga-core-wg@ogf.org 55

GFD-R-P.90 SAGA Base Object May 12, 2009

23

24 // create tasks for reading first 100 bytes ...

25 saga::task t1 = f.read <saga::task> (100, buf1);

26 saga::task t2 = s.read <saga::task> (100, buf2);

27

28 // create and fill the task container ...

29 saga::task_container tc;

30

31 tc.add (t1);

32 tc.add (t2);

33

34 // ... and wait who gets done first

35 while (saga::task t = tc.wait (saga::task::Any))

36 {

37 // depending on type, skip 100 bytes then create a

38 // new task for the next read, and re-add to the tc

39

40 switch (t.get_object().get_type ())

41 {

42 case saga::object::File :

43 // point buf to results

44 buf = buf1;

45

46 // get back file object

47 saga::file f = saga::file (t.get_object ());

48

49 // skip for file type (sync seek)

50 saga::file (f.seek (100, SEEK_SET);

51

52 // create a new read task

53 saga::task t2 = f.read <saga::task> (100, buf1));

54

55 // add the task to the container again

56 tc.add (t2);

57

58 break;

59

60 case saga::object::Stream :

61 // point buf to results

62 buf = buf2;

63

64 // get back stream object

65 saga::stream s = saga::stream (t.get_object ());

66

67 // skip for stream type (sync read and ignore)

68 saga::stream (s.read (100, buf2);

69

70 // create a new read task

71 saga::task t2 = s.read <saga::task> (100, buf2));

72

saga-core-wg@ogf.org 56

GFD-R-P.90 SAGA Base Object May 12, 2009

73 // add the task to the container again

74 tc.add (t2);

75

76 break;

77

78 default:

79 throw exception ("Something is terribly wrong!");

80 }

81

82 std::cout << "found: ’" << out << " bytes: "

83 << buf.get_data ()

84 << std::endl;

85

86 // tc is filled again, we run forever, read/seeking from

87 // whatever we find after the wait.

88 }

saga-core-wg@ogf.org 57

GFD-R-P.90 SAGA URL Class May 12, 2009

3.3 SAGA URL Class

In many places in the SAGA API, URLs are used to reference remote entities.
In order to

• simplify the construction and the parsing of URLs on application level,

• allow for sanity checks within and outside the SAGA implementation,

• simplify and unify the signatures of SAGA calls which accept URLs,

a SAGA URL class is used. This class provides means to set and access the
various elements of a URL. The class parses the URL in conformance to RFC-
3986 [5].

In respect to the URL problem (stated in Section 2.11), the class provides
the method translate (in string scheme), which allows to translate a URL
from one scheme to another – with all the limitations mentioned in Section 2.11.

Note that resolving relative URLs (or, more specific, relative path components
in URLs) is often non-trivial. In particular, such resolution may need to be
deferred until the URL is used, as the resolution will usually depend on the
context of usage. If not otherwise specified in this document, a URL used in
some object method will be considered relative to the object’s CWD, if that is
available, or otherwise to the application’s working directory.

URLs require some characters to be escaped, in order to allow for the URLS to be
well formatted. The setter methods described below MUST perform character
escaping transparently. The getter methods MAY return escaped versions of
the set coponents. The string returned by the method get escaped() MUST
NOT contain unescaped characters.

This specification is silent about URL encoding issues – those are left to the
implementation.

For additional notes on URL usage and implementation, see Section 4.2.

package saga.url
{
class url : implements saga::object

// from object saga::error_handler
{
CONSTRUCTOR (in string url ,

out buffer obj);

saga-core-wg@ogf.org 58

GFD-R-P.90 SAGA URL Class May 12, 2009

DESTRUCTOR (in buffer obj);

set_string (in string url = "");
get_string (out string url);
get_escaped (out string url);

set_scheme (in string scheme = "");
get_scheme (out string scheme);

set_host (in string host = "");
get_host (out string host);

set_port (in int port = "");
get_port (out int port);

set_fragment (in string fragment = "");
get_fragment (out string fragment);

set_path (in string path = "");
get_path (out string path);

set_query (in string query = "");
get_query (out string query);

set_userinfo (in string userinfo = "");
get_userinfo (out string userinfo);

translate (in session s ,
in string scheme ,
out url url);

translate (in string scheme ,
out url url);

}
}

3.3.1 Specification Details

Class url

- CONSTRUCTOR
Purpose: create a url instance

saga-core-wg@ogf.org 59

GFD-R-P.90 SAGA URL Class May 12, 2009

Format: CONSTRUCTOR (in string url = "",
out url obj);

Inputs: url: initial URL to be used
InOuts: -
Outputs: url: the newly created url
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter

NoSuccess
Notes: - if the implementation cannot parse the given

url, a ’BadParameter’ exception is thrown.
- this constructor will never throw an
’IncorrectURL’ exception, as the
interpretation of the URL is not part of this
class’es functionality.

- the implementation MAY change the given
URL as long as that does not change the
resource the URL is pointing to. For
example, an implementation may normalize the
path element of the URL.

- DESTRUCTOR
Purpose: destroy a url
Format: DESTRUCTOR (in url obj);
Inputs: obj: the url to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

- set_string
Purpose: set a new url
Format: set_string (in string url = "");
Inputs: url: new url
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter

saga-core-wg@ogf.org 60

GFD-R-P.90 SAGA URL Class May 12, 2009

Notes: - the method is semantically equivalent to
destroying the url, and re-creating it with
the given parameter.

- the notes for the DESTRUCTOR and the
CONSTRUCTOR apply.

- get_string
Purpose: retrieve the url as string
Format: get_string (out string url);
Inputs: -
InOuts: -
Outputs: url: string representing the url
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: - the URL may be empty, e.g. after creating the

instance with an empty url parameter.
- the string may potentially contain unescaped
characters

- get_escaped
Purpose: retrieve the url as string with escaped

characters
Format: get_escaped (out string url);
Inputs: -
InOuts: -
Outputs: url: string representing the url
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: - the URL may be empty, e.g. after creating the

instance with an empty url parameter.
- as get_string(), but characters are escaped
where required.

- set_*
Purpose: set an url element
Format: set_<element> (in string <element> = "");

set_scheme (in string scheme = "");
set_host (in string host = "");
set_port (in int port = "");

saga-core-wg@ogf.org 61

GFD-R-P.90 SAGA URL Class May 12, 2009

set_fragment (in string fragment = "");
set_path (in string path = "");
set_query (in string query = "");
set_userinfo (in string userinfo = "");

Inputs: <element>: new url <element>
InOuts: -
Outputs: -
PreCond: -
PostCond: - the <element> part of the URL is updated.
Perms: -
Throws: BadParameter
Notes: - these calls allow to update the various

elements of the url.
- the given <element> is parsed, and if it is
either not well formed (see RFC-3986), or the
implementation cannot handle it, a
’BadParameter’ exception is thrown.

- if the given <element> is empty, it is removed
from the URL. If that results in an invalid
URL, a ’BadParameter’ exception is thrown.

- the implementation MAY change the given
elements as long as that does not change the
resource the URL is pointing to. For
example, an implementation may normalize the
path element.

- get_*
Purpose: get an url element
Format: get_<element> (out string <element>);

get_scheme (out string scheme);
get_host (out string host);
get_port (out int port);
get_fragment (out string fragment);
get_path (out string path);
get_query (out string query);
get_userinfo (out string userinfo);

Inputs: -
InOuts: -
Outputs: <element>: the url <element>
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: - these calls allow to retrieve the various

elements of the url.

saga-core-wg@ogf.org 62

GFD-R-P.90 SAGA URL Class May 12, 2009

- the returned <element> is either empty, or
guaranteed to be well formed (see RFC-3986).

- if the requested value is not known, or
unspecified, and empty string is returned,
or ’-1’ for get_port().

- translate
Purpose: translate an URL to a new scheme
Format: translate (in session s,

in string scheme,
out url url);

Inputs: s: session for AAA
scheme: the new scheme to

translate into
InOuts: -
Outputs: url: string representation of

the translated url
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter

NoSuccess
Notes: - the notes from section ’The URL Problem’ apply.

- if the scheme is not supported, a
’BadParameter’ exception is thrown.

- if the scheme is supported, but the url
cannot be translated to the scheme, a
’NoSuccess’ exception is thrown.

- if the url can be translated, but cannot be
handled with the new scheme anymore, no
exception is thrown. That can only be
detected if the returned string is again used
in a URL contructor, or with set_string().

- the call does not change the URL represented
by the class instance itself, but the
translation is only reflected by the returned
url string.

- the given session is used for backend
communication.

- translate
Purpose: translate an URL to a new scheme
Format: translate (in string scheme,

out url url);
Inputs: scheme: the new scheme to

saga-core-wg@ogf.org 63

GFD-R-P.90 SAGA URL Class May 12, 2009

translate into
InOuts: -
Outputs: url: string representation of

the translated url
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter

NoSuccess
Notes: - all notes from the overloaded translate()

method apply.
- the default session is used for backend
communication.

3.3.2 Examples

Code Example

1 // C++ URL examples

2

3 int main (int argc, char ** argv)

4 {

5 if (argc < 1)

6 return -1;

7

8 std::string url_string = argv[1];

9

10 try

11 {

12 saga::url url (url_string);

13

14 cout << "url : " << url.get_string () << endl;

15 cout << "===================================" << endl;

16 cout << "scheme : " << url.get_scheme () << endl;

17 cout << "host : " << url.get_host () << endl;

18 cout << "port : " << url.get_port () << endl;

19 cout << "fragment : " << url.get_fragment () << endl;

20 cout << "path : " << url.get_path () << endl;

21 cout << "query : " << url.get_query () << endl;

22 cout << "userinfo : " << url.get_userinfo () << endl;

23 cout << "===================================" << endl;

24

25 url.set_scheme ("ftp");

26 url.set_host ("ftp.remote.net");

27 url.set_port (1234);

28 url.set_fragment ("");

29 url.set_path ("/tmp/data");

saga-core-wg@ogf.org 64

GFD-R-P.90 SAGA URL Class May 12, 2009

30 url.set_query ("");

31 url.set_userinfo ("ftp:anon");

32

33 cout << "===================================" << endl;

34 cout << "scheme : " << url.get_scheme () << endl;

35 cout << "host : " << url.get_host () << endl;

36 cout << "port : " << url.get_port () << endl;

37 cout << "fragment : " << url.get_fragment () << endl;

38 cout << "path : " << url.get_path () << endl;

39 cout << "query : " << url.get_query () << endl;

40 cout << "userinfo : " << url.get_userinfo () << endl;

41 cout << "===================================" << endl;

42 cout << "url : " << url.get_string () << endl;

43 }

44 }

saga-core-wg@ogf.org 65

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

3.4 SAGA I/O Buffer

The SAGA API includes a number of calls which perform byte-level I/O opera-
tions, e.g. read()/write() on files and streams, and call() on rpc instances.
Future SAGA API extensions are expected to increase the number of I/O meth-
ods. The saga::buffer class encapsulates a sequence of bytes to be used for
such I/O operations – that allows for uniform I/O syntax and semantics over
the various SAGA API packages.

The class is designed to be a simple container containing one single element (the
opaque data). The data can either be allocated and maintained in application
memory, or can be allocated and maintained by the SAGA implementation.
The latter is the default, and applies when no data and no size are specified on
buffer construction.

For example, an application that has data memory already allocated and filled,
can create and use a buffer by calling

// create buffer with application memory
char data[1000];
saga::buffer b (data, 1000);

The same also works when used with the respective I/O operations:

// write to a file using a buffer with application memory
char data[1000] = ...;
file.write (saga::buffer (data, 1000));

Another application, which wants to leave the buffer memory management to
the SAGA implementation, can use a second constructor, which causes the
implementation to allocate memory on the fly:

// create empty, implementation managed buffer
saga::buffer b; // no data nor size given!

// read 100 byte from file into buffer
file.read (b, 100);

// get memory from SAGA
const char * data = b.get_data ();

// or use data directly
std::cout << "found: " << b.get_data () << std::endl;

Finally, an application can leave memory management to the implementation,
as above, but can specify how much memory should be allocated by the SAGA
implementation:

saga-core-wg@ogf.org 66

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

// create an implementation managed buffer of 100 byte
saga::buffer b (100);

// get memory from SAGA
const char * data = b.get_data ();

// fill the buffer
memcopy (data, source, b.get_size ());

// use data for write
file.write (b);

Application-managed memory MUST NOT be re- or de-allocated by the SAGA
implementation, and implementation-managed memory MUST NOT be re- or
de-allocated by the application. However, an application CAN change the con-
tent of implementation managed memory, and vice versa.

Also, a buffer’s contents MUST NOT be changed by the application while it is
in use, i.e. while any I/O operation on that buffer is ongoing. For asynchronous
operations, an I/O operation is considered ongoing if the associated saga::task
instance is not in a final state.

If a buffer is too small (i.e. more data are available for a read, or more data are
required for a write), only the available data are used, and an error is returned
approprietely. If a buffer is too large (i.e. read is not able to fill the buffer
completely, or write does not need the complete buffer), the remainder of the
buffer data MUST be silently ignored (i.e. not changed, and not set to zero).
The error reporting mechanisms as listed for the specific I/O methods apply.

Implementation-managed memory is released when the buffer is destroyed, (ei-
ther explicitly by calling close(), or implicitly by going out of scope). It MAY
be re-allocated, and reset to zero, if the application calls set_size().

Application-managed memory is released by the application. In order to sim-
plify memory management, language bindings (in particular for non-garbage-
collecting languages) MAY allow to register a callback on buffer creation which
is called on buffer destruction, and which can be used to de-allocate the buffer
memory in a timely manner. The saga::callback class SHOULD be used for
that callback – those language bindings SHOULD thus define the buffer to be
monitorable, i.e. it should implement the saga::monitorable interface. After
the callback’s invocation, the buffer MUST NOT be used by the implementation
anymore.

When calling set_data() for application-managed buffers, the implementa-
tion MAY copy the data internally, or MAY use the given data pointer as
is. The application SHOULD thus not change the data while an I/O operation
is in progress, and only consider the data pointer to be unused after another
set_data() has been called, or the buffer instance was destroyed.

saga-core-wg@ogf.org 67

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

Note that these conventions on memory management allow for zero- copy SAGA
implementations, and also allow to reuse buffer instances for multiple I/O oper-
ations, which makes, for example, the implementation of pipes and filters very
simple.

The buffer class is designed to be inherited by application-level I/O buffers,
which may, for example, add custom data getter and setter methods (e.g.
set_jpeg() and get_jpeg(). Such derived buffer classes can thus add both
data formats and data models transparently on top of SAGA I/O. For devel-
opers who program applications for a specific community it seems advisable to
standardize both data format and data model, and possibly to standardize de-
rived SAGA buffers – that work is, at the moment, out of scope for SAGA. The
SAGA API MAY, however, specify such derived buffer classes in later versions,
or in future extensions of the API.

A buffer does not belong to a session, and a buffer object instance can thus be
used in multiple sessions, for I/O operations on different SAGA objects.

Note that even if a buffer size is given, the len_in parameter to the SAGA I/O
operations supersedes the buffer size. If the buffer is too small, a ’BadParameter’
exception will be thrown on these operations. If len_in is ommitted and the
buffer size is not known, a ’BadParameter’ exception is also thrown.

Note also that the len_out parameter of the SAGA I/O operations has not
necessarily the same value as the buffer size, obtained with buffer.get_size().
A read may read only a part of the requested data, and a write may have written
only a part of the buffer. That is not an error, as is described in the notes for
the respective I/O operations.

SAGA language bindings may want to define a const-version of the buffer, in
order to allow for safe implementations. A non-const buffer SHOULD then
inherit the const buffer class, and add the appropriate constructor and setter
methods. The same holds for SAGA classes which inherit from the buffer.

Also, language bindings MAY allow buffer constructors with optional size pa-
rameter, if the size of the given data is implicitly known. For example, the C++
bindings MAY allow an buffer constructor buffer (std::string s). The same
holds for SAGA classes that inherit from the buffer.

saga-core-wg@ogf.org 68

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

3.4.1 Specification

package saga.buffer
{
class buffer : implements saga::object

// from object saga::error_handler
{
CONSTRUCTOR (in array<byte> data,

in int size,
out buffer obj);

CONSTRUCTOR (in int size = -1,
out buffer obj);

DESTRUCTOR (in buffer obj);

set_size (in int size = -1)
get_size (out int size);

set_data (in array<byte> data,
in int size);

get_data (out array<byte> data);

close (in float timeout = -0.0);
}

}

3.4.2 Specification Details

Class buffer

- CONSTRUCTOR
Purpose: create an I/O buffer
Format: CONSTRUCTOR (in array<byte> data,

in int size,
out buffer obj);

Inputs: data: data to be used
size: size of data to be used

InOuts: -
Outputs: buffer: the newly created buffer
PreCond: - size >= 0
PostCond: - the buffer memory is managed by the

saga-core-wg@ogf.org 69

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

application.
Perms: -
Throws: BadParameter

NoSuccess
Notes: - see notes about memory management.

- if the implementation cannot handle the
given data pointer or the given size, a
’BadParameter’ exception is thrown.

- later method descriptions refer to this
CONSTRUCTOR as ’first CONSTRUCTOR’.

- CONSTRUCTOR
Purpose: create an I/O buffer
Format: CONSTRUCTOR (in int size = -1,

out buffer obj);
Inputs: size: size of data buffer
InOuts: -
Outputs: buffer: the newly created buffer
PreCond: -
PostCond: - the buffer memory is managed by the

implementation.
- if size > 0, the buffer memory is allocated by
the implementation.

Perms: -
Throws: BadParameter

NoSuccess
Notes: - see notes about memory management.

- if the implementation cannot handle the
given size, a ’BadParameter’ exception is
thrown.

- later method descriptions refer to this
CONSTRUCTOR as ’second CONSTRUCTOR’.

- DESTRUCTOR
Purpose: destroy a buffer
Format: DESTRUCTOR (in buffer obj);
Inputs: obj: the buffer to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: - if the instance was not closed before, the

saga-core-wg@ogf.org 70

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

DESTRUCTOR performs a close() on the instance,
and all notes to close() apply.

- set_data
Purpose: set new buffer data
Format: set_data (in array<byte> data,

in int size);
Inputs: data: data to be used in buffer

size: size of given data
InOuts: -
Outputs: -
PreCond: -
PostCond: - the buffer memory is managed by the

application.
Perms: -
Throws: BadParameter

IncorrectState
Notes: - the method is semantically equivalent to

destroying the buffer, and re-creating it with
the first CONSTRUCTOR with the given size.

- the notes for the DESTRUCTOR and the first
CONSTRUCTOR apply.

- get_data
Purpose: retrieve the buffer data
Format: get_data (out array<byte> data);
Inputs: -
InOuts: -
Outputs: data: buffer data to retrieve
PreCond: -
PostCond: -
Perms: -
Throws: DoesNotExist

IncorrectState
Notes: - see notes about memory management

- if the buffer was created as implementation
managed (size = -1), but no I/O operation has
yet been successfully performed on the buffer,
a ’DoesNotExist’ exception is thrown.

- set_size
Purpose: set size of buffer
Format: set_size (in int size = -1);

saga-core-wg@ogf.org 71

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

Inputs: size: value for size
InOuts: -
Outputs: -
PreCond: -
PostCond: - the buffer memory is managed by the

implementation.
Perms: -
Throws: BadParameter

IncorrectState
Notes: - the method is semantically equivalent to

destroying the buffer, and re-creating it with
the second CONSTRUCTOR using the given size.

- the notes for the DESTRUCTOR and the second
CONSTRUCTOR apply.

- get_size
Purpose: retrieve the current value for size
Format: get_size (out int size);
Inputs: -
InOuts: -
Outputs: size value of size
PreCond: -
PostCond: -
Perms: -
Throws: IncorrectState
Notes: - if the buffer was created with negative size

with the second CONSTRUCTOR, or the size was
set to a negative value with set_size(), this
method returns ’-1’ if the buffer was not yet
used for an I/O operation.

- if the buffer was used for a successfull I/O
operation where data have been read into the
buffer, the call returns the size of the
memory which has been allocated by the
implementation during that read operation.

- close
Purpose: closes the object
Format: close (in float timeout = 0.0);
Inputs: timeout seconds to wait
InOuts: -
Outputs: -
Perms: -
PreCond: -

saga-core-wg@ogf.org 72

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

PostCond: - any operation on the object other than
close() or the DESTRUCTOR will cause
an ’IncorrectState’ exception.

Throws: -
Notes: - any subsequent method call on the object

MUST raise an ’IncorrectState’ exception
(apart from DESTRUCTOR and close()).

- if the current data memory is managed by the
implementation, it is freed.

- close() can be called multiple times, with no
side effects.

- if the current data memory is managed by the
application, it is not accessed anymore by the
implementation after this method returns.

- if close() is implicitly called in the
DESTRUCTOR, it will never throw an exception.

- for resource deallocation semantics, see
Section 2.

- for timeout semantics, see Section 2.

3.4.3 Examples

Code Example

1 //

2 // C++ I/O buffer examples

3 //

4

5 //

6 //

7 // general examples

8 //

9 // all following examples ignore the ssize_t return value, which

10 // should be the number of bytes successfully read

11 //

12 //

13 {

14 char data[x][y][z];

15 char* target = data + 200;

16 buffer b;

17

18 // the following four block do exactly the same, reading

19 // 100 byte (the read parameter supersedes the buffer size)

20

21 // apps managed memory

22 {

saga-core-wg@ogf.org 73

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

23 b.set_data (target);

24 stream.read (b, 100);

25 printf ("%100s", target);

26 }

27

28 {

29 b.set_data (target, 100);

30 stream.read (b);

31 printf ("%100s", target);

32 }

33

34 {

35 b.set_data (target, 100);

36 stream.read (b, 100);

37 printf ("%100s", target);

38 }

39

40 {

41 b.set_data (target, 200);

42 stream.read (b, 100);

43 printf ("%100s", target);

44 }

45

46

47 // now for impl managed memory

48 {

49 b.set_size (100);

50 stream.read (b);

51 printf ("%100s", b.get_data ());

52 }

53

54 {

55 b.set_size (-1);

56 stream.read (b, 100);

57 printf ("%100s", b.get_data ());

58 }

59

60 {

61 b.set_size (200);

62 stream.read (b, 100);

63 printf ("%100s", b.get_data ());

64 }

65

66

67 // these two MUST throw, even if there is

68 // enough memory available

69

70 // app managed memory

71 {

72 b.set_data (target, 100);

saga-core-wg@ogf.org 74

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

73 stream.read (b, 200);

74 }

75

76 // impl. managed memory

77 {

78 b.set_size (100);

79 stream.read (b, 200);

80 }

81 }

82

83

84 //

85 //

86 // the next 4 examples perform two reads from a stream,

87 // first 100 bytes, then 200 bytes.

88 //

89 //

90

91 // impl managed memory

92 {

93 {

94 buffer b;

95

96 stream.read (b, 100);

97 printf ("%100s", b.get_data ());

98

99 stream.read (b, 200);

100 printf ("%200s", b.get_data ());

101

102 } // b dies here, data are gone after that

103 }

104

105

106 // same as above, but with explicit c’tor

107 {

108 {

109 buffer b (100);

110 stream.read (b);

111 printf ("%100s", b.get_data ());

112

113 b.set_size (200);

114 stream.read (b);

115 printf ("%200s", b.get_data ());

116

117 } // b dies here, data are gone after that

118 }

119

120

121 // apps managed memory

122 {

saga-core-wg@ogf.org 75

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

123 char data[x][y][z]; // the complete data set

124 char * target = data; // target memory address to read into...

125 target += offset; // ... is somewhere in the data space.

126

127 stream.read (buffer (target, 100));

128 stream.read (buffer (target + 100, 200));

129

130 printf ("%300s", target);

131

132 // data must be larger than offset + 300, otherwise bang!

133 }

134

135

136 // same as above with explicit buffer c’tor

137 {

138 char data[x][y][z]; // the complete data set

139 char * target = data; // target memory address to read into...

140 target += 200; // ... is somewhere in the data space.

141

142 {

143 buffer b (target, 100);

144 stream.read (b);

145

146 b.set_data (target + 100, 200);

147 stream.read (b);

148

149 } // b dies here. data are intact after that

150

151 printf ("%300s", target);

152

153 // data must be larger than offset + 300, otherwise bang!

154 }

155

156

157 //

158 //

159 // the next two examples perform the same reads,

160 // but switch memory management in between

161 //

162 //

163

164 // impl managed memory, then apps managed memory

165 {

166 {

167 char [x][y][z] data;

168 char* target = data + 200;

169

170 buffer b;

171

172 // impl managed

saga-core-wg@ogf.org 76

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

173 stream.read (b, 100);

174 printf ("%100s", target);

175

176 b.set_data (target, 200); // impl data are gone after this

177

178 // apps managed

179 stream.read (b);

180 printf ("%200s", target);

181

182 } // b dies here, apps data are ok after that, impl data are gone

183 }

184

185

186 // apps managed memory, then impl managed

187 {

188 {

189 char [x][y][z] data;

190 char* target = data + 200;

191

192 buffer b (target);

193

194 // apps managed

195 stream.read (b, 100);

196 printf ("%100s", target);

197

198 b.set_size (-1);

199

200 // impl managed

201 stream.read (b, 200);

202 printf ("%200s", target);

203

204 } // b dies here, apps data are ok after that, impl data are gone

205 }

206

207

208 //

209 //

210 // now similar for write

211 //

212 //

213

214 //

215 //

216 // general part

217 //

218 // all examples ignore the ssize_t return value, which should be

219 // the number of bytes successfully written

220 //

221 //

222 {

saga-core-wg@ogf.org 77

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

223 char data[x][y][z];

224 char* target = data + 200;

225 buffer b;

226

227 // the following four block do exactly the same, writing

228 // 100 byte (the write parameter supersedes the buffer size)

229

230 // apps managed memory

231 {

232 b.set_data (target);

233 stream.write (b, 100);

234 }

235

236 {

237 b.set_data (target, 100);

238 stream.write (b);

239 }

240

241 {

242 b.set_data (target, 100);

243 stream.write (b, 100);

244 }

245

246 {

247 b.set_data (target, 200);

248 stream.write (b, 100);

249 }

250

251

252 // now for impl managed memory

253 {

254 b.set_size (100);

255 memcpy (b.get_data (), target, 100);

256 stream.write (b);

257 }

258

259 {

260 b.set_size (200);

261 memcpy (b.get_data (), target, 200);

262 stream.write (b, 100);

263 }

264

265

266 // these two MUST throw, even if there is

267 // enough memory available

268

269 // app managed memory

270 {

271 b.set_data (target, 100);

272 stream.write (b, 200); // throws BadParameter

saga-core-wg@ogf.org 78

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

273 }

274

275 // impl. managed memory

276 {

277 b.set_size (100);

278 memcpy (b.get_data (), target, 200); // apps error

279 stream.write (b, 200); // throws BadParameter

280 }

281 }

282

283

284 //

285 //

286 // the next 4 examples perform two writes to a stream,

287 // first 100 bytes, then 200 bytes.

288 //

289 //

290

291 // impl managed memory

292 {

293 char data[x][y][z]; // the complete data set

294 char * target = data; // target memory address to write into...

295 target += offset; // ... is actually somewhere in the data space.

296

297 {

298 buffer b (200);

299

300 memcpy (b.get_data (), target, 100);

301 stream.write (b, 100);

302

303 memcpy (b.get_data (), target + 100, 200);

304 stream.write (b, 200);

305

306 } // b dies here, data are gone after that

307 }

308

309

310 // same as above, but using set_size ()

311 {

312 char data[x][y][z]; // the complete data set

313 char * target = data; // target memory address to write into...

314 target += offset; // ... is actually somewhere in the data space.

315

316 {

317 buffer b (100);

318 memcpy (b.get_data (), target, 100);

319 stream.write (b);

320

321 b.set_size (200);

322 memcpy (b.get_data (), target + 100, 200);

saga-core-wg@ogf.org 79

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

323 stream.write (b);

324

325 } // b dies here, data are gone after that

326 }

327

328

329 // apps managed memory

330 {

331 char data[x][y][z]; // the complete data set

332 char * target = data; // target memory address to write into...

333 target += offset; // ... is actually somewhere in the data space.

334

335 stream.write (buffer (target, 100));

336 stream.write (buffer (target + 100, 200));

337

338 // data must be larger than offset + 300, otherwise bang!

339 }

340

341

342 // same as above with explicit buffer c’tor

343 {

344 char data[x][y][z]; // the complete data set

345 char * target = data; // target memory address to write into...

346 target += 200; // ... is actually somewhere in the data space.

347

348 {

349 buffer b (target, 100);

350 stream.write (b);

351

352 b.set_data (target + 100, 200);

353 stream.write (b);

354

355 } // b dies here. data are intact after that

356

357

358 // data must be larger than offset + 300, otherwise bang!

359 }

360

361

362 //

363 //

364 // the next two examples perform the same reads,

365 // but switch memory management in between

366 //

367 //

368

369 // impl managed memory, then apps managed memory

370 {

371 {

372 char [x][y][z] data;

saga-core-wg@ogf.org 80

GFD-R-P.90 SAGA I/O Buffer May 12, 2009

373 char* target = data + 200;

374

375 buffer b (100);

376

377 // impl managed

378 memcpy (b.get_data (), target, 100);

379 stream.write (b, 100);

380

381 b.set_data (target + 100, 200); // apps managed now

382 // impl data are gone after this

383

384 // apps managed

385 stream.write (b);

386

387 } // b dies here, apps data are ok after that, impl data are gone

388 }

389

390

391 // apps managed memory, then impl managed

392 {

393 {

394 char [x][y][z] data;

395 char* target = data + 200;

396

397 buffer b (target);

398

399 // apps managed

400 stream.write (b, 100);

401

402 b.set_size (200); // impl managed now

403 memcpy (b.get_data (), target + 100, 200);

404

405 // impl managed

406 stream.write (b);

407

408 } // b dies here, apps data are ok after that, impl data are gone

409 }

saga-core-wg@ogf.org 81

GFD-R-P.90 SAGA Session Management May 12, 2009

3.5 SAGA Session Management

The session object provides the functionality of a session, which isolates in-
dependent sets of SAGA objects from each other. Sessions also support the
management of security information (see saga::context in Section 3.6).

3.5.1 Specification

package saga.session
{
class session : implements saga::object

// from object saga::error_handler
{
CONSTRUCTOR (in bool default = true,

out session obj);
DESTRUCTOR (in session obj);

add_context (in context context);
remove_context (in context context);
list_contexts (out array<context,1> contexts);

}
}

3.5.2 Specification Details

Class session

Almost all SAGA objects are created in a SAGA session, and are associated
with this (and only this) session for their whole life time.

A session instance to be used on object instantiation can explicitly be given as
first parameter to the SAGA object instantiation call (CONSTRUCTOR).

If the session is omitted as first parameter, a default session is used, with default
security context(s) attached. The default session can be obtained by passing
true to the session CONSTRUCTOR.

saga-core-wg@ogf.org 82

GFD-R-P.90 SAGA Session Management May 12, 2009

Code Example

1 // Example in C++:

2

3 // create a file object in a specific session:

4 saga::file f1 (session, url);

5

6 // create a file object in the default session:

7 saga::file f2 (url);

SAGA objects created from another SAGA object inherit its session, such as, for
example, saga::streams from saga::stream_server. Only some objects do
not need a session at creation time, and can hence be shared between sessions.
These include:

saga::exception
saga::buffer
saga::iovec
saga::parameter
saga::context
saga::job_description
saga::metric
saga::exception
saga::task
saga::task_container

Note that tasks have no explicit session attached. The saga::object the task
was created from, however, has a saga::session attached, and that session
instance is indirectly available, as the application can obtain that object via the
get object method call on the respective task instance.

Multiple sessions can co-exist.

If a saga::session object instance gets destroyed, or goes out of scope, the
objects associated with that session survive. The implementation MUST ensure
that the session is internally kept alive until the last object of that session gets
destroyed.

If the session object instance itself gets destroyed, the resources associated with
that session MUST be freed immediately as the last object associated with that
session gets destroyed. The lifetime of the default session is, however, only
limited by the lifetime of the SAGA application itself (see Notes about life time
management in Section 2.5.3).

Objects associated with different sessions MUST NOT influence each other in
any way - for all practical purposes, they can be considered to be running in
different application instances.

saga-core-wg@ogf.org 83

GFD-R-P.90 SAGA Session Management May 12, 2009

Instances of the saga::context class (which encapsulates security information
in SAGA) can be attached to a saga::session instance. The context instances
are to be used by that session for authentication and authorization to the back-
ends used.

If a saga::context gets removed from a session, but that context is already/still
used by any object created in that session, the context MAY continue to be used
by these objects, and by objects which inherit the session from these objects,
but not by any other objects. However, a call to list_contexts MUST NOT
list the removed context after it got removed.

For the default session instance, the list returned by a call to list contexts()
MUST include the default saga::context instances. These are those contexts
that are added to any saga::session by default, e.g. because they are picked
up by the SAGA implementation from the application’s run time environment.
An application can, however, subsequently remove default contexts from the
default session. A new, non-default session has initially no contexts attached.

A SAGA implementation MUST document which default context instances it
may create and attach to a saga::session. That set MAY change during run-
time, but SHOULD NOT be changed once a saga::session instance was cre-
ated. For example, two saga::session instances might have different default
saga::context instances attached. Both sessions, however, will have these
attached for their complete lifetime – unless they expire or get otherwise inval-
idated.

Default saga::context instances on a session can be removed from a session,
with a call to remove_context(). That may result in a session with no contexts
attached. That session is still valid, but likely to fail on most autorization points.

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in bool default = true,

out session obj)
Inputs: default: indicates if the default

session is returned
InOuts: -
Outputs: obj: the newly created object
PreCond: -
PostCond: -
Perms: -
Throws: NoSuccess
Notes: - the created session has no context

instances attached.

saga-core-wg@ogf.org 84

GFD-R-P.90 SAGA Session Management May 12, 2009

- if ’default’ is specified as ’true’, the
constructor returns a shallow copy of the
default session, with all the default
contexts attached. The application can then
change the properties of the default session,
which is continued to be implicetly used on
the creation of all saga objects, unless
specified otherwise.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in session obj)
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - See notes about lifetime management

in Section 2
Perms: -
Throws: -
Notes: -

- add_context
Purpose: attach a security context to a session
Format: add_context (in context c);
Inputs: c: Security context to add
InOuts: -
Outputs: -
PreCond: -
PostCond: - the added context is deep copied, and no

state is shared.
- any object within that session can use the
context, even if it was created before
add_context was called.

Perms: -
Throws: -
Notes: - if the session already has a context attached

which has exactly the same set of attribute
values as the parameter context, no action is
taken.

- remove_context

saga-core-wg@ogf.org 85

GFD-R-P.90 SAGA Session Management May 12, 2009

Purpose: detach a security context from a session
Format: remove_context (in context c);
Inputs: c: Security context to remove
InOuts: -
Outputs: -
Throws: DoesNotExist
PreCond: - a context with completely identical attributes

is available in the session.
PostCond: - that context is removed from the session, and

can from now on not be used by any object in
that session, even if it was created before
remove_context was called.

Perms: -
Notes: - this methods removes the context on the

session which has exactly the same set of
parameter values as the parameter context.

- a ’DoesNotExist’ exception is thrown if no
context exist on the session which has the
same attributes as the parameter context.

- list_contexts
Purpose: retrieve all contexts attached to a session
Format: list_contexts (out array<context>

contexts);
Inputs: -
InOuts: -
Outputs: contexts: list of contexts of this

session
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: - a empty list is returned if no context is

attached.
- contexts may get added to a session by
default, hence the returned list MAY be
non-empty even if add_context() was never
called before.

- a context might still be in use even if not
included in the returned list. See notes
about context life time above.

- the contexts in the returned list MUST be
deep copies of the session’s contexts.

saga-core-wg@ogf.org 86

GFD-R-P.90 SAGA Session Management May 12, 2009

3.5.3 Examples

Code Example

1 // c++ example

2 saga::session s;

3 saga::context c (saga::context::X509);

4

5 s.add_context (c);

6

7 saga::directory d (s, "gsiftp://remote.net/tmp/");

8 saga::file f = d.open ("data.txt");

9

10 // file has same session attached as dir,

11 // and can use the same contexts

Code Example

1 // c++ example

2 saga::task t;

3 saga::session s;

4

5 {

6 saga::context c ("X509");

7

8 s.add_context (c);

9

10 saga::file f (s, url);

11

12 t = f.copy <saga::task::Task> (target);

13

14 s.remove_context (c);

15 }

16

17 // As it leaves the scope, the X509 context gets ’destroyed’.

18 // However, the copy task and the file object MAY continue to

19 // use the context, as its destruction is actually delayed

20 // until the last object using it gets destroyed.

21

22 t.run (); // can still use the context

saga-core-wg@ogf.org 87

GFD-R-P.90 SAGA Context Management May 12, 2009

3.6 SAGA Context Management

The saga::context class provides the functionality of a security information
container. A context gets created, and attached to a session handle. As such
it is available to all objects instantiated in that session. Multiple contexts can
co-exist in one session – it is up to the implementation to choose the correct
context for a specific method call. Also, a single saga::context instance can
be shared between multiple sessions. SAGA objects created from other SAGA
objects inherit its session and thus also its context(s). Section 3.5 contains more
information about the saga::session class, and also about the management
and lifetime of saga::context instances associated with a SAGA session.

A typical usage scenario is:

Code Example

1 // context usage scenario in c++

2

3 saga::context c_1, c_2;

4

5 // c_1 will use a globus proxy. Set the type to globus, pick

6 // up the default globus settings, and then identify the proxy

7 // to be used

8 c_1.set_attribute ("Type", "globus");

9 c_1.set_defaults ();

10 c_1.set_attribute ("UserProxy", "/tmp/special_x509up_u500");

11

12 // c_2 will be used as ssh context, and will just pick up the

13 // public/private key from $HOME/.ssh

14 c_2.set_attribute ("Type", "ssh");

15 c_2.set_defaults ();

16

17 // a saga session gets created, and uses both contexts

18 saga::session s;

19 s.add_context (c_1);

20 s.add_context (c_2);

21

22 // a remote file in this session can now be accessed via

23 // gridftp or ssh

24 saga::file f (s, "any://remote.net/tmp/data.txt");

25 f.copy ("data.bak");

A context has a set of attributes which can be set/get via the SAGA attributes
interface. Exactly which attributes a context actually evaluates, depends upon
its type (see documentation to the set defaults() method.

saga-core-wg@ogf.org 88

GFD-R-P.90 SAGA Context Management May 12, 2009

An implementation CAN implement multiple types of contexts. The implemen-
tation MUST document which context types it supports, and which values to
the Type attribute are used to identify these context types. Also, the implemen-
tation MUST document what default values it supports for the various context
types, and which attributes need to be or can be set by the application.

The lifetime of saga::context instances is defined by the lifetime of those
saga::session instances the contexts are associated with, and of those SAGA
objects which have been created in these sessions. For detailed information
about lifetime management, see Section 2.5.3, and the description of the SAGA
session class in Section 3.5.

For application level Authorization (e.g. for streams, monitoring, steering), con-
texts are used to inform the application about the requestor’s identity. These
contexts represent the security information that has been used to initiate the
connection to the SAGA application. To support that mechanism, a num-
ber of specific attributes are available, as specified below. They are named
"Remote<attribute>". An implementation MUST at least set the Type at-
tribute for such contexts, and SHOULD provide as many attribute values as
possible.

For example, a SAGA application A creates a saga::stream server instance.
A SAGA application B creates a ’globus’ type context, and, with a session using
that context, creates a saga::stream instance connecting to the stream server
of A. A should then obtain a context upon connection accept (see Sections on
Monitoring, 3.9, and Streams, 4.5, for details). That context should then also
have the type ’globus’, its ’RemoteID’ attribute should contain the distinguished
name of the user certificate, and its attributes ’RemoteHost’ and ’RemotePort’
should have the appropriate values.

Note that UserIDs SHOULD be formatted so that they can be used as user
identifiers in the SAGA permission model – see Section 3.7 for details.

3.6.1 Specification

package saga.context
{
class context : implements saga::object

implements saga::attributes
// from object saga::error_handler

{
CONSTRUCTOR (in string type = "",

out context obj);
DESTRUCTOR (in context obj);

saga-core-wg@ogf.org 89

GFD-R-P.90 SAGA Context Management May 12, 2009

set_defaults (void);

// Attributes:
//
// name: Type
// desc: type of context
// mode: ReadWrite
// type: String
// value: naming conventions as described above apply
//
// name: Server
// desc: server which manages the context
// mode: ReadWrite
// type: String
// value: -
// note: - a typical example would be the contact
// information for a MyProxy server, such as
// ’myproxy.remote.net:7512’, for a ’myproxy’
// type context.
//
// name: CertRepository
// desc: location of certificates and CA signatures
// mode: ReadWrite
// type: String
// value: -
// note: - a typical example for a globus type context
// would be "/etc/grid-security/certificates/".
//
// name: UserProxy
// desc: location of an existing certificate proxy to
// be used
// mode: ReadWrite
// type: String
// value: -
// note: - a typical example for a globus type context
// would be "/tmp/x509up_u<uid>".
//
// name: UserCert
// desc: location of a user certificate to use
// mode: ReadWrite
// type: String
// value: -
// note: - a typical example for a globus type context
// would be "$HOME/.globus/usercert.pem".
//

saga-core-wg@ogf.org 90

GFD-R-P.90 SAGA Context Management May 12, 2009

// name: UserKey
// desc: location of a user key to use
// mode: ReadWrite
// type: String
// value: -
// note: - a typical example for a globus type context
// would be "$HOME/.globus/userkey.pem".
//
// name: UserID
// desc: user id or user name to use
// mode: ReadWrite
// type: String
// value: -
// note: - a typical example for a ftp type context
// would be "anonymous".
//
// name: UserPass
// desc: password to use
// mode: ReadWrite
// type: String
// value: -
// note: - a typical example for a ftp type context
// would be "anonymous@localhost".
//
// name: UserVO
// desc: the VO the context belongs to
// mode: ReadWrite
// type: String
// value: -
// note: - a typical example for a globus type context
// would be "O=dutchgrid".
//
// name: LifeTime
// desc: time up to which this context is valid
// mode: ReadWrite
// type: Int
// value: -1
// note: - format: time and date specified in number of
// seconds since epoch
// - a value of -1 indicates an infinit lifetime.
//
// name: RemoteID
// desc: user ID for an remote user, who is identified
// by this context.
// mode: ReadOnly
// type: String

saga-core-wg@ogf.org 91

GFD-R-P.90 SAGA Context Management May 12, 2009

// value: -
// note: - a typical example for a globus type context
// would be
// "/O=dutchgrid/O=users/O=vu/OU=cs/CN=Joe Doe".
//
// name: RemoteHost
// desc: the hostname where the connection origininates
// which is identified by this context.
// mode: ReadOnly
// type: String
// value: -
//
// name: RemotePort
// desc: the port used for the connection which is
// identified by this context.
// mode: ReadOnly
// type: String
// value: -
//

}
}

3.6.2 Specification Details

Class context

- CONSTRUCTOR
Purpose: create a security context
Format: CONSTRUCTOR (in stringt type = "",

out context obj);
Inputs: type: initial type of context
InOuts: -
Outputs: obj: the newly created object
PreCond: -
PostCond: -
Perms: -
Throws: IncorrectState

Timeout
NoSuccess

Notes: -

saga-core-wg@ogf.org 92

GFD-R-P.90 SAGA Context Management May 12, 2009

- DESTRUCTOR
Purpose: destroy a security context
Format: DESTRUCTOR (in context obj);
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - See notes about lifetime management

in Section 2
Perms: -
Throws: -
Notes: -

- set_defaults
Purpose: set default values for specified context type
Format: set_defaults (void);
Inputs: -
InOuts: -
Outputs: -
PreCond: -
PostCond: - the context is valid, and can be used for

authorization.
Perms: -
Throws: IncorrectState

Timeout
NoSuccess

Notes: - the method evaluates the value of the ’Type’
attribute, and of all other non-empty
attributes, and, based on that information,
tries to set sensible default values for all
previously empty attributes.

- if the ’Type’ attribute has an empty value, an
’IncorrectState’ exception is thrown.

- this method can be called more than once on
a context instance.

- if the implementation cannot create valid
default values based on the available
information, an ’NoSuccess’ exception is
thrown, and a detailed error message is given,
describing why no default values could be
set.

saga-core-wg@ogf.org 93

GFD-R-P.90 SAGA Permission Model May 12, 2009

3.7 SAGA Permission Model

A number of SAGA use cases imply the ability of applications to allow or deny
specific operations on SAGA objects or grid entities, such as files, streams, or
monitorables. This packages provides a generic interface to query and set such
permissions, for (a) everybody, (b) individual users, and (c) groups of users.

Objects implementing this interface maintain a set of permissions for each ob-
ject instance, for a set of IDs. These permissions can be queried, and, in many
situations, set. The SAGA specification defines which permissions are avail-
able on a SAGA object, and which operations are expected to respect these
permissions.

A general problem with this approach is that it is difficult to anticipate how
users and user groups are identified by various grid middleware systems. In
particular, any translation of permissions specified for one grid middleware is
likely not completely translatable to permissions for another grid middleware.

For example, assume that a saga::file instance gets created via ssh, and
permissions are set for the file to be readable and executable by a specific POSIX
user group ID. Which implications do these permissions have with respect to
operations performed with GridFTP, using a Globus certificate? The used X509
certificates have (a) no notion of groups (groups are implicit due to the mapping
of the grid-mapfile), and (b) are not mappable to group ids; and (c) GridFTP
ignores the executable flag on files.

For this reason, it is anticipated that the permission model described in this
section has the following, undesired consequences and limitations:

• Applications using this interface are not expected to be fully portable
between different SAGA implementations. (In cases like having two SAGA
implementations that use different middleware backends for accessing the
same resources.)

• A SAGA implementation MUST document which permission it supports,
for which operations.

• A SAGA implementation MUST document if it supports group level per-
missions.

• A SAGA implementation MUST document how user and group IDs are
to be formed.

Note that there are no separate calls to get/set user, group and world permis-
sions: this information must be part of the IDs the methods operate upon. To
set/get permisions for ’world’ (i.e. anybody), the ID ’*’ is used.

saga-core-wg@ogf.org 94

GFD-R-P.90 SAGA Permission Model May 12, 2009

IDs

SAGA can not, by design, define globally unique identifiers in a portable way.
For example, it would be impossible to map, transparently and bi-directionally,
a Unix user ID and an associated X509 Distinguished Name on any resource
onto the same hypothetical SAGA user ID, at least not without explicit support
by the grid middleware (e.g., by having access to the Globus grid-mapfile).
That support is, however, rarely available.

It is thus required that SAGA implementations MUST specify how the user and
group IDs are formed that they support. In general, IDs which are valid for the
UserID attribute of the SAGA context instances SHOULD also be valid IDs
to be used in the SAGA permission model.

A typical usage scenario is (extended from the context usage scenario):

Code Example

1 // context and permission usage scenario in C++

2

3 saga::context c_1 ("globus")

4 saga::context c_2 ("ssh");

5

6 // c_1 is a globus proxy. Identify the proxy to be used,

7 // and pick up the other default globus settings

8 c_1.set_attribute ("UserProxy", "/tmp/special_x509up_u500");

9 c_1.set_defaults ();

10

11 // c_2 is a ssh context, and will just pick up the

12 // public/private key from $HOME/.ssh

13 c_2.set_defaults ();

14

15 // a saga session gets created, and uses both contexts

16 saga::session s;

17 s.add_context (c_1);

18 s.add_context (c_2);

19

20 // a remote file in this session can now be accessed via

21 // gridftp or ssh

22 saga::file f (s, "any://remote.net/tmp/data.txt");

23 f.copy ("data.bak");

24

25 // write permissions can be set for both context IDs

26 f.permission_allow (c_1.get_attribute ("UserID"), Write);

27 f.permission_allow (c_2.get_attribute ("UserID"), Write);

For middleware systems where group and user ids can clash, the IDs should be

saga-core-wg@ogf.org 95

GFD-R-P.90 SAGA Permission Model May 12, 2009

implemented as ’user-<id>’ and ’group-<id>’. For example: on Unix, the
name ’mail’ can (and often does) refer to a user and a group. In that case, the
IDs should be expressed as ’user-mail’ and ’group-mail’, respectively. The
ID ’*’ is always reserved, as described above.

Permissions for a user ID supersede the permissions for a group ID, which
supersede the permissions for ’*’ (all). If a user is in multiple groups, and
the group’s permissions differ, the most permissive permission applies.

3.7.1 Permissions for Multiple Backends

In SAGA, an entity which provides the permissions interface always has exactly
one owner, for one middleware backend. However, this implies that for SAGA
implementations with multiple backend bindings, multiple owner IDs may be
valid. For example, "/O=dutchgrid/O=users/O=vu/OU=cs/CN=Joe Doe" and
"user-jdoe" might be equally valid IDs, at the same time, if the implementa-
tion supports local Unix access and GridFTP access to a local file. As long as
the ID spaces do not conflict, the permissions interface obviously allows to set
permissions individually for both backends. In case of conflicts, the application
would need to create new SAGA objects from sessions that contain only a single
context, representing the desired backend’s security credentials. As such situa-
tions are considered to be very rare exceptions in the known SAGA use cases,
we find this limitation accetable.

Note that, for SAGA implementations supporting multiple middleware back-
ends, the permissions interface can operate on permissions for any of these
backends, not only for the one that was used by the original creation of the ob-
ject instance. Such a restriction would basically inhibit implementations with
dynamic (“late”) binding to backends.

Conflicting Backend Permission Models

Some middleware backends may not support the full range of permissions, e.g.,
they might not distinguish between Query and Read permissions. A SAGA
implementation MUST document which permissions are supported. Trying to
set an unsupported permission reults in a BadParameter exception, and NOT
in a NotImplemented exception – that would indicate that the method is not
available at all, i.e. that no permission model at all is available for this particular
implementation.

saga-core-wg@ogf.org 96

GFD-R-P.90 SAGA Permission Model May 12, 2009

An implementation MUST NOT silently merge permissions, according to its
own model – that would break for example the following code:

file.permissions_allow ("user-jdoe", Query);
file.permissions_deny ("user-jdoe", Read);
off_t file_size = file.get_size ();

If an implementation binds to a system with standard Unix permissions and
does not throw a BadParameter exception on the first call, but silently sets
Read permissions instead, because that does also allow query style operations
on Unix, then the code in line three would fail for no obvious reason, because
the second line would revoke the permissions from line one.

Initial Permission Settings

If new grid entities get created via the SAGA API, the owner of the object is set
to the value of the ’UserID’ attribute of the context used during the creation.
Note that for SAGA implementations with support for multiple middleware
backends, and support for late binding, this may imply that the owner is set
individually for one, some or all of the supported backends.

Creating grid entities may require specific permissions on other entities. For
example:

• file creation requires Write permissions on the parent directory.
• executing a file requires Read permissions on the parent directory.

An implementation CAN set initial permissions other than Owner. An imple-
mentation SHOULD document which initial permission settings an application
can expect.

The specification of the ReadOnly flag on the creation or opening of SAGA
object instances, such as saga::file instances, causes the implementation to
behave as if the Write permission on the entity on that instance is not available,
even if it is, in reality, available. The same holds for the WriteOnly flag and
the availability of the Read permission on that entity.

Permission Definitions in the SAGA specification

The SAGA specification normatively defines for each operation, which permis-
sions are required for that operation. If a permission is supported, but not set,
the method invocation MUST cause a PermissionDenied exception. An imple-
mentation MUST document any deviation from this scheme, e.g., if a specified

saga-core-wg@ogf.org 97

GFD-R-P.90 SAGA Permission Model May 12, 2009

permission is not supported at all, or cannot be tested for a particular method.
An example of such a definition is (from the monitorable interface):

- list_metrics
Purpose: list all metrics associated with the object
Format: list_metrics (out array<string> names);
Inputs: -
InOuts: -
Outputs: names: array of names identifying

the metrics associated with
the object instance

PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - [...]

This example implies that for the session in which the list_metrics() oper-
ation gets performed, there must be at least one context for which’s attribute
’UserID’ the Query permission is both supported and available; otherwise, the
method MUST throw a PermissionDenied exception. If Query is not supported
by any of the backends for which a context exists, the implementation MAY try
the backends to perform the operation anyway.

For some parts of the specification, namely for attributes and metrics, the mode
specification is normative for the respective, required permission. For exam-
ple, the mode attribute ReadOnly implies that a Write permission, required to
change the attribute, is never available.

The PermissionDenied exception in SAGA

SAGA supports a PermissionDenied exception, as documented in Section 3.1.
This exception can originate from various circumstances, that are not necessar-
ily related to the SAGA permission model as described here. However, if the
reason why that exception is raised maps onto the SAGA permission model, the
exception’s error message MUST have the following format (line breaks added
for readability):

saga-core-wg@ogf.org 98

GFD-R-P.90 SAGA Permission Model May 12, 2009

PermissionDenied: no <PERM> permission
on <ENTITY> <NAME>
for <ID>

Here, <PERM> denotes which permission is missing, <ENTITY> denotes on what
kind of entity this permission is missing. <NAME> denotes which entity misses
that permission, and <ID> denotes which user is missing that permission.

<PERM> is the literal string of the permission enum defined in this section.
<ENTITY> is the type of backend entity which is missing the permission, e.g.
file, directory, job_service etc. Whenever possible, the literal class name
of the respective SAGA class name SHOULD be used. <NAME> SHOULD be a
URL or literal name which allows the end user to uniquely identify the entity
in question. <ID> is the value of the UserID attribute of the context used for
the operation (the notes about user IDs earlier in this section apply).

Some examples for complete error messages are:

PermissionDenied: no Read permission
on file http:////tmp/test.dat
for user-jdoe

PermissionDenied: no Write permission
on directory http:////tmp/
for user-jdoe

PermissionDenied: no Query permission
on logical_file rls:////tmp/test
for /O=ca/O=users/O=org/CN=Joe Doe

PermissionDenied: no Query permission
on job [fork://localhost]-[1234]
for user-jdoe

PermissionDenied: no Exec permission
on RPC [rpc://host/matmult] for
for /O=ca/O=users/O=org/CN=Joe Doe

Note to users

The description of the SAGA permission model above should have made clear
that, in particular, the support for multiple backends makes it difficult to strictly
enforce the permissions specified on application level. Until a standard for
permission management for Grid application emerges, this situation is unlikely
to change. Applications should thus be careful to trust permissions specified
in SAGA, and should ensure to use an implementation which fully supports

saga-core-wg@ogf.org 99

GFD-R-P.90 SAGA Permission Model May 12, 2009

and enforces the permission model, e.g., they should choose an implementation
which binds to a single backend.

3.7.2 Specification

package saga.permissions
{
enum permission
{
None = 0,
Query = 1,
Read = 2,
Write = 4,
Exec = 8,
Owner = 16,
All = 31

}

interface permissions : implements saga::async
{
// setter / getters
permissions_allow (in string id,

in int perm);
permissions_deny (in string id,

in int perm);
permissions_check (in string id,

in int perm,
out bool value);

get_owner (out string owner);
get_group (out string group);

}
}

3.7.3 Specification Details

Enum permission

This enum specifies the available permissions in SAGA. The following examples
demonstrate which type of operations are allowed for certain permissions, and
which aren’t. To keep these examples concise, they are chosen from the following

saga-core-wg@ogf.org 100

GFD-R-P.90 SAGA Permission Model May 12, 2009

list, with the convention that those operations in this list, which are not listed in
the respective example section, are not allowed for that permission. In general,
the availability of one permission does not imply the availability of any other
permission (with the exception of Owner, as described below).

• provide information about a metric, and its properties
• provide information about file size, access time and ownership
• provide information about job description, ownership, and runtime
• provide information about logical file access time and ownership
• provide access to a job’s I/O streams
• provide access to the list of replicas of a logical file
• provide access to the contents of a file
• provide access to the value of a metric
• provide means to change the ownership of a file or job
• provide means to change the permissions of a file or job
• provide means to fire a metric
• provide means to connect to a stream server
• provide means to manage the entries in a directory
• provide means to manipulate a file or its meta data
• provide means to manipulate a job’s execution or meta data
• provide means to manipulate the list of replicas of a logical file
• provide means to run an executable

The following permissions are available in SAGA:

Query

This permission identifies the ability to access all meta data of an entity,
and thus to obtain any information about an entity. If that permission
is not available for an actor, that actor MUST NOT be able to obtain
any information about the queried entity, if possible not even about its
existence. If that permission is available for an actor, the actor MUST be
able to query for any meta data on the object which (a) do imply changes
on the entities state, and (b) are part of the content of the entity (i.e., do
not comprise its data).

Note that for logical files, attributes are part of the data of the entities
(i.e., the meta data belong to the logical file’s data).

An authorized Query operation can:

• provide information about a metric, and its properties
• provide information about file size, access time and ownership

saga-core-wg@ogf.org 101

GFD-R-P.90 SAGA Permission Model May 12, 2009

• provide information about job description, ownership, and runtime
• provide information about logical file access time and ownership

Read

This permission identifies the ability to access the contents and the output
of an entity. If that permission is not available for an actor, that actor
MUST NOT be able to access the data of the entity. That permission
does not imply the authorization to change these data, or to manipulate
the entity. That permission does also not imply Query permissions, i.e.
the permission to access the entity’s meta data.

An authorized READ operation can:

• provide access to a job’s I/O streams
• provide access to the list of replicas of a logical file
• provide access to the contents of a file
• provide access to the value of a metric

Write

This permission identifies the ability to manipulate the contents of an
entity. If that permission is not available for an actor, that actor MUST
NOT be able to change neither data nor meta data of the entity. That
permission does not imply the authorization to read these data of the
entity, nor to manipulate the entity. That permission does also not imply
Query permissions, i.e., the permission to access the entity’s meta data.

Note that, for a directory, its entries comprise its data. Thus, Write per-
missions on a directory allow to manipulate all entries in that directory –
but do not imply the ability to change the data of these entries. For exam-
ple, Write permissions on the directory ’/tmp’ allows to move ’/tmp/a’
to ’/tmp/b’, or to remove these entries, but does not imply the ability to
perform a read() operation on ’/tmp/a’.

An authorized Write operation can:

• provide means to manage the entries in a directory
• provide means to manipulate a file or its meta data
• provide means to manipulate a job’s execution or meta data
• provide means to manipulate the list of replicas of a logical file

Exec

This permission identifies the ability to perform an action on an entity.
If that permission is not available for an actor, that actor MUST NOT be
able to perform that action. The actions covered by that permission are
usually those which affect the state of the entity, or which create a new
entity.

An authorized Exec operation can:

• provide means to fire a metric

saga-core-wg@ogf.org 102

GFD-R-P.90 SAGA Permission Model May 12, 2009

• provide means to connect to a stream server
• provide means to run an executable

Owner

This permission identifies the ability to change permissions and ownership
of an entity. If that permission is not available for an actor, that actor
MUST NOT be able to change any permissions or the ownership of an
entity. As this permission indirectly implies full control over all other
permissions, it does also imply that an actor with that permission can
perform any operation on the entity. Owner is not listed as additional
required permission in the specification details for the individual methods,
but only listed for those methods, where Owner is an explicit permission
requirement which cannot be replaced by any other permission.

An authorized Owner operation can:

• provide means to change the ownership of a file or job
• provide means to change the permissions of a file or job
• perform any other operation, including all operations from the orig-

inal list of examples above

Note that only one user can own an entity. For example, the following
sequence:

file.permissions_allow ("Tarzan", saga::permission::Owner);
file.permissions_allow ("Jane", saga::permission::Owner);

would result in a file ownership by ’Jane’.

Also note that

file.permissions_allow ("*", saga::permission::Owner);

or

file.permissions_deny (id, saga::permission::Owner);

will never be possible, and will throw a BadParameter exception.

Interface permissions

- permissions_allow
Purpose: enable permission flags
Format: permissions_allow (in string id,

in int perm);
Inputs: id: id to set permission for

perm: permissions to enable
InOuts: -
Outputs: -

saga-core-wg@ogf.org 103

GFD-R-P.90 SAGA Permission Model May 12, 2009

PreCond: -
PostCond: - the permissions are enabled.
Perms: Owner
Throws: NotImplemented

BadParameter
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - an id ’*’ sets the permissions for all (world)
- whether an id is interpreted as a group id is up to
the implementation. An implementation MUST
specify how user and group id’s are formed.

- the ’Owner’ permission can not be set to the
id ’*’ (all).

- if the given id is unknown or not supported, a
’BadParameter’ exception is thrown.

- permissions_deny
Purpose: disable permission flags
Format: permissions_deny (in string id,

in int perm);
Inputs: id: id to set permissions for

perm: permissions to disable
InOuts: -
Outputs: -
PreCond: -
PostCond: - the permissions are disabled.
Perms: Owner
Throws: NotImplemented

BadParameter
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - an id ’*’ sets the permissions for all (world)
- whether an id is interpreted as a group id is up to
the implementation. An implementation MUST
specify how user and group id’s are formed.

- the ’Owner’ permission can not be set to the
id ’*’ (all).

- if the given id is unknown or not supported, a
’BadParameter’ exception is thrown.

saga-core-wg@ogf.org 104

GFD-R-P.90 SAGA Permission Model May 12, 2009

- permissions_check
Purpose: check permission flags
Format: permissions_check (in string id,

in int perm,
out bool allow);

Inputs: id: id to check permissions for
perm: permissions to check

InOuts: -
Outputs: allow: indicates if, for that id,

the permissions are granted
(true) or not.

PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

BadParameter
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - an id ’*’ gets the permissions for all (world)
- ’true’ is only returned when all permissions
specified in ’perm’ are set for the given id.

- if the given id is unknown or not supported, a
’BadParameter’ exception is thrown.

- get_owner
Purpose: get the owner of the entity
Format: get_owner (out string owner);
Inputs: -
InOuts: -
Outputs: owner: id of the owner
PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - returns the id of the owner of the entity

saga-core-wg@ogf.org 105

GFD-R-P.90 SAGA Permission Model May 12, 2009

- an entity, on which the permission interface is
available, always has exactly one owner: this
method MUST NOT return an empty string, and
MUST NOT return ’*’ (all), and MUST NOT return
a group id.

- get_group
Purpose: get the group owning the entity
Format: get_group (out string group);
Inputs: -
InOuts: -
Outputs: group: id of the group
PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - returns the id of the group owning the entity
- this method MUST NOT return ’*’ (all), and
MUST NOT return a user id.

- if the implementation does not support groups,
the method returns an empty string.

3.7.4 Examples

Code Example

1

2 // c++ example

3 {

4 // create a file in the default session

5 saga::file f (url, saga::file::Create

6 | saga::file::Exclusive):

7

8 // get all contexts of the default session, and for each...

9 std::list <saga::context> ctxs = theSession.list_contexts ();

10

11 for (int i = 0; i < ctxs.size (); i++)

12 {

13 saga::context ctx = ctxs[i];

saga-core-wg@ogf.org 106

GFD-R-P.90 SAGA Permission Model May 12, 2009

14

15 // set the file to be executable

16 f.permission_allow (ctx.get_attribute ("UserID"),

17 saga::permission::Exec);

18 }

19

20 // the file should now be usable for job submission for all

21 // contexts in the default session. Often, however, only

22 // one context will succeed in setting the permission: the

23 // one which was used for creation in the first place. In

24 // that case, job submission is most likely to succeed with

25 // that context, too.

26 }

saga-core-wg@ogf.org 107

GFD-R-P.90 SAGA Attribute Model May 12, 2009

3.8 SAGA Attribute Model

There are various places in the SAGA API where attributes need to be associ-
ated with objects, for instance for job descriptions and metrics. The attributes
interface provides a common interface for storing and retrieving attributes.

Objects implementing this interface maintain a set of attributes. These at-
tributes can be considered as a set of key-value pairs attached to the object.
The key-value pairs are string based for now, but might cover other value types
in later versions of the SAGA API specification.

The interface name attributes is somewhat misleading: it seems to imply
that an object implementing this interface IS-A set of attributes. What we
actually mean is that an object implementing this interface HAS attributes. In
the absence of a better name, we left it attributes, but implementors and
users should be aware of the actual meaning (the proper interface name would
be ’attributable’, which sounds awkward).

Several functional classes will need to implement attributes as remote function-
ality, and such an implementation is by definition midleware dependent, and
thus not always implementable. That is why the NotImplemented exception is
listed for all attribute interface methods. However, SAGA Look-&-Feel classes
which MUST be implemented by SAGA complient implementations (see intro
to Section 3, on page 32), and which do implement the attributes interface,
MUST NOT throw the NotImplemented exception, ever.

The SAGA specification defines attributes which MUST be supported by the
various SAGA objects, and also defines their default values, and those which
CAN be supported. An implementation MUST motivate and document if a
specified attribute is not supported.

3.8.1 Specification

package saga.attributes
{
interface attributes
{
// setter / getters
set_attribute (in string key,

in string value);
get_attribute (in string key,

out string value);
set_vector_attribute (in string key,

saga-core-wg@ogf.org 108

GFD-R-P.90 SAGA Attribute Model May 12, 2009

in array<string> values);
get_vector_attribute (in string key,

out array<string> values);
remove_attribute (in string key);

// inspection methods
list_attributes (out array<string> keys);
find_attributes (in array<string> pattern,

out array<string> keys);
attribute_exists (in string key,

out bool test);
attribute_is_readonly (in string key,

out bool test);
attribute_is_writable (in string key,

out bool test);
attribute_is_removable (in string key,

out bool test);
attribute_is_vector (in string key,

out bool test);
}

}

3.8.2 Specification Details

The attributes interface in SAGA provides a uniform paradigm to set and
query parameters and properties of SAGA objects. Although the attributes
interface is generic by design (i.e. it allows arbitrary keys and values to be used),
its use in SAGA is mostly limited to a finite and well defined set of keys.

In several languages, attributes can much more elegantly be expressed by native
means - e.g. by using hash tables in Perl. Bindings for such languages MAY
allow to use a native interface additionally to the one described here.

Several SAGA objects have very frequently used attributes. To simplify usage of
these objects, setter and getter methods MAY be defined by the various language
bindings, again additionally to the interface described below. For attributes of
native non-string types, these setter/getters MAY be typed.

For example, additionally to:

stream.set_attribute ("BufferSize", "1024");

a language binding might allow:

saga-core-wg@ogf.org 109

GFD-R-P.90 SAGA Attribute Model May 12, 2009

stream.set_buffer_size (1024); // int type

Further, in order to limit semantic and syntactic ambiguities (e.g., due to
spelling deviations), language bindings MUST define known attribute keys as
constants, such as (in C):

saga-core-wg@ogf.org 110

GFD-R-P.90 SAGA Attribute Model May 12, 2009

#define SAGA_BUFFERSIZE "BufferSize"

...

stream.set_attribute (SAGA_BUFFERSIZE, "1024");

The distinction between scalar and vector attributes is supposed to help those
languages where this aspect of attributes cannot be handled transparently, e.g.
by overloading. Bindings for languages such as Python, Perl and C++ CAN
hide this distinction as long as both access types are supported.

Elements of vector attributes are ordered. This order MUST be preserved by
the SAGA implementation. Comparison also relies on ordering (i.e. ’one two’
does not equal ’two one’). For example, this order is significant for the
saga::job_description attribute ’Arguments’, which represents command
line arguments for a job.

Attributes are expressed as string values. They have, however, a type, which
defines the formatting of that string. The allowed types are String, Int, Enum,
Float, Bool, and Time (the same as metric value types). Additionally, attributes
are qualified as either Scalar or Vector. The default is Scalar.

Values of String type attributes are expressed as-is.

Values of Int (i.e. Integer) type attributes are expressed as they would in result
of a printf of the format ’%lld’, as defined by POSIX.

Values of Enum type attributes are expressed as strings, and have the literal
value of the respective enums as defined in this document. For example, the
initial task states would have the values ’New’, ’Running’ and ’Done’.

Values of Float (i.e. floating point) type attributes are expressed as they would
in result of a printf of the format ’%Lf’, as defined by POSIX.

Values of Bool type attributes MUST be expressed as ’True’ or ’False’.

Values of Time type attributes MUST be expressed as they would in result of
a call to ctime(), as defined by POSIX. Applications can also specify these
attribute values as seconds since epoch (this formats the string as an Int type),
but all time attributes set by the implementation MUST be in ctime() format.
Applications should be aware of the strptime() and strftime() methods de-
fined in POSIX, which assist time conversions.

saga-core-wg@ogf.org 111

GFD-R-P.90 SAGA Attribute Model May 12, 2009

3.8.3 Attribute Definitions in the SAGA specification

The SAGA specification defines a number of attributes which MUST or CAN
be supported, for various SAGA objects. An example of such a definition is
(from the Metric object):

class metric ...
{
...

// Attributes:
// name: Name
// desc: name of metric
// mode: ReadOnly
// type: String
// value: -
// notes: naming conventions as described below apply
//
// ...

}

These specifications are NORMATIVE, even if described as comments in the
SIDL specification! The specified attributes MUST be supported by an imple-
mentation, unless noted otherwise, as:

// mode: ReadOnly, optional
// mode: ReadWrite, optional

If an attribute MUST be supported, but the SAGA implementation cannot sup-
port that attribute, any set/get on that attribute MUST throw a NotImplemented
exception, and the error message MUST state "Attribute <name> not available
in this implementation".

If the default value is denoted as ’–’, then the attribute is, by default, not set
at all.

Attribute support can ’appear’ and ’go away’ during the lifetime of an object
(e.g., as late binding implementations switch the backend). Any set on an
attribute which got removed (’dead attribute’) MUST throw a DoesNotExist
exception. However, dead attributes MUST stay available for read access. The
SAGA implementation MUST NOT change such an attribute’s value, as long
as it is not available. Allowed values for mode are ReadOnly and ReadWrite.

saga-core-wg@ogf.org 112

GFD-R-P.90 SAGA Attribute Model May 12, 2009

It is not allowed to add attributes other than those specified in this document,
unless explicitly allowed, as:

// Attributes (extensible):

The find_attributes() method accepts a list of patterns, and returns a list
of keys for those attributes which match any one of the specified patterns (OR
semantics). The patterns describe both attribute keys and values, and are
formatted as:

<key-pattern>=<value-pattern>

Both the key-pattern and the value-pattern can contain wildcards as defined
in the description of the SAGA namespace package. If a key-pattern contains
an ’=’ character, that character must be escaped by a backslash, as must any
backslash character itself. The value-pattern can be empty, and the method
will then return all attribute keys which match the key-pattern. The equal
sign ’=’ can then be ommited from the pattern.

Interface attributes

- set_attribute
Purpose: set an attribute to a value
Format: set_attribute (in string key,

in string value);
Inputs: key: attribute key

value: value to set the
attribute to

InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: Write
Throws: NotImplemented

BadParameter
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - an empty string means to set an empty value
(the attribute is not removed).

saga-core-wg@ogf.org 113

GFD-R-P.90 SAGA Attribute Model May 12, 2009

- the attribute is created, if it does not exist
- a ’PermissionDenied’ exception is thrown if the
attribute to be changed is ReadOnly.

- only some SAGA objects allow to create new
attributes - others allow only access to
predefined attributes. If a non-existing
attribute is queried on such objects, a
’DoesNotExist’ exception is raised

- changes of attributes may reflect changes of
endpoint entity properties. As such,
authorization and/or authentication may fail
for settings such attributes, for some
backends. In that case, the respective
’AuthenticationFailed’, ’AuthorizationFailed’,
and ’PermissionDenied’ exceptions are thrown.
For example, an implementation may forbid to
change the saga::stream ’Bufsize’ attribute.

- if an attribute is not well formatted, or
outside of some allowed range, a ’BadParameter’
exception with a descriptive error message is
thrown.

- if the operation is attempted on a vector
attribute, an ’IncorrectState’ exception is
thrown.

- setting of attributes may time out, or may fail
for other reasons - which causes a ’Timeout’ or
’NoSuccess’ exception, respectively.

- get_attribute
Purpose: get an attribute value
Format: get_attribute (in string key,

out string value);
Inputs: key: attribute key
InOuts: -
Outputs: value: value of the attribute
PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout

saga-core-wg@ogf.org 114

GFD-R-P.90 SAGA Attribute Model May 12, 2009

NoSuccess
Notes: - queries of attributes may imply queries of

endpoint entity properties. As such,
authorization and/or authentication may fail
for querying such attributes, for some
backends. In that case, the respective
’AuthenticationFailed’, ’AuthorizationFailed’,
and ’PermissionDenied’ exceptions are thrown.
For example, an implementation may forbid to
read the saga::stream ’Bufsize’ attribute.

- reading an attribute value for an attribute
which is not in the current set of attributes
causes a ’DoesNotExist’ exception.

- if the operation is attempted on a vector
attribute, an ’IncorrectState’ exception is
thrown.

- getting attribute values may time out, or may
fail for other reasons - which causes a
’Timeout’ or ’NoSuccess’ exception,
respectively.

- set_vector_attribute
Purpose: set an attribute to an array of values.
Format: set_vector_attribute (in string key,

in array<string> values);
Inputs: key: attribute key

values: array of attribute values
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: Write
Throws: NotImplemented

BadParameter
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the notes to the set_attribute() method apply.
- if the operation is attempted on a scalar
attribute, an ’IncorrectState’ exception is
thrown.

saga-core-wg@ogf.org 115

GFD-R-P.90 SAGA Attribute Model May 12, 2009

- get_vector_attribute
Purpose: get the array of values associated with an

attribute
Format: get_vector_attribute (in string key,

out array<string> values);
Inputs: key: attribute key
InOuts: -
Outputs: values: array of values of the

attribute.
PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the notes to the get_attribute() method apply.
- if the operation is attempted on a scalar
attribute, an ’IncorrectState’ exception is
thrown.

- remove_attribute
Purpose: removes an attribute.
Format: remove_attribute (in string key);
Inputs: key: attribute to be removed
InOuts: -
Outputs: -
PreCond: -
PostCond: - the attribute is not available anymore.
Perms: Write
Throws: NotImplemented

DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - a vector attribute can also be removed with
this method

saga-core-wg@ogf.org 116

GFD-R-P.90 SAGA Attribute Model May 12, 2009

- only some SAGA objects allow to remove
attributes.

- a ReadOnly attribute cannot be removed - any
attempt to do so throws a ’PermissionDenied’
exception.

- if a non-existing attribute is removed, a
’DoesNotExist’ exception is raised.

- exceptions have the same semantics as defined
for the set_attribute() method description.

- list_attributes
Purpose: Get the list of attribute keys.
Format: list_attributes (out array<string> keys);
Inputs: -
InOuts: -
Outputs: keys: existing attribute keys
PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - exceptions have the same semantics as defined
for the get_attribute() method description.

- if no attributes are defined for the object,
an empty list is returned.

- find_attributes
Purpose: find matching attributes.
Format: find_attributes (in array<string> pattern,

out array<string> keys);
Inputs: pattern: search patterns
InOuts: -
Outputs: keys: matching attribute keys
PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

BadParameter
PermissionDenied
AuthorizationFailed

saga-core-wg@ogf.org 117

GFD-R-P.90 SAGA Attribute Model May 12, 2009

AuthenticationFailed
Timeout
NoSuccess

Notes: - the pattern must be formatted as described
earlier, otherwise a ’BadParameter’ exception
is thrown.

- exceptions have the same semantics as defined
for the get_attribute() method description.

- attribute_exists
Purpose: check the attribute’s existence.
Format: attribute_exists (in string key,

out bool test);
Inputs: key: attribute key
InOuts: -
Outputs: test: bool indicating success
PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - This method returns TRUE if the attribute
identified by the key exists.

- exceptions have the same semantics as defined
for the get_attribute() method description,
apart from the fact that a DoesNotExist
exception is never thrown.

- attribute_is_readonly
Purpose: check the attribute mode.
Format: attribute_is_readonly(in string key,

out bool test);
Inputs: key: attribute key
InOuts: -
Outputs: test: bool indicating success
PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

DoesNotExist

saga-core-wg@ogf.org 118

GFD-R-P.90 SAGA Attribute Model May 12, 2009

PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - This method returns TRUE if the attribute
identified by the key exists, and can be read
by get_attribute() or get_vector attribute(),
but cannot be changed by set_attribute() and
set_vector_attribute().

- exceptions have the same semantics as defined
for the get_attribute() method description.

- attribute_is_writable
Purpose: check the attribute mode.
Format: attribute_is_writable(in string key,

out bool test);
Inputs: key: attribute key
InOuts: -
Outputs: test: bool indicating success
PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - This method returns TRUE if the attribute
identified by the key exists, and can be
changed by set_attribute() or
set_vector_attribute().

- exceptions have the same semantics as defined
for the get_attribute() method description.

- attribute_is_removable
Purpose: check the attribute mode.
Format: attribute_is_removable (in string key,

out bool test);
Inputs: key: attribute key
InOuts: -
Outputs: test: bool indicating success

saga-core-wg@ogf.org 119

GFD-R-P.90 SAGA Attribute Model May 12, 2009

PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - This method returns TRUE if the attribute
identified by the key exists, and can be
removed by remove_attribute().

- exceptions have the same semantics as defined
for the get_attribute() method description.

- attribute_is_vector
Purpose: check the
Format: attribute_is_vector (in string key,

out bool test);
Inputs: key: attribute key
InOuts: -
Outputs: test bool indicating if

attribute is scalar
(false) or vector (true)

PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - This method returns TRUE if the attribute
identified by key is a vector attribute.

- exceptions have the same semantics as defined
for the get_attribute() method description.

saga-core-wg@ogf.org 120

GFD-R-P.90 SAGA Attribute Model May 12, 2009

3.8.4 Examples

Code Example

1 // c++ example:

2 saga::job::description jd;

3

4 std::list <std::string> hosts;

5 hosts.push_back ("host_1");

6 hosts.push_back ("host_2");

7

8 // vector attributes

9 jd.set_attribute ("ExecutionHosts", hosts);

10

11 // scalar attribute

12 jd.set_attribute ("MemoryUsage", "1024");

13

14 ...

saga-core-wg@ogf.org 121

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

3.9 SAGA Monitoring Model

The ability to query grid entities about state is requested in several SAGA use
cases. Also, the SAGA task model introduces numerous new use cases for state
monitoring.

This package definition approaches the problem space of monitoring to unify
the various usage patterns (see details and examples), and to transparently
incorporate SAGA task monitoring. The paradigm is realised by introducing
monitorable SAGA objects, which expose metrics to the application, represent-
ing values to be monitored. Metrics thus represent monitorable entities.

A closely related topic is Computational Steering, which is (for our purposes)
not seen independently from Monitoring: in the SAGA approach, the steering
mechanisms extend the monitoring mechanisms with the ability to push values
back to the monitored entity, i.e. to introduce writable metrics (see fire()).
Thus, metrics can also represent steerable entities.

3.9.1 Specification

package saga.monitoring
{
// callbacks are used for asynchronous notification of
// metric changes (events)
interface callback
{
cb (in monitorable mt,

in metric metric,
in context ctx,
out bool keep);

}

// a metric represents an entity / value to be monitored.
class metric : implements saga::object

implements saga::attributes
// from object saga::error_handler

{
CONSTRUCTOR (in string name,

in string desc,
in string mode,
in string unit,
in string type,

saga-core-wg@ogf.org 122

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

in string value,
out metric obj);

DESTRUCTOR (in metric obj);

// callback handling
add_callback (in callback cb,

out int cookie);
remove_callback (in int cookie);

// actively signal an event
fire (void);

// Attributes:
// name: Name
// desc: name of the metric
// mode: ReadOnly
// type: String
// value: -
// notes: naming conventions as described below apply
//
// name: Description
// desc: description of the metric
// mode: ReadOnly
// type: String
//
// name: Mode
// desc: access mode of the metric
// mode: ReadOnly
// type: String
// value: ’ReadOnly’, ’ReadWrite’ or ’Final’
//
// name: Unit
// desc: unit of the metric
// mode: ReadOnly
// type: String
//
// name: Type
// desc: value type of the metric
// mode: ReadOnly
// type: String
// value: ’String’, ’Int’, ’Enum’, ’Float’, ’Bool’,
// ’Time’ or ’Trigger’
//
// name: Value
// desc: value of the metric

saga-core-wg@ogf.org 123

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

// mode: depending on the mode attribute above
// type: String
// value: -
// notes: see description of value formating below

}

// SAGA objects which provide metrics and can thus be
// monitored implement the monitorable interface
interface monitorable
{
// introspection
list_metrics (out array<string> names);
get_metric (in string name,

out metric metric);

// callback handling
add_callback (in string name,

in callback cb,
out int cookie);

remove_callback (in int cookie);
}

// SAGA objects which can be steered by changing their
// metrics implement the steerable interface
interface steerable : implements monitorable
{
// metric handling
add_metric (in metric metric,

out bool success);
remove_metric (in string name);
fire_metric (in string name);

}
}

3.9.2 Specification Details

Interface callback

The callback interface is supposed to be implemented by custom, application
level classes. Instances of these classes can then be passed to monitorable SAGA
objects, in order to have their cb method invoked on changes of metrics upon
these monitorables.

saga-core-wg@ogf.org 124

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

The callback classes can maintain state between initialization and successive
invocations. The implementation MUST ensure that a callback is only called
once at a time, so that no locking is neccessary for the end user.

But also, the callback may remove conditions to be called again, i.e. shut down
the metric, read more than one message, etc. Implementations MUST be able
to handle this.

If an invoked callback returns true, it stays registered and can be invoked again
on the next metric change. If it returns false, it is not invoked again.

A callback can throw an AuthorizationFailed exception if the passed context
(i.e. the remote party) is not deemed trustworthy. In this case, the callback is
not removed. The implementation MUST catch this exception, and interpret it
as a decline of the operation which caused the callback.

For example, if a saga::stream_server instance invokes a callback on a Client-
Connect metric, and the cb method raises an AuthorizationFailed exception,
the created client stream must be closed.

As another example, if a job instance invokes a callback on a MemoryUsage met-
ric, and the cb method raises an AuthorizationFailed exception, the previous
value of the memory usage metric MUST be restored, and the declined value
MUST NOT influence the memory high water mark. Essentially, the exception
indicates that the new metric value was not trustworthy.

Callbacks are passed (e.g. added to a metric) by reference. If a callback instance
is used with multiple metrics, the application must use appropriate locking
mechanisms.

- cb
Purpose: asynchronous handler for metric changes
Format: cb (in monitorable mt,

in metric metric,
in context ctx,
out bool keep);

Inputs: mt: the saga monitorable object
which causes the callback
invocation

metric: the metric causing the
callback invocation

ctx: the context associated with
the callback causing entity

InOuts: -
Outputs: keep: indicates if callback stays

saga-core-wg@ogf.org 125

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

registered
PreCond: - the passed context is authenticated.
PostCond: - if ’keep’ is returned as true, the callback

stays registered, and will be invoked again on
the next metric update.

- if ’keep’ is returned as false, the callback
gets unregistered, and will not be invoked
again on metric updates, unless it gets
re-added by the user.

Perms: -
Throws: NotImplemented

AuthorizationFailed
Notes: - ’metric’ is the metric the callback is

invoked on - that means that this metric
recently changed. Note that this change is
semantically defined by the metric, e.g. the
string of the ’value’ attribute of the metric
might have the same value in two subsequent
invocations of the callback.

- ’mt’ is the monitorable object the metric
’metric’ belonges to.

- the context ’ctx’ is the context which allows
the callback to authorize the metric change.
If the cb method decides not to authorize this
particular invocation, it MUST throw an
’AuthorizationFailed’ exception.

- if no context is available, a context of type
’Unknown’ is passed, with no attributes
attached. Note that this can also indicate
that a non-authenticated party connected.

- a callback can be added to a metric multiple
times. A ’false’ return value (no keep) will
remove only one registration, and keep the
others.

- a callback can be added to multiple metrics at
the same time. A false return (no keep) will
only remove the registration on the metric the
callback was invoked on.

- the application must ensure appropriate locking
of callback instances which are used with multiple
metrics.

- a callback added to exactly one metric exactly
once is guaranteed to be active at most once at
any given time. That implies that the SAGA
implementation MUST queue pending requests
until a callback invocation is finished.

saga-core-wg@ogf.org 126

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

Class metric

The fundamental object introduced in this package is a metric. A metric rep-
resents an observable item, which can be readable, or read/writable. The avail-
ability of a readable observable corresponds to monitoring; the availability of a
writable observable corresponds to steering. A metric is Final when its values
cannot change anymore, (i.e. progress is 100%, job state is Done etc).

The approach is severely limited by the use of SAGA attributes for the descrip-
tion of a metric, as these are only defined in terms of string-typed keys and
values. An extension of the attribute definition by typed values will greatly
improve the usability of this package, but will also challenge its semantic sim-
plicity.

The metric MUST provide access to following attributes (examples given):

name: short human readable name.
- ex: file.copy.progress

desc: extensive human readable description
- ex: "This metric gives the state of

an ongoing file transfer as
percent completed."

mode: "ReadOnly", "ReadWrite" or "Final"
- ex: "ReadWrite"

unit: Unit of values
- ex: "percent (%)"
- ex: "Unit"

type: "String", "Int", "Enum", "Float", "Bool",
"Time", "Trigger"
- ex: "Float"

value: value of the metric
- ex: "20.5"

The name of the metric must be unique, as it is used in several methods to
identify the metric of interest. The use of a dot-delimited name space for metrics

saga-core-wg@ogf.org 127

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

as in the example above is encouraged, as it greatly benefits the interactive
handling of metrics. The first element of the name space SHOULD be the SAGA
class the metric belongs to, the second element SHOULD be the operation the
metric describes (if applicable, otherwise leave out), the third element SHOULD
indicate the description of the metric (e.g. ’state’ or ’progress’ or ’temperature’).
Illustrative examples for metric names are:

file.copy.progress
file.move.progress
file.size
job.state
drive.temperature // a custom observable

The name, description, type and mode attributes are ReadOnly – so only unit
and value can be changed by the application. All attributes are initialized in
the metric constructor. The mode, unit and value attributes can be changed
internally, i.e. by the SAGA implementation or lower layers. Such a change
does cause the metric to fire. For example, a metric fires if its mode changes
from ReadWrite to Final.

The name attribute MUST be interpreted case insensitive: An implementation
MAY change that attribute to all-lowercase on metric creation.

If fire() is called on a metric, it returns immediately, but any callbacks reg-
istered on that metric are not invoked immediately. Instead, the remote entity
which is represented by the metric gets invoked first, and only if it acknowledges
the changes, the callbacks are invoked. A fire can thus fail in the sense that
the remote entity declines the changes. It is good practice to have at least one
callback registered on the metric before calling fire(), in order to confirm the
operation.

The metric types are the same as defined for attributes, and the metric values
are to be formatted as described for the respective attribute types. The only
exception is a metric of type Trigger which has no value at all – an attempt to
access the value of that metric MUST result in a DoesNotExist exception.

Metric definitions in the SAGA specification

The SAGA specification defines a number of metrics which MUST or CAN be
supported, for various SAGA objects. An example of such a definition is (from
the saga::stream object):

saga-core-wg@ogf.org 128

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

class stream ...
{
...

// Metrics:
// name: stream.read
// desc: fires if a stream gets readable
// mode: ReadOnly
// unit: 1
// type: Trigger
// value: 1
//
// ...

}

These specifications are NORMATIVE, even if described as comments in the
SIDL specification! The specified metrics MUST be supported by an implemen-
tation, unless noted otherwise in the mode description, as:

// mode: ReadOnly, optional
// mode: ReadWrite, optional

If a metric MUST be supported, but the SAGA implementation cannot provide
that metric, any operation on that metric MUST throw a NotImplemented
exception, and the resulting error message MUST state "Metric <name> not
not available in this implementation".

Implementations MAY add custom metrics, which SHOULD be documented
similarly. However, metrics CAN also be added at runtime – that is, for example,
required for computational steering of custom applications.

Metric Lifetime

A metric can appear and go away during the lifetime of an object (again, com-
putational steering provides the obvious use case for this). Any operation on
a metric which got removed (dead metric) MUST throw an IncorrectState
exception, with the exceptions described below. Existing class instances of a
dead metric MUST stay valid, and expose the same lifetime as any other live

saga-core-wg@ogf.org 129

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

metric. Attributes of a dead metric MUST be readable for the lifetime of the
object. The mode attribute of such an instance MUST be changed to Final by
the implementation. Callbacks cannot be registered to a Final metric, but can
be unregistered. No other changes are allowed on a Final metric, neither by
the user, nor by the SAGA implementation.

Client Side Authorization

A metric can get fired from a remote party - in fact, that will be the default
situation for both monitoring and steering. In order to allow for client side au-
thorization, callbacks get a context as second parameter. That context contains
information to be used to authorize the remote party which caused the metric
to fire, and the callback to be invoked. Thus, authorization is only available via
the callback mechanism. The context information passed to the callback are
assumed to be authenticated by the implementation. If no context information
is available, a context of type ’Unknown’ is passed, which has no attributes
attached.

A callback can evaluate the passed context, and throw an AuthorizationFailed
exception if the context (i.e. the remote party) is not deemed trustworthy. See
callback description above.

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in string name

in string desc,
in string mode,
in string unit,
in string type,
in string value,
out metric obj);

Inputs: name: name of the metric
desc: description of the metric
mode: mode of the metric
unit: unit of the metric value
type: type of the metric
value: initial value of the metric

InOuts: -
Outputs: obj: the newly created object
PreCond: -
PostCond: - callbacks can be registered on the metric.
Perms: -

saga-core-wg@ogf.org 130

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

Throws: NotImplemented
BadParameter
Timeout
NoSuccess

Notes: - a metric is not attached to a session, but
can be used in different sessions.

- the string arguments given are used to
initialize the attributes of the metric.

- the constructor ensures that metrics are
always initialized completely. All changes to
attributes later will always result in an
equally valid metric.

- incorrectly formatted ’value’ parameter,
invalid ’mode’ and ’type’ parameter, and empty
required parameter (all but ’unit’) will cause
a ’BadParameter’ exception.

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend could not create that specific
metric.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in metric obj)
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - all callbacks registered on the metric are

unregistered.
Perms: -
Throws: -
Notes: - if a callback is active at the time of

destruction, the destructor MUST block until
that callback returns. The callback is not
activated anew during or after that block.

// manage callbacks on the metric
- add_callback
Purpose: add asynchronous notifier callback to watch

metric changes
Format: add_callback (in callback cb,

out int cookie);
Inputs: cb: callback class instance
InOuts: -

saga-core-wg@ogf.org 131

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

Outputs: cookie: handle for this callback,
to be used for removal

PreCond: - the metric is not ’Final’.
PostCond: - the callback is invoked on metric changes.
Perms: Read
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - ’IncorrectState’ is thrown if the metric is
’Final’.

- the ’callback’ method on cb will be invoked on
any change of the metric (not only when its
value changes)

- if the ’callback’ method returns true, the
callback is kept registered; if it returns
false, the callback is called, and is
un-registered after completion. If the
callback throws an exception, it stays
registered.

- the cb is passed by reference.
- the returned cookie uniquely identifies the
callback, and can be used to remove it.

- A ’Timeout’ or ’NoSuccess’ exception is thrown
if the implementation cannot in voke the
callback on metric changes.

- a backend MAY limit the ability to add
callbacks - the method may hence cause an
’AuthenticationFailed’, ’AuthorizationFailed’
or ’PermissionDenied’ exception to be thrown.

- remove_callback
Purpose: remove a callback from a metric
Format: remove_callback (in int cookie);
Inputs: cookie: handle identifying the cb to

be removed
InOuts: -
Outputs: -
PreCond: - the callback identified by ’cookie’ is

registered for that metric.
PostCond: - the callback identified by ’cookie’ is not

active, nor invoked ever again.

saga-core-wg@ogf.org 132

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

Perms: Read
Throws: NotImplemented

BadParameter
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if a callback is active at the time of
removal, the call MUST block until
that callback returns. The callback is not
activated anew during or after that block.

- if the callback was removed earlier, or
was unregistered by returning false, this call
does nothing.

- the removal only affects the cb identified
by ’cookie’, even if the same callback was
registered multiple times.

- if the cookie was not created by adding a
callback to this object instance, a
’BadParameter’ is thrown.

- a ’Timeout’ or ’NoSuccess’ exception is thrown
if the backend cannot guarantee that the
callback gets successfully removed.

- note that the backend MUST allow the removal of
the callback, if it did allow its addition -
hence, no authentication, autorization or
permission faults are tom be expected.

- fire
Purpose: push a new metric value to the backend
Format: fire (void);
Inputs: -
InOuts: -
Outputs: -
PreCond: - the metric is not ’Final’.

- the metric is ’ReadWrite’
PostCond: - callbacks registered on the metric are

invoked.
Perms: Write
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed

saga-core-wg@ogf.org 133

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

Timeout
NoSuccess

Notes: - ’IncorrectState’ is thrown if the metric is
’Final’.

- ’PermissionDenied’ is thrown if the metric is
not ’ReadWrite’ -- That also holds for a once
writable metric which was flagged ’Final’.
To catch race conditions on this exceptions,
the application should try/catch the fire().

- it is not necessary to change the value of a
metric in order to fire it.

- ’set_attribute ("value", "...") on a metric
does NOT imply a fire. Hence the value can be
changed multiple times, but unless fire() is
explicitly called, no consumer will notice.

- if the application invoking fire() has
callbacks registered on the metric, these
callbacks are invoked.

- ’AuthenticationFailed’, ’AuthorizationFailed’
or ’PermissionDenied’ may get thrown if the
curent session is not allowed to fire this
metric.

- a ’Timeout’ or ’NoSuccess’ exception signals
that the implementation could not communicate
the new metric state to the backend.

Interface monitorable

The monitorable interface is implemented by those SAGA objects which can be
monitored, i.e. which have one or more associated metrics. The interface allows
introspection of these metrics, and allows to add callbacks to these metrics which
get called if these metrics change.

Several methods of this interface reflect similar methods on the metric class
– the additional string argument name identifies the metric these methods act
upon. The semantics of these calls are identical to the specification above.

// introspection
- list_metrics
Purpose: list all metrics associated with the object
Format: list_metrics (out array<string> names);
Inputs: -

saga-core-wg@ogf.org 134

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

InOuts: -
Outputs: names: array of names identifying

the metrics associated with
the object instance

PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - several SAGA objects are required to expose
certain metrics (e.g. ’task.state’). However,
in general that assumption cannot be made, as
implementations might be unable to provide
metrics. In particular, listed metrics might
actually be unavailable.

- no order is implied on the returned array
- the returned array is guaranteed to have no
double entries (names are unique)

- an ’AuthenticationFailed’,
’AuthorizationFailed’ or ’PermissionDenied’
exception indicates that the current session
is not allowed to list the available metrics.

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to list the
available metrics.

- get_metric
Purpose: returns a metric instance, identified by name
Format: get_metric (in string name,

out metric metric);
Inputs: name: name of the metric to be

returned
InOuts: -
Outputs: metric: metric instance identified

by name
PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

DoesNotExist
PermissionDenied

saga-core-wg@ogf.org 135

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - multiple calls of this method with the same
value for name return multiple identical
instances (copies) of the metric.

- a ’DoesNotExist’ exception indicates that the
backend does not know the metric with the
given name.

- an ’AuthenticationFailed’,
’AuthorizationFailed’ or ’PermissionDenied’
exception indicates that the current session
is not allowed to obtain the named metric.

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to return the
named metric.

// callback handling
- add_callback
Purpose: add a callback to the specified metric
Format: add_callback (in string name,

in callback cb,
out int cookie);

Inputs: name: identifies the metric to
which cb
is to be added

cb: reference to callback class
instance to be registered

InOuts: -
Outputs: cookie: handle for callback removal
PreCond: -
PostCond: - the callback is registered on the metric.
Perms: Read on the metric.
Throws: NotImplemented

DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess
NoSuccess

Notes: - notes to the add_callback method of the metric
class apply.

saga-core-wg@ogf.org 136

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

- remove_callback
Purpose: remove a callback from the specified metric
Format: remove_callback (in string name,

in int cookie);
Inputs: name: identifies the metric for

which cb is to be removed
cookie: identifies the cb to be

removed
InOuts: -
Outputs: -
PreCond: - the callback was registered on the metric.
PostCond: -
Perms: Read on the metric.
Throws: NotImplemented

BadParameter
DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - notes to the remove_callback method of the
metric class apply

Interface steerable

The steerable interface is implemented by saga objects which can be steered,
i.e. which have writable metrics, and which might allow to add new metrics.
Steerable objects also implement the monitorable interface.

The method add_metric() allows to implement steerable applications. In par-
ticular, the saga::self object is steerable, and allows to add metrics (see de-
scription of saga::self in the specification of the SAGA job management).

// metric handling
- add_metric
Purpose: add a metric instance to the application

instance
Format: add_metric (in metric metric,

out bool success);

saga-core-wg@ogf.org 137

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

Inputs: metric: metric to be added
InOuts: -
Outputs: success: indicates success
PreCond: -
PostCond: - the metric can be accessed from this

application, and possibly from other
applications.

Perms: Write
Throws: NotImplemented

AlreadyExists
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - a metric is uniquely identified by its name
attribute - no two metrics with the same name
can be added.

- any callbacks already registered on the metric
stay registered (the state of metric is not
changed)

- an object being steerable does not guarantee
that a metric can in fact be added -- the
returned boolean indicates if that particular
metric could be added.

- an ’AuthenticationFailed’,
’AuthorizationFailed’ or ’PermissionDenied’
exception indicates that the current session
is not allowed to add metrics to the
steerable.

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to add the
metric.

- if a metric with the same name is already
known for the object, an ’AlreadyExists’
exception is thrown.

- if the steerable instance does not support the
addition of new metrics, i.e. if only the
default metrics can be steered, an
’IncorrectState’ exception is thrown.

- remove_metric
Purpose: remove a metric instance
Format: remove_metric (in string name);

saga-core-wg@ogf.org 138

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

Inputs: name: identifies the metric to be
removed

InOuts: -
Outputs: -
PreCond: -
PostCond: - all callbacks registered on that metric are

unregistered.
- the metric is not available anymore.

Perms: Write
Throws: NotImplemented

DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - only previously added metrics can be removed;
default metrics (saga defined or implementation
specific) cannot be removed; attempts to do so
raise a BadParameter exception.

- an ’AuthenticationFailed’,
’AuthorizationFailed’ or ’PermissionDenied’
exception indicates that the current session
is not allowed to remove the metrics from the
steerable.

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to remove the
metric.

- if a metric with that name is not known for
the object, a ’DoesNotExist’ exception is
thrown.

- if a steerable instance does not support the
removal of some metric, e.g. if a metric
needs to be always present, an
’IncorrectState’ exception is thrown.
For example, the ’state’ metric on a steerable
job cannot be removed.

- fire_metric
Purpose: push a new metric value to the backend
Format: fire_metric (int string name);
Inputs: name: identifies the metric to be

fired
InOuts: -

saga-core-wg@ogf.org 139

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

Outputs: -
PreCond: -
PostCond: -
Perms: Write
Throws: NotImplemented

DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - notes to the fire method of the metric
class apply

- fire can be called for metrics which have been
added with add_metric(), and for predefined
metrics

- an ’AuthenticationFailed’,
’AuthorizationFailed’ or ’PermissionDenied’
exception indicates that the current session
is not allowed to fire the metric.

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to fire the
metric.

- if a metric with that name is not known for
the object, a ’DoesNotExist’ exception
is thrown.

- an attempt to fire a metric which is
’ReadOnly’ results in an ’IncorrectState’
exception.

- an attempt to fire a ’Final’ metric results in
an ’IncorrectState’ exception.

3.9.3 Examples

Code Example

1 callback example: trace all job state changes:

2 ---

3

4 // c++ example

5 // callback definition

6 class trace_cb : public saga::callback

7 {

8 public:

saga-core-wg@ogf.org 140

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

9 bool cb (saga::monitorable mt,

10 saga::metric m,

11 saga::context c)

12 {

13 std::cout << "metric " << m.get_attribute ("name")

14 << " fired." << std::endl;

15 return true; // stay registered

16 }

17 }

18

19 // the application

20 int main ()

21 {

22 ...

23

24 // if the callback defined above is added to all known

25 // metrics of all saga objects, a continous trace of state

26 // changes of these saga objects will be written to stdout

27 trace_cb cb;

28

29 saga::job j = ...

30

31 j.add_callback ("state", cb);

32

33 ...

34 }

35

36

37 monitoring example: monitor a write task

38 --

39

40 // c++ example for task state monitoring

41 class write_metric_cb : public saga::callback

42 {

43 public:

44 bool cb (saga::monitorable mt,

45 saga::metric m,

46 saga::context c)

47 {

48 saga::task t = saga::task (mt);

49

50 std::cout << "bytes written: "

51 << m.get_attribute ("value")

52 << std::endl;

53 std::cout << "task state: "

54 << t.get_state ()

55 << std::endl;

56

57 return true; // keep callback registered

58 }

saga-core-wg@ogf.org 141

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

59 };

60

61 int main (int argc, char** argv)

62 {

63 ssize_t len = 0;

64 saga::buffer buf ("Hello SAGA\n");

65 saga::url url (argv[1]);

66

67 saga::file f (url);

68 saga::task t = f.write <saga::task::Async> (buf, &len);

69

70 // assume that a file write task has a ’progress’ metric

71 // indicating the number of bytes already written. In

72 // general, the list of metric names has to be searched

73 // for an interesting metric, unless it is a default

74 // metric as specified in the SAGA spec.

75

76 // create and add the callback instance

77 write_metric_callback cb;

78 t.add_callback ("file.write.progress", cb);

79

80 // wait until task is done, and give cb chance to get

81 // called a couple of times

82 t.wait ();

83 }

84

85

86 steering example: steer a remote job

87 ------------------------------------

88

89 // c++ example

90 class observer_cb : public saga::metric::callback

91 {

92 public:

93 bool cb (saga::monitorable mt,

94 saga::metric m,

95 saga::context c)

96 {

97 std::cout << "the new value is"

98 << atoi (m.get_attribute ("value"))

99 << std::endl;

100

101 return true; // keep callback registered

102 }

103 };

104

105 // the steering application

106 int main (int argc, char** argv)

107 {

108 saga::job_service js;

saga-core-wg@ogf.org 142

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

109

110 saga::job j = js.run ("remote.host.net",

111 "my_remote_application");

112

113 // Assume that job has a ’param_1’ metric representing

114 // an integer parameter for the remote application.

115 // In general, one has to list the metrics available on

116 // job, with list_metric, and search for an interesting

117 // metric. However, we assume here that we know that

118 // metric exists. So we get that metric, and add an

119 // observer callback to it - that causes the asynchronous

120 // printout of any changes to the value of that metric.

121

122 // then we get the metric for active steering

123 saga::metric m = j.get_metric ("param_1");

124

125 observer_cb cb;

126 m.add_callback (cb);

127

128 for (int i = 0; i < 10; i++)

129 {

130 // if param_1 is ReadOnly, set_value() would throw

131 // ’ReadOnly’ - it would not be usable for

132 // steering then.

133 m.set_attribute ("value", std::string (i));

134

135 // push the pending change out to the receiver

136 m.fire ();

137

138 // callback should get called NOW + 2*latency

139 // That means fire REQUESTS the value change, but only

140 // the remote job can CHANGE the value - that change

141 // needs then reporting back to us.

142

143 // give steered application some time to react

144 sleep (1);

145 }

146 }

147

148

149

150 steering example: BE a steerable job

151 ------------------------------------

152

153 // c++ example

154 //

155 // the example shows a job which

156 // - creates a metric to expose a Float steerable

157 // parameter

158 // - on each change of that parameter computes a

saga-core-wg@ogf.org 143

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

159 // new isosurface

160 //

161 // callback - on any change of the metric value, e.g. due to

162 // steering from a remote GUI application, a new iso surface

163 // is computed

164 class my_cb : public saga::callback

165 {

166 public:

167 // the callback gets called on any steering events, i.e.

168 // if some other application steeres ’me’.

169 bool cb (saga::monitorable mt,

170 saga::metric m,

171 saga::context c)

172 {

173 // get the new iso-value

174 float iso = atof (m.get_attribute ("value"));

175

176 // compute an isosurface with that iso-value

177 compute_iso (iso);

178

179 // keep this callback alive, and get called again on

180 // the next metric event.

181 return true;

182 }

183 }

184

185 int main ()

186 {

187 // create a metric for the iso-value of an isosurfacer

188 saga::metric m ("application.isosurfacer.isovalue",

189 "iso-value of the isosurfacer",

190 "ReadWrite", // is steerable

191 "", // no unit

192 "Float", // data type

193 "1.0"); // initial value

194

195 // add the callback which reacts on changes of the

196 // metric’s value (returned cookie is ignored)

197 my_cb cb;

198 m.add_callback (cb);

199

200 // get job handle for myself

201 saga::self self;

202

203 // add metric to myself

204 self.add_metric (m);

205

206 /*

207 // the callback could also have been added with:

208 self.add_callback ("application.isosurfacer.isovalue", cb);

saga-core-wg@ogf.org 144

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

209 */

210

211 // now others can ’see’ the metric, e.g. via

212 // job.list_metrics ();

213

214 // compute isosurfaces for the next 10 minutes -

215 // the real work is done in the callback, on incoming

216 // requests (i.e. steering events).

217 sleep (600);

218

219 // on object (self) destruction, metrics and callback

220 // objects are destroyed as well

221 return (0);

222 }

223

224

225

226 monitoring example: callback for stream connects

227 --

228

229 // c++ example

230 //

231 // callback class which accepts an incoming client

232 // connection, and then un-registeres itself. So, it

233 // accepts exactly one client, and needs to be re-registered

234 // to accept another client.

235 class my_cb : public saga::callback

236 {

237 privat:

238 // we keep a stream server and a single client stream

239 saga::stream_server ss_;

240 saga::stream s_;

241

242

243 public:

244 // constructor initializes these (note that the

245 // client stream should not be connected at this

246 // point)

247 my_cb (saga::stream_server ss,

248 saga::stream s)

249 {

250 ss_ = ss;

251 s_ = s;

252 }

253

254

255 // the callback gets called on any incoming client

256 // connection

257 bool cb (saga::monitorable mt,

258 saga::metric m,

saga-core-wg@ogf.org 145

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

259 saga::context c)

260 {

261 // the stream server got an event triggered, and

262 // should be able to create a client socket now.

263 s_ = ss_.wait ();

264

265 if (s_.state == saga::stream::Open)

266 {

267 // have a client stream, we are done

268 // don’t call this cb again!

269 return (true);

270 }

271

272 // no valid client stream obtained: keep this

273 // callback alive, and get called again on the

274 // next event on ss_

275 return true;

276 }

277 }

278

279 int main ()

280 {

281 // create a stream server, and an un-connected

282 // stream

283 saga::stream_server ss;

284 saga::stream s;

285

286 // give both to our callback class, and register that

287 // callback with the ’client_connect’ metric of the

288 // server. That causes the callback to be invoked on

289 // every change of that metric, i.e. on every event

290 // that changes that metric, i.e. on every client

291 // connect attempt.

292 my_cb cb (ss, s);

293 ss.add_callback ("client_connect", cb);

294

295 // now we serve incoming clients forever

296 while (true)

297 {

298 // check if a new client is connected

299 // the stream state would then be Open

300 if (s.state == saga::stream::Open)

301 {

302 // a client got conncted!

303 // handle open socket

304 saga::buffer buf ("You say hello, "

305 "I say good bye!\r\n", 33);

306 s.write (buf);

307

308 // and close stream

saga-core-wg@ogf.org 146

GFD-R-P.90 SAGA Monitoring Model May 12, 2009

309 s.close ();

310

311 // the stream is not Open anymore. We re-add the

312 // callback, and hence wait for the next client

313 // to connect.

314 ss.add_callback ("client_connect", cb);

315 }

316 else

317 {

318 // no client yet, idle, or do something useful

319 sleep (1);

320 }

321 }

322

323 // we should never get here

324 return (-1);

325 }

saga-core-wg@ogf.org 147

GFD-R-P.90 SAGA Task Model May 12, 2009

3.10 SAGA Task Model

Operations performed in highly heterogenous distributed environments may
take a long time to complete, and it is thus desirable to have the ability to
perform operations in an asynchronous manner. The SAGA task model as
described here, provides this ability to all other SAGA classes. As such, the
package is orthogonal to the rest of the SAGA API.

CanceledDone

Final State

run()

intern intern

construction

Initial State

cancel()
wait()wait()wait()

construction
task::Task task::Async

New Running

Failed

Figure 3: The SAGA task state model (See figure 1 for a legend).

In order to understand the SAGA task model it is not sufficient to read the
specification of the saga::task and saga::task_container classes below, but
it is also imperative to understand how task instances get created. This is
actually not covered in the SIDL specification sections in this document, but
documented in prose below, with references to Figure 3. Note that the task state
model is closely modeled after the BES state model [12], which is in particular
relevant to the (similar) job state model as described in Section 4.1.

saga-core-wg@ogf.org 148

GFD-R-P.90 SAGA Task Model May 12, 2009

Tasks versus Jobs

In SAGA, tasks should not be confused with jobs! Jobs represent remotely
running applications/executables, which are ussually managed by a job man-
ager. Tasks on the other hand represent asynchronous operations. Thus, any
asynchronous method call in SAGA results in a task.

Tasks and jobs have, however, several commonalities, the most important one
is state: both can be newly created (in New state), can be currently making
progress (in Running state), or can be finished in some way (in Done, Failed or
Canceled state). Additionally, jobs can be suspended and resumed (they have
a Suspended state).

Mostly for this reason, and to simplify the management of both tasks and jobs
in SAGA, the saga::job class inherits the saga::task class.

Tasks versus Threads

Tasks and threads are another potential pair to confuse: in many APIs and
programming languages, tasks and asynchronous operations are implemented
by threading. In SAGA, however, tasks have a semantically richer meaning.
In particular, threads always imply that the state management for the asyn-
chronous operation lies within the application hosting the thread. SAGA tasks,
however, imply no such restriction.

For example, a SAGA task to copy a remote file could be implemented by using
the Globus Reliable File Transfer Service (RFT, [1]): the asynchronous method
invocation in SAGA would then start the remote operation on the RFT service.
All management of the operation progress is in the service - no threading at
all is required on the application side. Even more: the application could finish,
and after restart could reconnect to the RFT service, and recreate the task,
as the complete state is still available on the RFT service - that is basically
impossible with threads. Well, it is also not possible in SAGA right now, but
for very different reasons, and it is expected that future versions and extensions
of SAGA add this and other options to the notion of tasks.

Implementors of SAGA are warned not to rely solely on threading while imple-
menting saga::task, but to exploit middleware support for server side asyn-
chronous operations wherever possible.

Task Model Description

The SAGA task model operates as follows:

saga-core-wg@ogf.org 149

GFD-R-P.90 SAGA Task Model May 12, 2009

• A SAGA object is said to implement the SAGA task model if, (a) it in-
herits the saga::async interface, and (b) all methods on that object are
implemented in three different versions, which are called synchronous,
asynchronous, and task version.

• The synchronous version of a SAGA call corresponds to the normal method
call specified in the SAGA specification. The first out parameter specified
(if any) is used as return value.

• The asynchronous version of a SAGA call has the same signature, but
returns a saga::task instance. That returned task is in Running state
and represents the asynchronous operation: it can be queried for state,
and can be canceled.

• The task version of the SAGA call is very similar to the asynchronous
version; the only difference is that the returned task instance is in the New
state, and must be run() to get into the Running state.

• For symmetry, a language binding MAY add a second flavour of the syn-
chronous call, which has the same signature as the asynchronous and task
version, but the returned task is in a final state (i.e., run() and wait()
have been called on that task before returning). 2

• The first out parameter, which is the return value in the synchronous
method version, is, in the task and asynchronous version, accessed by call-
ing task.get result <return type> (void);, which is a templetized
member method. That call implies a call to wait(). For language bind-
ings where templetized member functions are not available, a language
specific mechanism MUST be found, which MAY use type casting.

• Other out and all inout parameter for asynchronous operations are passed
by reference to the initial function call, and MUST NOT be accessed
before the corresponding task enters the Done state. In all other states,
no assumption can be made about the contents of these parameters. They
are guaranteed to not be accessed or changed by the implementation when
the task enters any final state.

• in parameters are passed by value, and are assumed to be constant. They
can be accessed and changed again as soon as the task instance is created.

• The original object instance, from which the task was created, can be re-
trieved from a task by calling get object <object type> (void);, again
a templetized member method, on the task. The same comments as above
apply to that templetized method.

2Note that state transitions for this type of method call are not shown in the state diagram
– the diagram would essentially have ’Done’ as an inital and final state.

saga-core-wg@ogf.org 150

GFD-R-P.90 SAGA Task Model May 12, 2009

Asynchronous Object Construction

The task model as described above focuses on asynchronous invocation of ob-
ject methods. It does not explicitly cover asynchronous object construction or
destruction though. That is important, however, as many constructors, such as
for example for saga::file, imply a remote operation during construction or
destruction (here open()/close()).

How asynchronous constructors and destructors are provided is up to the spe-
cific language bindings. Procedural bindings, such as expected for C, SHOULD
integrate asynchronous versions for the respective method calls to keep these
mechanisms in sync with the task model presented above. Object oriented lan-
guage bindings MAY either introduce an asynchronous factory pattern, or intro-
duce delayed construction/destruction by explicitly using asynchronous init()
and close(), or MAY introduce some other mechanism which most natively
allows to asynchronously create SAGA objects.

Tasks and Error Handling

Errors arising from synchronous method invocations on SAGA objects are, in
general, flagged by exceptions, and can be inspected using the error handler
interface that all SAGA objects implement. For asynchronous operations, this
mechanism would break, as the error_handler interface allows in general only
inspection of the last method call – but the order of execution is undefined for
asynchronous operations. Additionally, exceptions from asynchronous opera-
tions would be difficult to catch, as they would presumably be thrown outside
of an exception protection block.

For this reason, errors on asynchronous operations (i.e. tasks) are handled as
follows:

Error Handler: The saga::task class implements the saga::error_handler
interface, which allows inspection of an error thrown by an asynchronous
operation. Errors MUST NOT be reported unless the task enters a final
state.

Exceptions: The task instance MUST catch all SAGA exceptions and, if pos-
sible, all other exceptions thrown by the asynchronous operation. If an
exception is caught by the task instance, the task state MUST be changed
to Failed immediately. Such exceptions are to be re-thrown by the task
when the rethrow() method is called.

This specification assumes that tasks are, in general, created and maintained
in the API implementation, and not in the backend. However, for those cases

saga-core-wg@ogf.org 151

GFD-R-P.90 SAGA Task Model May 12, 2009

where task states are maintained in the middleware backend, several methods on
tasks and task_containers MAY throw a Timeout or NoSuccess exception,
if that backend is not available – these exceptions can be directly delivered to
the application. It is, however, not allowed to throw an AuthorizationFailed,
AuthenticationFailed or PermissionDenied exception, as this specification
assumes that the creator of the task can always inspect and control that task –
these exceptions MUST be caught, and MUST be made available via rethrow().
Later versions of this API MAY change that, for example when they introduce
persistent tasks which can survive the lifetime of a SAGA application.

3.10.1 Example Rendering in C++

Below is an example of how the SAGA task model might be rendered in C++
(this example is not normative). Note that template-tags are used here to
distinguish the three task-returning method calls.

Code Example

1 // c++ example

2

3 // SAGA specfication:

4 // read (inout array<byte> buffer,

5 // in int len_in = -1,

6 // out int len_out);

7

8 // create a saga file

9 saga::file f (url);

10

11 // synchronous version

12 ssize_t len_out = f.read (size_t len_in,

13 char * buffer);

14

15

16 // alternative synchronous version

17 saga::task t1 = f.read <saga::task::Sync>

18 (size_t len_in,

19 char * buffer);

20

21 // asynchronous version

22 saga::task t2 = f.read <saga::task::ASync>

23 (size_t len_in,

24 char * buffer);

25

26 // task version

27 saga::task t3 = f.read <saga::task::Task>

28 (size_t len_in,

29 char * buffer);

30

saga-core-wg@ogf.org 152

GFD-R-P.90 SAGA Task Model May 12, 2009

31 // t1 is in Done or Failed state

32 // t2 is in Running state

33 // t3 is in New state

34

35 // get results

36 ssize_t len_out_1 = t1.get_result <ssize_t> ();

37 ssize_t len_out_2 = t2.get_result <ssize_t> ();

38 ssize_t len_out_3 = t3.get_result <ssize_t> ();

39

40 // all rasks are in a final state now,

41 // as get_result() implies a wait().

42

43 // obtain the original file object, three

44 // times the same actually

45 saga::file f1 = t1.get_object <saga::file> ();

46 saga::file f2 = t2.get_object <saga::file> ();

47 saga::file f3 = t3.get_object <saga::file> ();

A C language binding of this package might choose to use flags to distinguish be-
tween these calls; equivalently the C binding might use different method names,
for it is up to the language bindings to define the mechanism that is native – or
as close as possible – to the language to distinguish these calls.

For additional notes on resource management and task lifetime, see the intro-
duction Section 2.5.3 of this document.

3.10.2 Specification

package saga.task
{
enum state
{
New = 1,
Running = 2,
Done = 3,
Canceled = 4,
Failed = 5

}

enum wait_mode
{
All = 0,

saga-core-wg@ogf.org 153

GFD-R-P.90 SAGA Task Model May 12, 2009

Any = 1
}

interface async
{
// this interface is empty on purpose, and is used only
// for tagging of SAGA classes which implement the SAGA
// task model.

}

class task : implements saga::object
implements saga::monitorable

// from object saga::error_handler
{
// no constructor
DESCTRUCTOR (in task obj);

// state management
run (void);
cancel (in float timeout = 0.0);
wait (in float timeout = -1.0,

out boolean finished);

// inspection
get_state (out state state);
get_result <type> (out type result);
get_object <type> (out type object);

// error handling
rethrow (void);

// Metric:
// name: task.state
// desc: fires on task state change, and
// has the literal value of the task
// state enum.
// mode: ReadOnly
// unit: 1
// type: Enum
// value: 0

}

class task_container : implements saga::object

saga-core-wg@ogf.org 154

GFD-R-P.90 SAGA Task Model May 12, 2009

implements saga::monitorable
// from object saga::error_handler

{
CONSCTRUCTOR (out task_container obj);
DESCTRUCTOR (in task_container obj);

// task management
add (in task task,

out int cookie);
remove (in int cookie,

out task task);

// state management
run (void);
cancel (in float timeout = 0.0);
wait (in wait_mode mode = All,

in float timeout = -1.0,
out task finished);

// inspection
size (out int n);
list_tasks (out array<int> cookies);
get_task (in int cookie,

out task t);
get_tasks (out array<task> tasks);
get_states (out array<state> states);

// Metric:
// name: task_container.state
// desc: fires on state changes of any task in
// container, and has the value of that
// task’s cookie.
// mode: ReadOnly
// unit: 1
// type: Int
// value: -

}
}

saga-core-wg@ogf.org 155

GFD-R-P.90 SAGA Task Model May 12, 2009

3.10.3 Specification Details

Enum state

A task can be in one of several possible states (see Fig. 3):

New

This state identifies a newly constructed task instance which has not yet
run. This state corresponds to the BES state ’Pending’. This state is
initial.

Running

The run() method has been invoked on the task, either explicitly or
implicitly. This state corresponds to the BES state ’Running’. This
state is initial.

Done

The synchronous or asynchronous operation has finished successfully. It
corresponds to the BES state ’Finished’. This state is final.

Canceled

The asynchronous operation has been canceled, i.e. cancel() has been
called on the task instance. It corresponds to the BES state ’Canceled’.
This state is final.

Failed

The synchronous or asynchronous operation has finished unsuccessfully.
It corresponds to the BES state ’Failed’. This state is final.

Enum wait mode

The wait mode enum specifies the condition on which a wait() operation on a
saga::task container returns:

All

wait() returns if all tasks in the container reached a final state.

Any

wait() returns if one or more tasks in the container reached a final state.

saga-core-wg@ogf.org 156

GFD-R-P.90 SAGA Task Model May 12, 2009

Class task

Objects of this class represent asynchronous API calls. They are only created
by invoking a method on a SAGA object which returns a task object (with
saga::task::ASync or saga::task::Task). But as saga::job instances in-
herit from the task class, jobs are also effectively created as tasks.

If a task gets created, it will share the state of the object it was created from.
For more information on state sharing, see Section 2.5.3).

Note that no CONSTRUCTOR is available, as tasks are only created through asyn-
chronous method calls.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in task obj)
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - state is no longer shared with the object

the task was created from.
- the task instance is ’Canceled’ prior to
resource deallocation.

Perms: -
Throws: -
Notes: - if the instance was not in a final state

before, the destructor performs a cancel()
on the instance, and all notes to cancel()
apply.

State Management

- run
Purpose: Start the asynchronous operation.
Format: run (void);
Inputs: -
InOuts: -
Outputs: -
PreCond: - task is in ’New’ state.
PostCond: - task left the ’New’ state.
Perms: - appropriate permissions for the method

saga-core-wg@ogf.org 157

GFD-R-P.90 SAGA Task Model May 12, 2009

represented by the task
Throws: NotImplemented

IncorrectState
Timeout
NoSuccess

Notes: - run can only be called on a task in ’New’
state. All other states will cause the
’IncorrectState’ exception to be thrown.

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to start the
task.

- wait
Purpose: Wait for the task to finish.
Format: wait (in float timeout,

out boolean done);
Inputs: timeout: seconds to wait
InOuts: -
Outputs: done: indicating if the task

is done running
PreCond: - task is not in ’New’ state.
PostCond: - if no timeout occurs, task is in a final

state.
Perms: -
Throws: NotImplemented

IncorrectState
Timeout
NoSuccess

Notes: - wait returns success (true) as soon as the
task enters a final state

- if the task is already in a final state, the
call returns success (true) immediately.

- if the task is in ’New’ state, an
’IncorrectState’ exception is thrown.

- wait returns no success (false) if the task
is, even after timeout, not in a final state.

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to wait for the
task. Note that a ’Timeout’ exception does
not indicate that the task is not in a final
state after the given wait period - that
causes an unsuccessfull (false) return value.

- for timeout semantics, see Section 2.

saga-core-wg@ogf.org 158

GFD-R-P.90 SAGA Task Model May 12, 2009

- cancel
Purpose: Cancel the asynchronous operation.
Format: cancel (in float timeout = 0.0);
Inputs: timeout: time for freeing resources
InOuts: -
Outputs: -
PreCond: - task is in ’Running’ state.
PostCond: - task is in ’Canceled’ state.
Perms: -
Throws: NotImplemented

IncorrectState
Timeout
NoSuccess

Notes: - for resource deallocation semantics, see
Section 2.

- if cancel() fails to cancel the task
immediately, and tries to continue to cancel
the task in the background, the task state
remains ’Running’ until the cancel operation
succeeded. The state then changes to
’Canceled’.

- if the task is in a final state, the call has
no effect, and, in particular, does NOT change
the state from ’Done’ to ’Canceled’, or from
’Failed’ to ’Canceled’. This is to
avoid race conditions.

- if the task is in ’New’ state, an
’IncorrectState’ exception is thrown.

- a ’NoSuccess’ exception indicates
that the backend was not able to initiate the
cancelation for the task.

- for timeout semantics, see Section 2.

Inspection

- get_state
Purpose: Get the state of the task.
Format: get_state (out state state);
Inputs: -
InOuts: -
Outputs: state: state of the task.
PreCond: -
PostCond: -
Perms: -

saga-core-wg@ogf.org 159

GFD-R-P.90 SAGA Task Model May 12, 2009

Throws: NotImplemented
Timeout
NoSuccess

Notes: - a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to retrieve the
task state.

- get_result
Purpose: Get the result of the async operation
Format: get_result <type> (out type result);
Inputs: -
InOuts: -
Outputs: result: return value of async

method
PreCond: - task is not in New, Failed or Canceled state.
PostCond: - task is in a final state.
Perms: -
Throws: NotImplemented

IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - get_result implies a wait() - all notes to
wait apply.

- if the task is in ’Failed’ state after wait(), a
rethrow() is called. That is why all possible
exceptions can be thrown by get_result().

- the method returns the type and value which
would be returned by the synchronous version of
the respective function call.

- get_object
Purpose: Get the object from which this task was created
Format: get_object <type> (out type object);
Inputs: -
InOuts: -
Outputs: object: object this task was

created from

saga-core-wg@ogf.org 160

GFD-R-P.90 SAGA Task Model May 12, 2009

PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

Timeout
NoSuccess

Notes: - the method returns a shallow copy of the
object this task was created from.

- rethrow
Purpose: re-throw any exception a failed task caught.
Format: rethrow (void);
Inputs: -
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - that method does nothing unless the task is in
’Failed’ state, and also MUST NOT throw
’IncorrectState’ if the task is in any other
state.

- if in ’Failed’ state, the method MUST raise an
exception which indicates the reason why that
task entered the ’Failed’ state (i.e. it throws
the exception which caused it to enter the
’Failed’ state.

- language bindings for languages with no
support for exceptions MUST change the state
of the object from which the task was created
so that a susbequent call to has_error() on
that object returns true. A subsquent call to
get_error() must then return the respectiv
exception.

saga-core-wg@ogf.org 161

GFD-R-P.90 SAGA Task Model May 12, 2009

- rethrow can be called multiple times, always
throwing the same exception.

Class task container

Managing a large number of tasks can be tedious. The task_container class
is designed to help in these situations, and to effectively handle a large number
of asynchronous operations.

For example, when an application uses many tasks, it would be inefficient to
invoke the wait() method on each of them individually. The task_container
class provides (amongst other operations) a mechanism to wait for a set of tasks.

Language bindings CAN specify the task container to be, or to inherit from, a
native container type, if that allows for the same semantics as described below,
and if that helps to ’naturalize’ the SAGA Look & Feel for that language.

- CONSTRUCTOR
Purpose: create a task_container
Format: CONSTRUCTOR (out task_container tc);
Inputs: -
InOuts: -
Outputs: tc: newly created container
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

Timeout
NoSuccess

Notes: - a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to create a task
container.

- DESTRUCTOR
Purpose: destroy a task_container
Format: DESTRUCTOR (in task_container tc);
Inputs: tc: container to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: -

saga-core-wg@ogf.org 162

GFD-R-P.90 SAGA Task Model May 12, 2009

Perms: -
Throws: -
Notes: - tasks in the task_container during its

destruction are not affected by its
destruction, and, in particular, are not
canceled.

Task Management

- add
Purpose: Add a task to a task_container.
Format: add (in task task,

out int cookie);
Inputs: task: task to add to the

task_container
InOuts: -
Outputs: cookie: cookie identifying the

added task
PreCond: -
PostCond: - the task is managed by the task container.
Perms: -
Throws: NotImplemented

Timeout
NoSuccess

Notes: - a task can be added only once. Any attempt
to add a task to the container which already
is in the container is silently ignored, and
the same cookie as for the original task is
returned again.

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to add the task
to the container.

- remove
Purpose: Remove a task from a task_container.
Format: remove (in int cookie,

out task task);
Inputs: task: cookie identifying the

task to be removed
InOuts: -
Outputs: task: the removed task
PreCond: - the task is managed by the task container.
PostCond: - the task is not managed by the task container.

saga-core-wg@ogf.org 163

GFD-R-P.90 SAGA Task Model May 12, 2009

Perms: -
Throws: NotImplemented

DoesNotExist
Timeout
NoSuccess

Notes: - if a task was added more than once, it can be
removed only once - see notes to add().

- if the task identified by the cookie is not in
the task_container, a ’DoesNotExist’ exception
is thrown.

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to remove the
task from the container.

State Management

- run
Purpose: Start all asynchronous operations in the

container.
Format: run (void);
Inputs: -
InOuts: -
Outputs: -
PreCond: - all tasks in the comtainer are in ’New’ state.
PostCond: - all tasks in the comtainer are in ’Running’

state.
Perms: - see permissions on task::run()
Throws: NotImplemented

IncorrectState
DoesNotExist
Timeout
NoSuccess

Notes: - run() MUST cause an ’IncorrectState’ exception
if any of the tasks in the container causes
that exception on run().

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to run one or
more tasks in the container.

- if the task_container is empty, an
’DoesNotExist’ exception is thrown.

- As the order of execution of the tasks is
undefined, no assumption on the individual
task states can be made after any
exception gets thrown.

saga-core-wg@ogf.org 164

GFD-R-P.90 SAGA Task Model May 12, 2009

- wait
Purpose: Wait for one or more of the tasks to finish.
Format: wait (in wait_mode mode = All,

in float timeout = -1.0,
out task done);

Inputs: mode: wait for All or Any task
timeout: seconds to wait

InOuts: -
Outputs: done: finished task
PreCond: -
PostCond: - if no timeout occurs, All/Any tasks in the

container are in a final state.
Perms: -
Throws: NotImplemented

IncorrectState
DoesNotExist
Timeout
NoSuccess

Notes: - if mode is ’All’, the wait call returns only
if all tasks in the container are finished,
or on timeout, whichever occurs first.
The output task is then any of the finished
tasks.

- if mode is ’Any’, the wait call returns on the
first task which would return on task::wait in
that timeout period, and returns that task.

- the default wait mode is ’All’ (0).
- the returned task is removed from the
container, which allows constructs like
while (tc.size ())
{

saga::task t = tc.wait (saga::task::Any))
...

}
- wait() MAY cause an ’IncorrectState’ exception
if any of the tasks in the container causes
that exception on wait().

- if the task_container is empty, an
’DoesNotExist’ exception is thrown.

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to wait for one
or more tasks in the container.

- As the order of execution of the tasks is
undefined, no assumption on the individual

saga-core-wg@ogf.org 165

GFD-R-P.90 SAGA Task Model May 12, 2009

task states can be made after any
exception gets thrown.

- for timeout semantics, see Section 2.

- cancel
Purpose: Cancel all the asynchronous operations in the

container.
Format: cancel (in float timeout = 0.0);
Inputs: timeout: time for freeing resources
InOuts: -
Outputs: -
PreCond: -
PostCond: - if no timeout occurs, all tasks in the

container are in ’Canceled’ state.
Perms: -
Throws: NotImplemented

IncorrectState
DoesNotExist
Timeout
NoSuccess

Notes: - see semantics of task cancel.
- cancel() MUST cause an ’IncorrectState’
exception if any of the tasks in the container
causes that exception on cancel().

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to run one or
more tasks in the container.

- if the task_container is empty, an
’DoesNotExist’ exception is thrown.

- As the order of execution of the tasks is
undefined, no assumption on the individual
task states can be made after any
exception gets thrown.

Inspection

- size
Purpose: return the number of tasks in the task

task_container.
Format: size (out int n);
Inputs: -
InOuts: -
Outputs: n: number of tasks in

saga-core-wg@ogf.org 166

GFD-R-P.90 SAGA Task Model May 12, 2009

task_container
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

Timeout
NoSuccess

Notes: - a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to list the
tasks in the container.

- list_tasks
Purpose: List the tasks in the task_container.
Format: list_tasks (out array<int> cookies);
Inputs: -
InOuts: -
Outputs: cookies: array of cookies for all

tasks in task_container
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

Timeout
NoSuccess

Notes: - a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to list the
tasks in the container.

- get_task
Purpose: Get a single task from the task_container.
Format: get_task (in int cookie,

out task t);
Inputs: cookie: the cookie identifying the

task to return
InOuts: -
Outputs: t: the task identified by

cookie
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

DoesNotExist
Timeout
NoSuccess

saga-core-wg@ogf.org 167

GFD-R-P.90 SAGA Task Model May 12, 2009

Notes: - the returned task is NOT removed from the
task_container.

- if cookie specifies a task which is not in the
container, a ’DoesNotExist’ exception is
thrown.

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to list the
tasks in the container.

- get_tasks
Purpose: Get the tasks in the task_container.
Format: get_tasks (out array<task> tasks);
Inputs: -
InOuts: -
Outputs: tasks: array of tasks in

task_container
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

Timeout
NoSuccess

Notes: - the returned tasks are NOT removed from the
task_container.

- if the task_container is empty, an
empty list is returned.

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to list the
tasks in the container.

- get_states
Purpose: Get the states of all tasks in the

task_container.
Format: get_states (out array<state> states);
Inputs: -
InOuts: -
Outputs: states: array of states for

tasks in task_container
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

Timeout
NoSuccess

saga-core-wg@ogf.org 168

GFD-R-P.90 SAGA Task Model May 12, 2009

Notes: - the returned list is not ordered
- if the task_container is empty, an
empty list is returned.

- a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to obtain the
states of the tasks in the container.

3.10.4 Examples

Code Example

1 // c++ example

2 saga::directory dir;

3 saga::job job;

4

5 ...

6

7 /* create tasks */

8 saga::task t1 = dir.ls <saga::task> (result);

9 saga::task t2 = dir.copy <saga::task> (source,target);

10 saga::task t3 = dir.move <saga::task> (source,target);

11 saga::task t4 = job.checkpoint <saga::task> ();

12 saga::task t5 = job.signal <saga::task> (SIG_USR);

13

14 // start tasks

15 t1.run ();

16 t2.run ();

17 t3.run ();

18 t4.run ();

19 t5.run ();

20

21 // put all tasks into container

22 saga::task_container tc;

23

24 tc.add (t1);

25 tc.add (t2);

26 tc.add (t3);

27 tc.add (t4);

28 tc.add (t5);

29

30 // take one out again

31 tc.remove (t5);

32

33 // wait for all other tasks in container to finish

34 tc.wait ();

35

36 // wait for the last task

37 t5.wait ();

saga-core-wg@ogf.org 169

GFD-R-P.90 SAGA Task Model May 12, 2009

38

39 +---+

40

41 // example for error handling in C++

42 {

43 task.run ();

44 task.wait ();

45

46 if (task.get_state () == saga::task::Failed)

47 {

48 try {

49 task.rethrow ();

50 }

51 catch (const saga::exception & e)

52 {

53 std::cout << "task failed: "

54 << e.get_message ()

55 << std::endl;

56 }

57 }

58 }

saga-core-wg@ogf.org 170

GFD-R-P.90 SAGA API Specification – API Packages May 12, 2009

4 SAGA API Specification – API Packages

The Functional SAGA API packages define the functional SAGA API scope, as
motivated in the Introduction and in [18].

General Properties of Functional API Classes and Instances

The interfaces, classes and methods defined in this part of the specification are,
in general, representing explicit entities and actions of some backend system. As
such, all operations on these entities are, in general, subject to authentication
and authorization. In order to simplify the specification, the following excep-
tions are not separately motivated: AuthenticationFailed, Authorization-
Failed, PermissionDenied, Timeout, NoSuccess. These exceptions have then
exactly the semantics as indicated in their description in Section 3.1. Addition-
ally, the conventions for the exceptions NotImplemented and IncorrectURL
apply as described in Section 3.

saga-core-wg@ogf.org 171

GFD-R-P.90 SAGA Job Management May 12, 2009

4.1 SAGA Job Management

Nearly all of the SAGA use cases (except for the GridRPC use cases) had either
explicit or implicit requirements for submitting jobs to grid resources, and most
needed also to monitor and control these submitted jobs.

This section describes the SAGA API for submitting jobs to a grid resource,
either in batch mode, or in an interactive mode. It also describes how to control
these submitted jobs (e.g. to cancel(), suspend(), or signal() a running
job), and how to retrieve status information for both running and completed
jobs.

This API is also intended to incorporate the work of the DRMAA-WG [9].
Much of this specification was taken directly from DRMAA specification [24],
with many of the differences arising from an attempt to make the job API
consistent with the overall SAGA API Look-&-Feel3.

The API covers four classes: saga::job_description, saga::job_service,
saga::job and saga::job_self. The job description class is nothing more
than a container for a well defined set of attributes which, using JSDL [15] based
keys, defines the job to be started, and its runtime and resource requirements.
The job server represents a resource management endpoint which allows the
starting and insection of jobs.

The job class itself is central to the API, and represents an application instance
running under the management of a resource manager. The job self class IS-A
job, but additionally implements the steering interface. The purpose of this class
is to represent the current SAGA application, which allows for a number of use
cases with applications which actively interact with the grid infrastructure, for
example to provide steering capabilities, to migrate itself, or to set new job
attributes.

The job class inherits the saga::task class 3.10, and uses its methods to run(),
wait() for, and to cancel() jobs. The inheritance feature also allows for the
management of large numbers of jobs in task containers. Additional methods
provided by the saga::job class relate to the Suspended state (which is not
available on tasks), and provide access to the job’s standard I/O streams, and to
more detailed status information. In this specification, the standard I/O streams
are specified to have opaque types. The SAGA language bindings MUST specify
a native type for I/O streams. That type SHOULD be the one used as the file
descriptor to the POSIX read() call in that language.

3We expect that SAGA-API implementations may be implemented using DRMAA, or may
produce JSDL documents to be passed to underlying scheduling systems.

saga-core-wg@ogf.org 172

GFD-R-P.90 SAGA Job Management May 12, 2009

4.1.1 Job State Model

The SAGA job state diagram is shown in Figure 4. It is an extension of the
saga::task state diagram (Figure 3), and extends the state diagram with a
’Suspended’ state, which the job can enter/leave using the suspend()/resume()
calls.

CanceledDone

Final State

run()

resume()

suspend()

wait()
intern intern

Initial State

cancel() cancel()
wait() wait() wait()

run_job()create_job()

wait()
intern

New Running Suspended

Failed

Figure 4: The SAGA job state model extends the SAGA task state model with a ’Suspended’
state, and additional transitions (See Figure 1 for a legend).

SAGA implementations need to map the native backend state model onto the
SAGA state model. The SAGA state model should be simple enough to allow
a straight forward mapping in most cases. For some applications, access to
the native backend state model is useful. For that reason, an additional metric
named ’StateDetail’ allows to query the native job state. That schema follows
the current state model of the OGSA-BES specification [12], which also has a
simplified top level state model, and allows for additional, backend specific state
details.

State details in SAGA SHOULD be formatted as follows:

’<model>:<state>’

saga-core-wg@ogf.org 173

GFD-R-P.90 SAGA Job Management May 12, 2009

with valid models being ”BES”, ”DRMAA”, or other implementation specific
models. For example, a state detail for the BES state ’StagingIn’ would be
rendered as ’BES:StagingIn’), and would be a substate of Running. If no
state details are available, the metric is still available, but it has always an
empty string value.

4.1.2 Job Description Attributes

SAGA implementations MUST support the Executable attribute, as that is
the only required attribute for a job_description. An implementation MUST
document which other attributes are supported, and which are not. In general,
a job_description containing an unsupported attribute does not cause an
error on job creation or submission, unless noted otherwise in the attribute
description.

Attributes marked as ’not supported by JSDL’ might disappear in future ver-
sions of the SAGA API – all other attributes are likely to be kept, at least for
backward compatibility. The attribute description additionally mentions if the
attributes are supported by DRMAA (see [24]) – that is for information purposes
only, and supposed to support implementations on top of DRMAA.

Several metrics on the saga::job class (the class implements the saga::moni-
torable interface) reflect attributes from the job description. This redundancy
is intentional, and aims at providing information about (a) attributes which
may change at runtime, and (b) attributes for jobs for which no job description
is available (e.g. saga::job instances obtained by calling get.job().

Although JSDL [3] and JSDL SPMD extension [8] based attribute names are
used for job description, the API supports no explicit representation of JSDL
(i.e. JSDL compliant XML). XML is deemed to be too low level to be included
into the SAGA API. Also, the JSDL parameter sweep extension [7] is not used
in SAGA at the moment, as bulk job submission, and related the creation of
multiple related job descriptions, is performed on application level in SAGA, as
described in Section 2.9.

4.1.3 File Transfer Specifications

The syntax of a file transfer directive for the job description is modeled on the
LSF syntax (LSF stands for Load Sharing Facility, a commercial job scheduler
by Platform Computing), and has the general syntax:

local_file operator remote_file

Both the local_file and the remote_file can be URLs. If they are not URLs,

saga-core-wg@ogf.org 174

GFD-R-P.90 SAGA Job Management May 12, 2009

but full or relative pathnames, then the local_file is relative to the host where
the submission is executed, and the remote_file is evaluated on the execution
host of the job.

The operator is one of the following four:

’>’ copies the local file to the remote file before the job starts.
Overwrites the remote file if it exists.

’>>’ copies the local file to the remote file before the job starts.
Appends to the remote file if it exists.

’<’ copies the remote file to the local file after the job finishes.
Overwrites the local file if it exists.

’<<’ copies the remote file to the local file after the job finishes.
Appends to the local file if it exists.

4.1.4 Command Line Specification

The run_job() method of the saga::job_service class accepts a string pa-
rameter which constitutes a command line to be executed on a remote resource.
The parsing of that command lines follows the following rules:

• Elements are delimited by white space, which is either a space or a tab.

• A string surrounded by double quotation marks is interpreted as a single
element, regardless of white space contained within. A quoted string can
be embedded in an element.

• A double quotation mark preceded by a backslash, \", is interpreted as a
literal double quotation mark (").

• Backslashes are interpreted literally, unless they immediately precede a
double quotation mark.

• The first element is used as executable name; all other elements are treated
as job arguments.

4.1.5 Job Identifiers

The JobID is treated as an opaque string in the SAGA API. However, for the
sake of interoperability of different SAGA implementations, and for potential
extended use of the JobID information, the JobID SHOULD be implemented
as:

’[backend url]-[native id]’

saga-core-wg@ogf.org 175

GFD-R-P.90 SAGA Job Management May 12, 2009

For example, a job submitted to the host remote.host.net via ssh (whose
daemon runs on port 22), and having the POSIX PID 1234, should get the job
id:

’[ssh://remote.host.net:22/]-[1234]’

The implementation MAY free the resources used for the job, and hence MAY
invalidate a JobID, after a successful wait on the job, or after the application
received the job status information, and job status details if available, at least
once.

A JobID may be unknown until the job enters the Running state, as the backend
will often not assign IDs to jobs which are not yet running. In such cases, the
value of the JobID attribute SHOULD be empty. The job MUST, however,
retain its JobID after it enters in a final state.

The job attribute "JobService" exposes the URL of the job::service instance
which spawned the job. Any new job::service instance created with that URL
SHOULD be able to handle the job’s jobid, and in particular SHOULD be able
to reconnect to that job. The tuple JobID, ServiceURL thus allows to create
both the job service and the job instances for any SAGA job.

4.1.6 Specification

package saga.job
{
enum state
{
New = 1, // same as in saga::task::state
Running = 2, // same as in saga::task::state
Done = 3, // same as in saga::task::state
Canceled = 4, // same as in saga::task::state
Failed = 5, // same as in saga::task::state
Suspended = 6

}

class job_description : implements saga::object
implements saga::attributes

// from object: saga::error_handler
{
CONSTRUCTOR (out job_description obj);
DESTRUCTOR (in job_description obj);

saga-core-wg@ogf.org 176

GFD-R-P.90 SAGA Job Management May 12, 2009

// Attributes:
//
// name: Executable
// desc: command to execute.
// type: String
// mode: ReadWrite
// value: ’’
// notes: - this is the only required attribute.
// - can be a full pathname, or a pathname
// relative to the ’WorkingDirectory’ as
// evaluated on the execution host.
// - available in JSDL, DRMAA
// - semantics as defined in JSDL
//
// name: Arguments
// desc: positional parameters for the command.
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - available in JSDL, DRMAA
// semantics as specified by JSDL
//
// name: SPMDVariation
// desc: SPMD job type and startup mechanism
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - as defined in the SPMD extension of JSDL
// notes: - available in JSDL, SPMD extension
// - semantics as defined in JSDL
// - the SPMD JSDL extension defines the value
// to be an URI. For simplicity, SAGA allows
// the following strings, which map into the
// respective URIs: MPI, GridMPI, IntelMPI,
// LAM-MPI, MPICH1, MPICH2, MPICH-GM, MPICH-MX,
// MVAPICH, MVAPICH2, OpenMP, POE, PVM, None
// - the value ’’ (no value, default) indicates
// that the application is not a SPMD
// application.
// - as JSDL, SAGA allows other arbitrary values.
// The implementation must clearly document
// which values are supported.
//
// name: TotalCPUCount
// desc: total number of cpus requested for this job
// mode: ReadWrite, optional

saga-core-wg@ogf.org 177

GFD-R-P.90 SAGA Job Management May 12, 2009

// type: Int
// value: ’1’
// notes: - available in JSDL, DRMAA
// - semantics as defined in JSDL
//
// name: NumberOfProcesses
// desc: total number of processes to be started
// mode: ReadWrite, optional
// type: Int
// value: ’1’
// notes: - available in JSDL, SPMD extension
// - semantics as defined in JSDL
//
// name: ProcessesPerHost
// desc: number of processes to be started per host
// mode: ReadWrite, optional
// type: Int
// value: ’1’
// notes: - available in JSDL, SPMD extension
// - semantics as defined in JSDL
//
// name: ThreadsPerProcess
// desc: number of threads to start per process
// mode: ReadWrite, optional
// type: Int
// value: ’1’
// notes: - available in JSDL, SPMD extension
// - semantics as defined in JSDL
//
// name: Environment
// desc: set of environment variables for the job
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - exported into the job environment
// - format: ’key=value’
// - available in JSDL, DRMAA
// - semantics as specified by JSDL
//
// name: WorkingDirectory
// desc: working directory for the job
// mode: ReadWrite, optional
// type: String
// value: ’.’
// notes: - available in JSDL, DRMAA
// - semantics as specified by JSDL

saga-core-wg@ogf.org 178

GFD-R-P.90 SAGA Job Management May 12, 2009

//
// name: Interactive
// desc: run the job in interactive mode
// mode: ReadWrite, optional
// type: Bool
// value: ’False’
// notes: - this implies that stdio streams will stay
// connected to the submitter after job
// submission, and during job execution.
// - if an implementation cannot handle
// interactive jobs, and this attribute is
// present, and ’True’, the job creation MUST
// throw an ’IncorrectParameter’ error with a
// descriptive error message.
// - not supported by JSDL, DRMAA
//
// name: Input
// desc: pathname of the standard input file
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - available in JSDL, DRMAA
// - semantics as specified by JSDL
// - will not be used if ’Interactive’ is ’True’
//
// name: Output
// desc: pathname of the standard output file
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - available in JSDL, DRMAA
// - semantics as specified by JSDL
// - will not be used if ’Interactive’ is ’True’
//
// name: Error
// desc: pathname of the standard error file
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - available in JSDL, DRMAA
// - semantics as specified by JSDL
// - will not be used if ’Interactive’ is ’True’
//
// name: FileTransfer
// desc: a list of file transfer directives
// mode: ReadWrite, optional

saga-core-wg@ogf.org 179

GFD-R-P.90 SAGA Job Management May 12, 2009

// type: Vector String
// value: -
// notes: - translates into jsdl:DataStaging
// - used to specify pre- and post-staging
// - staging is part of the ’Running’ state
// - syntax similar to LSF (see earlier notes)
// - available in JSDL, DRMAA
// - semantics as specified in JSDL
//
// name: Cleanup
// desc: defines if output files get removed after the
// job finishes
// mode: ReadWrite, optional
// type: String
// value: ’Default’
// notes: - can have the Values ’True’, ’False’, and
// ’Default’
// - On ’False’, output files MUST be kept
// after job the finishes
// - On ’True’, output files MUST be deleted
// after job the finishes
// - On ’Default’, the behaviour is defined by
// the implementation or the backend.
// - translates into ’DeleteOnTermination’ elements
// in JSDL
//
// name: JobStartTime
// desc: time at which a job should be scheduled
// mode: ReadWrite, optional
// type: Int
// value: -
// notes: - Could be viewed as a desired job start
// time, but that is up to the resource
// manager.
// - format: number of seconds since epoch
// - available in DRMAA
// - not supported by JSDL
//
// name: WallTimeLimit
// desc: hard limit for the total job runtime.
// mode: ReadWrite, optional
// type: Int
// value: -
// notes: - intended to provide hints to the scheduler.
// - available in JSDL, DRMAA
// - semantics as defined in JSDL

saga-core-wg@ogf.org 180

GFD-R-P.90 SAGA Job Management May 12, 2009

//
// name: TotalCPUTime
// desc: estimate total number of CPU seconds which
// the job will require.
// mode: ReadWrite, optional
// type: Int
// value: -
// notes: - intended to provide hints to the scheduler.
// - available in JSDL, DRMAA
// - semantics as defined in JSDL
//
// name: TotalPhysicalMemory
// desc: Estimated amount of memory the job requires
// mode: ReadWrite, optional
// type: Float
// value: -
// notes: - unit is in MegaByte
// - memory usage of the job is aggregated
// across all processes of the job
// - available in JSDL
// - semantics as defined by JSDL
//
// name: CPUArchitecture
// desc: compatible processor for job submission
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - allowed values as specified in JSDL
// - available in JSDL
// - semantics as defined by JSDL
//
// name: OperatingSystemType
// desc: compatible operating system for job submission
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - allowed values as specified in JSDL
// - available in JSDL
// - semantics as defined by JSDL
//
// name: CandidateHosts
// desc: list of host names which are to be considered
// by the resource manager as candidate targets
// mode: ReadWrite, optional
// type: Vector String
// value: -

saga-core-wg@ogf.org 181

GFD-R-P.90 SAGA Job Management May 12, 2009

// notes: - available in JSDL
// - semantics as defined by JSDL
//
// name: Queue
// desc: name of a queue to place the job into
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - While SAGA itself does not define the
// semantics of a "queue", many backend systems
// can make use of this attribute.
// - not supported by JSDL
//
// name: JobProject
// desc: name of a account or project name
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - While SAGA itself does not define the
// semantics of an "account" or "project",
// many backend systems can make use of
// this attribute for the purpose of
// accounting.
// - available in JSDL
// - semantics as defined by JSDL
//
// name: JobContact
// desc: set of endpoints describing where to report
// job state transitions.
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - format: URI (e.g. fax:+123456789,
// sms:+123456789, mailto:joe@doe.net).
// - available in DRMAA
// - not supported by JSDL

}

class job_service : implements saga::object
implements saga::async

// from object saga::error_handler
{
CONSTRUCTOR (in session s,

in url rm = "",
out job_service obj);

saga-core-wg@ogf.org 182

GFD-R-P.90 SAGA Job Management May 12, 2009

DESTRUCTOR (in job_service obj);

create_job (in job_description jd,
out job job);

run_job (in string commandline,
in string host = "",
out job job,
out opaque stdin,
out opaque stdout,
out opaque stderr);

list (out array<string> job_ids);
get_job (in string job_id,

out job job);
get_self (out job_self job);

}

class job : extends saga::task
implements saga::async
implements saga::attributes
implements saga::permissions

// from task saga::object
// from task saga::monitorable
// from object saga::error_handler

{
// no CONSTRUCTOR
DESTRUCTOR (in job obj);

// job inspection
get_job_description (out job_description jd);
get_stdin (out opaque stdin);
get_stdout (out opaque stdout);
get_stderr (out opaque stderr);

// job management
suspend (void);
resume (void);
checkpoint (void);
migrate (in job_description jd);
signal (in int signum);

// Attributes:
//
// name: JobID
// desc: SAGA representation of the job identifier
// mode: ReadOnly

saga-core-wg@ogf.org 183

GFD-R-P.90 SAGA Job Management May 12, 2009

// type: String
// value: -
// notes: - format: as described earlier
//
// name: ServiceURL
// desc: URL representation of the job::service instance
// managing this job
// mode: ReadOnly
// type: String
// value: -
// notes: - can be used for a job::service CONSTRUCTOR.
//
// name: ExecutionHosts
// desc: list of host names or IP addresses allocated
// to run this job
// mode: ReadOnly, optional
// type: Vector String
// value: -
// notes: -
//
// name: Created
// desc: time stamp of the job creation in the
// resource manager
// mode: ReadOnly, optional
// type: Time
// value: -
// notes: - can be interpreted as submission time
//
// name: Started
// desc: time stamp indicating when the job started
// running
// mode: ReadOnly, optional
// type: Time
// value: -
//
// name: Finished
// desc: time stamp indicating when the job completed
// mode: ReadOnly, optional
// type: Time
// value: -
//
// name: WorkingDirectory
// desc: working directory on the execution host
// mode: ReadOnly, optional
// type: String
// value: -

saga-core-wg@ogf.org 184

GFD-R-P.90 SAGA Job Management May 12, 2009

// notes: - can be used to determine the location of
// files staged using relative file paths
//
// name: ExitCode
// desc: process exit code as collected by the wait(2)
// series of system calls.
// mode: ReadOnly, optional
// type: Int
// value: -
// notes: - exit code is collected from the process
// which was started from the ’Executable’
// attribute of the job_description object.
// - only available in final states, if at all
//
// name: Termsig
// desc: signal number which caused the job to exit
// mode: ReadOnly, optional
// type: Int
// value: -
// notes: - only available in final states, if at all

// Metrics:
// name: job.state
// desc: fires on state changes of the job, and has
// the literal value of the job state enum.
// mode: ReadOnly
// unit: 1
// type: Enum
// value: New
// notes: - the state metric is inherited from
// saga::task, but has a different set
// of possible values
// - see description of job states above
//
// name: job.state_detail
// desc: fires as a job changes its state detail
// mode: ReadOnly, optional
// unit: 1
// type: String
// value: -
//
// name: job.signal
// desc: fires as a job receives a signal, and has a
// value indicating the signal number
// mode: ReadOnly, optional

saga-core-wg@ogf.org 185

GFD-R-P.90 SAGA Job Management May 12, 2009

// unit: 1
// type: Int
// value: -
// notes: - no guarantees are made that any or all
// signals can be notified by this metric
//
// name: job.cpu_time
// desc: number of CPU seconds consumed by the job
// mode: ReadOnly, optional
// unit: seconds
// type: Int
// value: -
// notes: - aggregated across all processes/threads
//
// name: job.memory_use
// desc: current aggregate memory usage
// mode: ReadOnly, optional
// unit: megabyte
// type: Float
// value: 0.0
// notes: - metric becomes ’Final’ after job
// completion, and then shows the memory
// high water mark
//
// name: job.vmemory_use
// desc: current aggregate virtual memory usage
// mode: ReadOnly, optional
// unit: megabyte
// type: Float
// value: 0.0
// notes: - metric becomes ’Final’ after job
// completion, and then shows the virtual
// memory high water mark
//
// name: job.performance
// desc: current performance
// mode: ReadOnly, optional
// unit: FLOPS
// type: Float
// value: 0.0
// notes: - metric becomes ’Final’ after job
// completion, and then shows the performance
// high water mark

}

saga-core-wg@ogf.org 186

GFD-R-P.90 SAGA Job Management May 12, 2009

class job_self : extends saga::job
implements saga::steerable

// from job saga::async
// from job saga::attributes
// from job saga::task
// from job saga::object
// from job saga::monitorable
// from job saga::permissions
// from job saga::error_handler

{
// no CONSTRUCTOR
DESTRUCTOR (in job_self obj);

}
}

4.1.7 Specification Details

Enum state

The state is equivalent to the inherited saga::task::state, but adds the
Suspended state:

Suspended

This state identifies a job instance which has been suspended. This state
corresponds to the BES state ’Suspend’.

Class job description

This object encapsulates all the attributes which define a job to be run. It has
no methods of its own, but implements the saga::attributes interface in order
to provide access to the job properties, which are expressed as JSDL keywords.

The only required attribute in order to perform a valid job submission is the
Executable. Given the Executable, a job can be instantiated in many existing
backend systems without any further specification.

There should be significant overlap between the attributes defined within SAGA
and within the JSDL specification. This list, however, will not be complete in
cases where the JSDL was deemed more complicated than was required for a
simple API (e.g. the notion of JSDL profiles), or where an attribute was needed
to interact with a scheduler, which was not within the stated scope of the JSDL
working group (e.g. Queue, which is considered a site attribute, and thus not

saga-core-wg@ogf.org 187

GFD-R-P.90 SAGA Job Management May 12, 2009

relevant to the pure description of a job).

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (out job_description obj)
Inputs: -
InOuts: -
Outputs: obj: the newly created object
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

NoSuccess
Notes: - a job_description is not associated with a

session, but can be used for job services
from different sessions.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in job_description obj)
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

Class job service

The job_service represents a resource management backend, and as such al-
lows to create and submit jobs, and to discover jobs. The job management
methods are on the job object itself – this probably implies that implementa-
tions need to internally track what resource manager (or job_service instance)
created the job.

- CONSTRUCTOR
Purpose: create the object

saga-core-wg@ogf.org 188

GFD-R-P.90 SAGA Job Management May 12, 2009

Format: CONSTRUCTOR (in session s,
in url rm = "",
out job_service obj)

Inputs: s: session to associate with
the object

rm: contact url for resource
manager

InOuts: -
Outputs: obj: the newly created object
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectURL
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - ’rm’ defaults to an empty string - in that
case, the implementation must perform a
resource discovery, or fall back to a fixed
value, or find a valid rm contact in any
other way. If that is not possible, a
’BadParameter’ exception MUST be thrown, and
MUST indicate that a rm contact string is
needed. The expected behaviour MUST be
documented (i.e. if a default is available).

- if the rm identified by the rm URL cannot be
contacted (i.e. does not exist), a
’BadParameter’ exception is thrown.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in job_service obj)
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - jobs created by that job_service instance

are not affected by the destruction, and are
in particular not canceled.

Perms: -
Throws: -
Notes: -

saga-core-wg@ogf.org 189

GFD-R-P.90 SAGA Job Management May 12, 2009

- create_job
Purpose: create a job instance
Format: create_job (in job_description jd,

out job job);
Inputs: jd: description of job to be

submitted
InOuts: -
Outputs: job: a job object representing

the submitted job instance
PreCond: - jd has an ’Executable’ attribute.
PostCond: - job is in ’New’ state

- jd is deep copied (no state is shared
after method invocation)

- ’Owner’ of the job is the id of the context
used for creating the job.

Perms: -
Throws: NotImplemented

BadParameter
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - calling run() on the job will submit it to
the resource, and advance its state.

- if the job description does not have a valid
’Executable’ attribute, a ’BadParameter’
exception is thrown.

- if the job description contains values which
are outside of the allowed range, or cannot be
parsed, or are otherwise invalid and not
usable for creating a job instance, a
’BadParameter’ exception is thrown, which MUST
indicate which attribute(s) caused this
exception, and why.

- run_job
Purpose: Run a command synchronously.
Format: run_job (in string commandline,

in string host = "",
out job job,
out opaque stdin,
out opaque stdout,

saga-core-wg@ogf.org 190

GFD-R-P.90 SAGA Job Management May 12, 2009

out opaque stderr);
Inputs: commandline: the command and arguments

to be run
host: hostname to be used by rm for

submission
InOuts: -
Outputs: stdin: IO handle for the running

job’s standard input stream
stdout: IO handle for the running

job’s standard output
stderr: IO handle for the running

job’s standard error
job: a job object representing

the submitted job instance
PreCond: -
PostCond: - job is in ’Running’, ’Done’ or ’Failed’ state.

- ’Owner’ of the job is the id of the context
used for creating the job.

Perms: -
Throws: NotImplemented

BadParameter
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - This is a convenience routine built on the
create_job method, and is intended to simplify
the steps of creating a job_description,
creating and running the job, and then
querying the standard I/O streams.

- the I/O handles have to be passed to the call
as references, in most languages, as calls
often allow only one return value (perl or
python being notable exceptions). If these
parameters are omitted, the job is to be
started non-interactively, and the output I/O
streams may be discarded.

- the job is guaranteed to run on the given
host, or not at all.

- the method is exactly equivalent to the
sequence of (1) creation of a job_description
with ’Executable’ set to the values from the
commandline, ’Interactive’ set if I/O is
requested, ’CandidateHost’ set to host; (2)
create_job() with that description; (3)

saga-core-wg@ogf.org 191

GFD-R-P.90 SAGA Job Management May 12, 2009

calling run() on that job. This method can
throw any of the exceptions which can occur in
this sequence, with the semantics defined in
the detailed description of the methods used
in this sequence. No other exception are to
be expected.

- if ’host’ is an empty string (the default),
the implementation MUST choose an arbitrary
host for execution.

- stdin, stdout and stderr are guaranteed to
contain/provide the complete standard I/O
streams, beginning at the start of the remote
process.

- list
Purpose: Get a list of jobs which are currently known by

the resource manager.
Format: list (out array<string> job_ids);
Inputs: -
InOuts: -
Outputs: job_ids: an array of job identifiers
PreCond: -
PostCond: -
Perms: Query on jobs identified by the returned ids
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - which jobs are viewable by the calling user
context, and how long a resource manager keeps
job information, are both implementation
dependent.

- a returned job_id may translate into a job
(via get_job()) which is not controllable by
the requesting application (e.g. it could
cause an ’AuthorizationFailed’ exception).

- get_job
Purpose: Given a job identifier, this method returns a

job object representing this job.
Format: get_job (in string job_id,

out job job)

saga-core-wg@ogf.org 192

GFD-R-P.90 SAGA Job Management May 12, 2009

Inputs: job_id: job identifier as returned
by the resource manager

InOuts: -
Outputs: job: a job object representing

the job identified by
job_id

PreCond: - job identified by job_id is managed by the
job_service.

PostCond: -
Perms: Query on the job.
Throws: NotImplemented

BadParameter
DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - in general, only a job_service representing the
resource manager which submitted the job may be
able to handle the job_id, and to identify the
job -- however, other job_services may succeed
as well.

- if the resource manager can handle the job_id,
but the referenced job is not alive, a
’DoesNotExist’ exception is thrown.

- if the resource manager cannot parse the job_id
at all, a ’BadParameter’ exception is thrown.

- get_self
Purpose: This method returns a job object representing

this job, i.e. the calling application.
Format: get_self (out job_self self)
Inputs: -
InOuts: -
Outputs: self: a job_self object

representing _this_ job.
PreCond: - the application is managed by the job_service.
PostCond: - job_self is, by definition, in ’Running’

state.
Perms: Query on the job.
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed

saga-core-wg@ogf.org 193

GFD-R-P.90 SAGA Job Management May 12, 2009

Timeout
NoSuccess

Notes: - in general, only a job_service representing the
resource manager which started the application
which now calls get_self() can successfully
return a job_self instance. However, other
job_services may succeed as well.

- if a job_service cannot handle the calling job
as a job_self instance, a ’NoSuccess’ exception
is thrown, with a descriptive error message.

Class job

The job provides the manageability interface to a job instance submitted to a
resource manager. There are two general types of methods: those for retrieving
job state and information, and those for manipulating the job. The methods
intended to manipulate jobs cannot make any guarantees about how the resource
manager will affect an action to be taken. The API implementation is designed
to be agnostic of the backend implementation, such that any backend could be
implemented to perform an action. For example, the checkpoint routine might
cause an application level checkpoint, or might use the services of GridCPR.

Job implements the saga::attributes interface. If not noted otherwise, none
of these attributes is available before the job is running, and none is guaranteed
to have a non-empty value while the job is running or after the job finishes.

Job also implements the monitorable interface, and thus allows monitoring and
notification for changes of runtime attributes.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in job obj)
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: - the object destruction does not imply a

call to cancel() for the job instance.

saga-core-wg@ogf.org 194

GFD-R-P.90 SAGA Job Management May 12, 2009

- get_job_description
Purpose: Retrieve the job_description which was used to

submit this job instance.
Format: get_job_description (out job_description jd);
Inputs: -
InOuts: -
Outputs: jd: a job_description object
PreCond: -
PostCond: - jd is deep copied (no state is shared

after method invocation)
Perms: Query
Throws: NotImplemented

DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - There are cases when the job_description is not
available. This may include cases when
the job was not submitted through
SAGA and get_job() was used to retrieve the
job, or when this state information has been
lost (e.g. the client application restarts and
the particular SAGA implementation did not
persist the information). In that case, a
’DoesNotExist’ exception is thrown, with a
descriptive error message.

- get_stdin
Purpose: retrieve input stream for a job.
Format: get_stdin (out opaque stdin)
Inputs: -
InOuts: -
Outputs: stdin: standard input stream for

the job
PreCond: - the job is interactive.
PostCond: - the jobs standard input stream is available

at stdin.
Perms: Write (application can write to the jobs stdin).
Throws: NotImplemented

BadParameter
DoesNotExist
IncorrectState

saga-core-wg@ogf.org 195

GFD-R-P.90 SAGA Job Management May 12, 2009

PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the preconditions are met, but the standard
input stream is not available for some
reason, a ’DoesNotExist’ exception is thrown.

- the stream MUST be valid until the job reaches
a final state. If it is, for some reason,
disconnected earlier, a language typical error
message is thrown (e.g. EBADF could be
returned on writes on that stream in C).

- if the job is not interactive, e.g. it was
submitted with the ’Interactive’ attribute set
to ’False’, an ’IncorrectState’ exception is
thrown.

- if the job is not in ’New’ state, it is not
guaranteed that the job did not receive other
data on its standard input stream before.

- get_stdout
Purpose: retrieve output stream of job
Format: get_stdout (out opaque stdout)
Inputs: -
InOuts: -
Outputs: stdout: standard output stream for

the job
PreCond: - the job is interactive.
PostCond: - the jobs standard output stream is available

from stdout.
Perms: Read (application can read the jobs stdout).
Throws: NotImplemented

BadParameter
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the preconditions are met, but the standard
output stream is not available for some
reason, a ’DoesNotExist’ exception is thrown.

- the stream MUST be valid until the job reaches

saga-core-wg@ogf.org 196

GFD-R-P.90 SAGA Job Management May 12, 2009

a final state. If it is, for some reason,
disconnected earlier, a language typical error
message is thrown (e.g. EBADF could be
returned on reads on that stream in C).

- if the job is not interactive, e.g. it was
submitted with the ’Interactive’ attribute set
to ’False’, an ’IncorrectState’ exception is
thrown.

- if the job is not in ’New’ state, it is not
guaranteed that the job did write data on
its standard output stream before, which are
then not returned on the returned stream.

- get_stderr
Purpose: retrieve error stream of job
Format: get_stderr (out opaque stderr)
Inputs: -
InOuts: -
Outputs: stderr: standard error stream for

the job
PreCond: - the job is interactive.
PostCond: - the jobs standard error stream is available

from stderr.
Perms: Read (application can read the jobs stderr).
Throws: NotImplemented

BadParameter
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the preconditions are met, but the standard
error stream is not available for some
reason, a ’DoesNotExist’ exception is thrown.

- the stream MUST be valid until the job reaches
a final state. If it is, for some reason,
disconnected earlier, a language typical error
message is thrown (e.g. EBADF could be
returned on reads on that stream in C).

- if the job is not interactive, e.g. it was
submitted with the ’Interactive’ attribute set
to ’False’, an ’IncorrectState’ exception is
thrown.

saga-core-wg@ogf.org 197

GFD-R-P.90 SAGA Job Management May 12, 2009

- if the job is not in ’New’ state, it is not
guaranteed that the job did write data on
its standard error stream before, which are
then not returned on the returned stream.

Job Management Methods:

- suspend
Purpose: Ask the resource manager to perform a suspend

operation on the running job.
Format: suspend (void);
Inputs: -
InOuts: -
Outputs: -
PreCond: - the job is in ’Running’ state.
PostCond: - the job is in ’Suspended’ state.
Perms: Exec (job can be controlled).
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the job is not in ’Running’ state, an
’IncorrectState’ exception is thrown.

- resume
Purpose: Ask the resource manager to perform a resume

operation on a suspended job.
Format: resume (void);
Inputs: -
InOuts: -
Outputs: -
PreCond: - the job is in ’Suspended’ state.
PostCond: - the job is in ’Running’ state.
Perms: Exec (job can be controlled).
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout

saga-core-wg@ogf.org 198

GFD-R-P.90 SAGA Job Management May 12, 2009

NoSuccess
Notes: - if the job is not in ’Suspended’ state, an

’IncorrectState’ exception is thrown.

- checkpoint
Purpose: Ask the resource manager to initiate a checkpoint

operation on a running job.
Format: checkpoint (void);
Inputs: -
InOuts: -
Outputs: -
PreCond: - the job is in ’Running’ state.
PostCond: - the job is in ’Running’ state.

- the job was checkpointed.
Perms: Exec (job can be controlled).
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - The semantics of checkpoint(), and the actions
taken to initiate a checkpoint, are resource
manager specific. In particular, the
implementation or backend can trigger either
a system level or an application level

- if the job is not in ’Running’ state,
an ’IncorrectState’ exception is thrown.

- migrate
Purpose: Ask the resource manager to migrate a job.
Format: migrate (in job_description jd);
Inputs: jd: new job parameters to apply

when the job is migrated
InOuts: -
Outputs: -
PreCond: - the job is in ’Running’ or ’Suspended’ state.
PostCond: - the job keeps its state.

- jd is deep copied (no state is shared
after method invocation)

- the job reflects the attributes specified in
the job_description.

Perms: Exec (job can be controlled).

saga-core-wg@ogf.org 199

GFD-R-P.90 SAGA Job Management May 12, 2009

Throws: NotImplemented
BadParameter
IncorrectState
AuthorizationFailed
AuthenticationFailed
PermissionDenied
Timeout
NoSuccess

Notes: - jd might indicate new resource
requirements, for example.

- the action of migration might change the job
identifier within the resource manager.

- ideally, the submitted job description was
obtained by get_job_description(), and then
changed by the application. This is not a
requirement though.

- if the job is not in ’Running’ or ’Suspended’
state, an ’IncorrectState’ exception is thrown.

- the method can call the same exceptions as
the submit_job() and run() methods, in
particular in respect to an incorrect
job_description.

- signal
Purpose: Ask the resource manager to deliver an arbitrary

signal to a dispatched job.
Format: signal (in int signum);
Inputs: signum: signal number to be

delivered
InOuts: -
Outputs: -
PreCond: - job is in ’Running’ or ’Suspended’ state.
PostCond: - the signal was delivered to the job.
Perms: Exec (job can be controlled).
Throws: NotImplemented

BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - there is no guarantee that the signal number
specified is valid for the operating system
on the execution host where the job is

saga-core-wg@ogf.org 200

GFD-R-P.90 SAGA Job Management May 12, 2009

running, or that the signal can be delivered.
- if the signal number is not supported by the
backend, a ’BadParameter’ exception is thrown.

- if the job is not in ’Running’ or ’Suspended’
state, an ’IncorrectState’ exception is
thrown.

Class job self

The job_self class IS-A job which represents the current application (i.e. the
very application which owns that job_self instance). It can only by created
by calling get_self() on a job service (that call can fail though).

The motivation to introduce this class is twofold: (1) it allows to actively handle
the current application as a grid job (e.g. to migrate it, or to obtain its job
description for cloning/spawning); (2) as the class implements the steerable
interface, it is possible to add ReadWrite metrics to its instance – that way it
is possible to expose these metrics to other external applications, which in fact
allows to steer the current application.

A drawback of this approach is that, in order to make an application steerable, a
job_service instance is needed which can in fact return a job_self instance,
which means there must be a resource manager available which can manage
the current application – that however has nothing to do with the concept of
remote steering. Future versions of the SAGA API may change that, and may
make job_self a singleton, independent from the job_service behaviour. As
a result, that class might disappear, and might not be maintained for backward
compatibility.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in job_self obj)
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: - the object destruction does not imply a

call to cancel() for the job_self instance.

saga-core-wg@ogf.org 201

GFD-R-P.90 SAGA Job Management May 12, 2009

4.1.8 Examples

Code Example

1 Example : simple job submission and polling for finish.

2

3 // ---

4 // c++ example

5 std::list <std::string> transfers;

6 saga::job_description jobdef;

7 saga::job_service js;

8

9 transfers.push_back ("infile > infile");

10 transfers.push_back ("ftp://host.net/path/out << outfile");

11

12 jobdef.set_attribute ("CandidateHost", "hostname");

13 jobdef.set_attribute ("Executable", "job.sh");

14 jobdef.set_attribute ("TotalCPUCount", "16");

15 jobdef.set_vector_attribute ("FileTransfer", transfers);

16

17 saga::job job = js.create_job (jobdef);

18

19 job.run ();

20

21 while (1)

22 {

23 // get job state

24 saga::job::state state = job.get_state ();

25

26 // get list of hosts the job is/where running on

27 std::list <std::string> hostlist = job.get_attribute

28 ("ExecutionHosts");

29

30 if (saga::job::Running == state)

31 {

32 std::cout << "Job is running." << std::endl;

33 }

34 else if (saga::job::Suspended == state)

35 {

36 std::cout << "Job is suspended." << std::endl;

37 }

38 else if (saga::job::Done == state)

39 {

40 std::cout << "Job completed successfully." << std::endl;

41 exit (0);

42 }

43 else if (saga::job::Canceled == state)

44 {

45 std::cout << "Job canceled." << std::endl;

46 exit (1);

saga-core-wg@ogf.org 202

GFD-R-P.90 SAGA Job Management May 12, 2009

47 }

48 else

49 {

50 // state can only be ’Failed’

51 assert (saga::job::Failed == state);

52

53 std::string exitcode = job.get_attribute ("ExitCode");

54

55 std::cout << "Job failed with exitcode:"

56 << exitcode

57 << std::endl;

58 exit (atoi(exitcode));

59 }

60

61 sleep (1); // idle

62 }

saga-core-wg@ogf.org 203

GFD-R-P.90 SAGA Name Spaces May 12, 2009

4.2 SAGA Name Spaces

Several SAGA packages share the notion of name spaces and operations on these
name spaces. In order to increase consistency in the API, these packages share
the same API paradigms. This section describes those paradigms, and these
classes which operate on arbitrary hierarchical name spaces, such as used in
physical, virtual, and logical file systems, and in information systems.

The API is inspired by the POSIX standard, which defines tools and calls to
handle the name space of physical files and directories. The methods listed for
the interfaces have POSIX-like syntax and semantics.

While POSIX has an iterative interface to directory listing (i.e. opendir, telldir,
seekdir, readdir), the corresponding part of the interface included here deviates
significantly from the POSIX version: it has fewer calls, with a different syntax,
but identical semantics.

Please note that ’stat’-like API calls are not covered here – they are rather
meaningless on a name space per se, but belong to the specific implementations,
e.g. physical files, which inherit the namespace classes.

4.2.1 Definitions

The Grid File System Working Group in OGF has defined a Resource Name-
space Service (RNS [20]). The SAGA Core API specification follows the defini-
tion of a name space from that document.

Directory: A ’Directory’ represents what [20] defines as ’Virtual Directory’:

“A virtual directory is an RNS entry that is represented as a non-leaf
node in the hierarchical name space tree. When rendered by a name space
service client, a virtual directory functions similar to that of a standard
filesystem directory or registry key. It is considered virtual because it does
not have any corresponding representation outside of the name space. A
virtual directory, therefore, is purely a name space entity that functions
in much the same way as a conventional filesystem directory or registry
key by maintaining a list of subentries, which thereby demonstrate a hi-
erarchical relationship. There are no restrictions regarding the layout of
the name space tree; both virtual directories and junctions can be nested
within nested virtual directories recursively.

A virtual directory may be considered analogous to a collection, category,
or context – to the extent that these terms are used in most directory,
registry, or catalogue contexts. Virtual directories do not have any time
or space existence outside of the name space and strictly serve to facil-
itate hierarchy. Name space hierarchies offer categorization or grouping

saga-core-wg@ogf.org 204

GFD-R-P.90 SAGA Name Spaces May 12, 2009

of entries, by presenting the illusion of compartments, which may contain
sub-compartments as well as junctions.”

Directory Entry: A directory entry or entry represent what [20] defines as
’Junction’. Note that any type of junction defined there could be used:

“A junction is an RNS entry that interconnects a reference to an existing
resource into the hierarchical name space. Junctions represent a name-
to-resource mapping that is composed of a human oriented index key or
‘name’ that maps to an endpoint reference. The endpoint reference may
refer to any addressable resource, which includes other name space entries,
as well as names or unique identifiers to be resolved by other resolution
service, as well as definitive target consumable resource. All compliant
RNS implementations MUST embody the target information of a name
space junction within a valid WS-Addressing [. . .] Endpoint Reference
(EPR).”

Pathnames: A pathname as accepted by this specification MUST be either
formatted as URLs or MUST follow the specification of entry names as described
in [20], Section 1.2.2.1 “Entry Name Restrictions” (formatting changed):

“Entry names are composed of a simple string of human readable charac-
ters. Since certain characters serve special purposes both within the name
space service and within a number of systems that may use this service,
this section describes the mandatory restrictions for all entry names:

Names MUST NOT...

• Contain any of the following characters: / : ; * ? " < > |

• Contain any non-readable characters, such as the carriage return
(ANSI 13) or line feed (ANSI 10) or tab (ANSI 9)

• Be greater than 255 characters in length (Unicode)

Names SHOULD...

• Accommodate Unicode characters

• Be easily readable by a human user, suggesting less than 32 charac-
ters per name

Names MAY...

• Contain space (ANSI 32) characters

Notice these restrictions apply to entry names and are not describing
paths. Paths are constructed of one or more entry names separated by
the forward slash character (/)”.

saga-core-wg@ogf.org 205

GFD-R-P.90 SAGA Name Spaces May 12, 2009

Note that, in fact, pathnames as specified above are syntactically valid URLs,
and this specification is therefore only refering to URLs. Both, SAGA implemen-
tations and SAGA usage SHOULD, however, strive for compliance with [20].
An exception is the use of relative pathnames which, in SAGA, can contain
wildcards (see below).

All method arguments which are named name, source or target are considered
pathnames. These pathnames can always be relative pathnames (i.e. they can
be relative to the current working directory (cwd) of the object instance the
operation is performed upon, e.g. when they start with ’./’ or ’../’).

Note that relative path elements are not always resolvable during URL con-
struction. Instead, resolution may be delayed until the URL is being used, and
further may need to be performed differently on each use of the URL, depending
on the context of usage:

saga::url u0 ("ftp://localhost/tmp/data/test.txt");
saga::url u1 ("gridftp://localhost/tmp/data/test.txt");
saga::url u2 ("../test.txt");

saga::file f0 (u0);
saga::file f1 (u1);

f0.move (u2); // resolve u2 relative to u0
f1.move (u2); // resolve u2 relative to u1

Note that the comments from Section 2.11, apply here. In particular, an imple-
mentation MAY throw an IncorrectURL exception if it is unable to handle a
given URL, e.g. because of its scheme.

Current Working Directory (cwd) Every saga::ns_entry instance has
an associate current working directory (cwd), which forms the implicit base for
all operations on relative pathnames. For saga::ns_directory instances, that
cwd can be changed with the change_dir method. Otherwise, cwd only changes
if the entry itself is move()’d.

Links: Links in this specification are considered symbolic links, i.e. they can
break if the entry they point to is removed. An implementation MAY support
links, as not all backends can support links, and others might support links only
in specific circumstances (e.g. if entry and link live on the same file system).

The ’Dereference’ flag allows methods to operate on the link target instead of
the link – only one level of reference is resolved though. The read_link()
method does also resolve only one link level, and returns a URL pointing to the
link target.

saga-core-wg@ogf.org 206

GFD-R-P.90 SAGA Name Spaces May 12, 2009

At the moment, [20] does not have a notion of symbolic links. However, an RNS
’junction’ which is associated with another RNS junction can be regarded as a
symbolic link.

Wildcards: The API supports wildcards for a number of calls, as listed be-
low, and thereby follows the POSIX standard [21, 22, 23] for shell wildcards.
Available wildcard patterns are:

* : matches any string
? : matches a single character
[abc] : matches any of a set of characters
[a-z] : matches any of a range of characters
[!abc] : matches none of a range of characters
[!a-z] : matches none of a range of characters
{a,bc} : matches any of a set of strings

See the POSIX standard [21, 22, 23] for more details. In the SAGA API,
wildcards are allowed in all pathnames where they can be used in the respective
shell commands, as:

copy *.txt dir
move *.txt dir
link *.txt dir
ls *.txt
remove *.txt

Note that only those methods MUST support wildcards for which this is ex-
plicitly specified here. Other methods MUST NOT support wildcards, as this
would not be meaningful. Flags MUST be applied to all elements of a wildcard
expansion, even if that raises an exception for any reason.

For the use of wildcards, separate calls are provided which accept strings instead
of URLs. The reason for this is that RFC 3986 [5], which defines the syntax of
URLs, explicitly forbids most POSIX wildcard characters as part of a URL. Also,
we feel that wildcards make most sense in relative pathnames (i.e. relative to a
working directory). Strings in these separate calls thus MUST be relative paths,
and thus MUST only contain URL path elements, whereby the path element
MUST NOT start with an ’/’. Apart from that, the semantics of the wildcard-
enabled string method versions of the calls are identical to the semantics of their
respective URL counterparts. If the method encounters any error condition on
any one of the expanded URLs, an exception is thrown, and the state of the
other (valid or invalid) expanded URL targets remains undefined.

saga-core-wg@ogf.org 207

GFD-R-P.90 SAGA Name Spaces May 12, 2009

Opening and Closing Name Space Entries: If a ns_entry object instance
gets created, it is also opened. Hence, the semantics and all notes of the respec-
tive open() call also apply to the constructor. The same holds for all classes
that inherit ns_entry.

In accordance with Section 2.5.4, the saga::ns_entry class has a close()
method, which allows to enforce a timely release of used (local and remote) re-
sources. After a ns_entry instance was closed, all method calls on that instance
(apart from the DESTRUCTOR) MUST throw an IncorrectState exception. A
destruction of an entry implies the respective close() semantics. The same
holds for all classes that inherit ns_entry.

If an entry gets successfully opened without specifying ’Lock’ as open flag, its
state may get currupted if some other backend operation removes or moves the
opened entity, or changes its state. In that case, any subsequent operation on the
object instance can fail unexpectedly. An IncorrectState exception describing
the type of state change SHOULD be thrown if such a state change is detected
and causes an operation to fail. Otherwise, the normal exception indicating the
type of error which occured SHOULD be thrown. The IncorrectState excep-
tion is thus listed on most method calls below, but not individually motivated
unless it is also used in any other semantic context.

4.2.2 Specification

package saga.namespace
{
enum flags
{
None = 0,
Overwrite = 1,
Recursive = 2,
Dereference = 4,
Create = 8,
Exclusive = 16,
Lock = 32,
CreateParents = 64,
// 128, reserved for Truncate
// 256, reserved for Append
Read = 512,
Write = 1024,
ReadWrite = 1536 // Read | Write

}

saga-core-wg@ogf.org 208

GFD-R-P.90 SAGA Name Spaces May 12, 2009

class ns_entry : implements saga::object,
implements saga::async
implements saga::permissions

// from object saga::error_handler
{
CONSTRUCTOR (in session s,

in saga::url name,
in int flags = None);
out ns_entry obj);

DESTRUCTOR (in ns_entry obj);

// basic properties
get_url (out saga::url url);
get_cwd (out saga::url cwd);
get_name (out saga::url name);

// navigation/query methods
is_dir (out boolean test);
is_entry (out boolean test);
is_link (out boolean test);
read_link (out saga::url link);

// management methods
copy (in saga::url target,

in int flags = None);
link (in saga::url target,

in int flags = None);
move (in saga::url target,

in int flags = None);
remove (in int flags = None);
close (in float timeout = 0.0);

// permissions with flags
permissions_allow (in string id,

in permission perm,
in int flags = None);

permissions_deny (in string id,
in permission perm,
in int flags = None);

}

class ns_directory : extends saga::ns_entry
// from ns_entry saga::object

saga-core-wg@ogf.org 209

GFD-R-P.90 SAGA Name Spaces May 12, 2009

// from ns_entry saga::async
// from ns_entry saga::permissions
// from object saga::error_handler

{
CONSTRUCTOR (in session s,

in saga::url name,
in int flags = None,
out ns_directory obj);

DESTRUCTOR (in ns_directory obj);

// navigation/query methods
change_dir (in saga::url dir);
list (in string name_pattern = ".",

in int flags = None,
out array<saga::url> names);

find (in string name_pattern,
in int flags = Recursive,
out array<saga::url> names);

read_link (in saga::url name,
out saga::url link);

exists (in saga::url name,
out boolean exists);

is_dir (in saga::url name,
out boolean test);

is_entry (in saga::url name,
out boolean test);

is_link (in saga::url name,
out boolean test);

// manage entries by number
get_num_entries (out int num);
get_entry (in int entry,

out saga::url name);

// management methods
copy (in saga::url source,

in saga::url target,
in int flags = None);

link (in saga::url source,
in saga::url target,
in int flags = None);

move (in saga::url source,
in saga::url target,
in int flags = None);

remove (in saga::url target,
in int flags = None);

saga-core-wg@ogf.org 210

GFD-R-P.90 SAGA Name Spaces May 12, 2009

make_dir (in saga::url target,
in int flags = None);

// management methods - wildcard versions
copy (in string source,

in saga::url target,
in int flags = None);

link (in string source,
in saga::url target,
in int flags = None);

move (in string source,
in saga::url target,
in int flags = None);

remove (in string target,
in int flags = None);

// factory methods
open (in saga::url name,

in int flags = Read,
out ns_entry entry);

open_dir (in saga::url name,
in int flags = Read,
out ns_directory dir);

// permissions with flags
permissions_allow (in saga::url target,

in string id,
in int perm,
in int flags = None);

permissions_deny (in saga::url target,
in string id,
in int perm,
in int flags = None);

// permissions with flags - wildcard versions
permissions_allow (in string target,

in string id,
in int perm,
in int flags = None);

permissions_deny (in string target,
in string id,
in int perm,
in int flags = None);

}
}

saga-core-wg@ogf.org 211

GFD-R-P.90 SAGA Name Spaces May 12, 2009

4.2.3 Specification Details

Enum flags

The flags describe the properties of several operations on namespace entries.
Packages which inherit from the namespace package use the same flag semantics
unless specified otherwise, but will, in general, add additional flags to some
operations.

None
indicates the absence of flags, and thus also implies that the default flags
for an operation do not apply, either.

Overwrite
enforces an operation which creates a new namespace entry to continue
even if the target entry does already exist – if that flag is not given, an
’AlreadyExists’ exception would result from such an operation.

Recursive
enforces an operation to apply recursively on a directory tree – if that flag
is not given, the same operation would only apply to the given directory,
and not to its children.

Dereference
enforces an operation to apply not to the entry pointed to by the target
name, but to the link target of that entry – if that flag is not given,
the same operation would apply to the entry directly, and its link target
stays unaffected.

Create
allows a namespace entry to be created while opening it, if it does not
alreay exist – if that flag is not given, the same open operation would
cause a ’DoesNotExist’ exception. If the entry exists, the flag is ig-
nored. This flag implies the ’Write’ flag.

Exclusive
implies a modification to the meaning of the Create flag: if the entry
already exists, the Create flag is is no longer silently ignored, but causes
an ’AlreadyExists’ exception.

Lock
enforces a lock on the name space entry when it is opened. Locks are
advisory in SAGA, semantic details for locking are defined in the de-
scription of the open() call.

saga-core-wg@ogf.org 212

GFD-R-P.90 SAGA Name Spaces May 12, 2009

CreateParents
An operation which would create a name space entry would normally
fail if any path element in the targets name does not yet exist. If this
flag is given, such an operation would not fail, but would imply that
the missing path elements are created on the fly. This flag implies the
’Create’ flag.

Read
The entry or directory is opened for reading – that does not imply the
ability to write to the entry or directory.

Write
The entry or directory is opened for writing – that does not imply the
ability to read from the entry or directory.

ReadWrite
The entry or directory is opened for reading and writing.

Class ns entry

ns_entry defines methods which serve the inspection of the entry itself, methods
which allows to manage the entry (e.g. to copy, move, or remove it), and
methods to manipulate the entry’s access control lists.

In general, multiple such URLs might be valid to identify an entry:

ftp://ftp.host.net/pub/data/test.txt
http://www.host.net/ftp/data/test.txt
http://www.host.net/ftp/data/./test.txt
http://www.host.net/ftp/data/../data/test.txt

Any valid URL can be returned on get_url(), but it SHOULD not contain
’..’ or ’.’ as non-leading path components, i.e. SHOULD have a normalized
path element. The URL returned on get_url() should serve as base for the
return values on get_cwd() and get_name(): In general it should hold that:

get url() == get cwd() + ’/’ + get name()

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in session s,

in saga::url name,
in int flags = Read,

saga-core-wg@ogf.org 213

GFD-R-P.90 SAGA Name Spaces May 12, 2009

out ns_entry obj)
Inputs: s: session handle

name: initial working dir
flags: open mode

InOuts: -
Outputs: obj: the newly created object
PreCond: -
PostCond: - the entry is opened.

- ’Owner’ of target is the id of the context
use to perform the opereration, if the
entry gets created.

Perms: Exec for parent directory.
Write for parent directory if Create is set.
Write for name if Write is set.
Read for name if Read is set.

Throws: NotImplemented
IncorrectURL
BadParameter
DoesNotExist
AlreadyExists
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the default flag set is ’Read’.
- the constructor performs an open of the
entry - all notes to the respective open
call (on namespace_directory) apply.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in ns_entry obj)
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - the entry is closed.
Perms: -
Throws: -
Notes: - if the instance was not closed before, the

destructor performs a close() on the instance,
and all notes to close() apply.

saga-core-wg@ogf.org 214

GFD-R-P.90 SAGA Name Spaces May 12, 2009

Methods for inspecting ns_entry:

- get_url
Purpose: obtain the complete url pointing to the entry
Format: get_url (out saga::url url);
Inputs: -
InOuts: -
Outputs: url url pointing to the entry
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState
Timeout
NoSuccess

Notes: -

- get_cwd
Purpose: obtain the current working directory for the

entry
Format: get_cwd (out saga::url cwd);
Inputs: -
InOuts: -
Outputs: cwd current working directory
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState
Timeout
NoSuccess

Notes: -
- returns the directory part of the url path
element.

- get_name
Purpose: obtain the name part of the url path element
Format: get_name (out saga::url name);
Inputs: -
InOuts: -

saga-core-wg@ogf.org 215

GFD-R-P.90 SAGA Name Spaces May 12, 2009

Outputs: name last part of path element
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState
Timeout
NoSuccess

Notes: -

- is_dir
Purpose: tests the entry for being a directory
Format: is_dir (out boolean test);
Inputs: -
InOuts: -
Outputs: test: boolean indicating if entry

is a directory
PreCond: -
PostCond: -
Perms: Query

Query for parent directory.
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - returns true if entry is a directory, false
otherwise

- similar to ’test -d’ as defined by POSIX.

- is_entry
Purpose: tests the entry for being an ns_entry
Format: is_entry (out boolean test);
Inputs: -
InOuts: -
Outputs: test: boolean indicating if entry

is an ns_entry
PreCond: -
PostCond: -
Perms: Query

Query for parent directory.

saga-core-wg@ogf.org 216

GFD-R-P.90 SAGA Name Spaces May 12, 2009

Throws: NotImplemented
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the method returns false if the entry is a
link or a directory (although an ns_directory
IS_A ns_entry, false is returned on a test on
an ns_directory) - otherwise true is returned.

- similar to ’test -f’ as defined by POSIX.

- is_link
Purpose: tests the entry for being a link
Format: is_link (out boolean test);
Inputs: -
InOuts: -
Outputs: test: boolean indicating if

entry is a link
PreCond: -
PostCond: -
Perms: Query

Query for parent directory.
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - returns true if the entry is a link, false
otherwise

- similar to libc’s ’readlink’ as defined by
POSIX, but with only one level of redirection
resolved.

- read_link
Purpose: returns the name of the link target
Format: read_link (out saga::url link);
Inputs: -
InOuts: -
Outputs: link: resolved name
PreCond: -

saga-core-wg@ogf.org 217

GFD-R-P.90 SAGA Name Spaces May 12, 2009

PostCond: -
Perms: Query

Query for parent directory.
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the returned name MUST be sufficient to
access the link target entry

- resolves one link level only
- if the entry instance this method is called
upon does not point to a link, an
’IncorrectState’ exception is thrown.

- similar to libc’s ’readlink’ as defined by
POSIX, but with only one level of redirection
resolved.

Methods for managing the name space entry:

- copy
Purpose: copy the entry to another part of the name space
Format: copy (in saga::url target,

in int flags = None);
Inputs: target: name to copy to

flags: flags defining the operation
modus

InOuts: -
Outputs: -
PreCond: -
PostCond: - an identical copy exists at target.

- ’Owner’ of target is the id of the context
use to perform the opereration, if target gets
created.

Perms: Query
Exec for parent directory.
Query for target.
Query for target’s parent directory.
Exec for target’s parent directory.
Write for target

if target does exist.
Write for target’s parent directory

saga-core-wg@ogf.org 218

GFD-R-P.90 SAGA Name Spaces May 12, 2009

if target does not exist.
Throws: NotImplemented

IncorrectURL
BadParameter
DoesNotExist
AlreadyExists
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the target is a directory, the source entry
is copied into that directory

- a ’BadParameter’ exception is thrown if the
source is a directory and the ’Recursive’ flag
is not set.

- a ’BadParameter’ exception is thrown if the
source is not a directory and the ’Recursive’
flag is set.

- if the target lies in a non-existing part of
the name space, a ’DoesNotExist’ exception is
thrown, unless the ’CreateParents’ flag is
given - then that part of the name space must
be created.

- if the target already exists, it will be
overwritten if the ’Overwrite’ flag is set,
otherwise it is an ’AlreadyExists’ exception.

- if a directory is to be copied recursively,
but the target exists and is not a directory,
and not a link to a directory, an
’AlreadyExists’ exception is thrown even if
the ’Overwrite’ flag is set.

- if the instance points at an symbolic link,
the source is deeply dereferenced before copy.
If derefencing is impossible (e.g. on a broken
link), an ’IncorrectState’ exception is thrown.

- other flags are not allowed, and cause a
’BadParameter’ exception.

- the default flags are ’None’ (0).
- similar to ’cp’ as defined by POSIX.

- link
Purpose: create a symbolic link from the target entry to

the source entry (this entry) so that any reference

saga-core-wg@ogf.org 219

GFD-R-P.90 SAGA Name Spaces May 12, 2009

to the target refers to the source entry
Format: link (in saga::url target,

in int flags = None);
Inputs: target: name to link to

flags: flags defining the operation
modus

InOuts: -
Outputs: -
PreCond: -
PostCond: - a symbolic link to the entry exists at target.

- ’Owner’ of target is the id of the context
use to perform the opereration if target gets
created.

Perms: Query
Exec for parent directory.
Query for target.
Query for target’s parent directory.
Exec for target’s parent directory.
Write for target

if target does exist.
Write for target’s parent directory

if target does not exist.
Throws: NotImplemented

IncorrectURL
BadParameter
DoesNotExist
AlreadyExists
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the target is a directory, the source entry
is linked into that directory

- if the source is a directory, and the
’Recursive’ flag is set, the source directory
is recursively linked to the target (which must
be a directory as well - otherwise a
’BadParameter’ exception is thrown). The
method then behaves similar to lndir. If the
’Recursive’ flag is not set, the source entry
itself is linked.

- a ’BadParameter’ exception is thrown if the
source is not a directory and the ’Recursive’
flag is set.

saga-core-wg@ogf.org 220

GFD-R-P.90 SAGA Name Spaces May 12, 2009

- if the target lies in a non-existing part of
the name space, a ’DoesNotExist’ exception is
thrown, unless the ’CreateParents’ flag is
given - then that part of the name space must
be created.

- if the target already exists, it will be
overwritten if the ’Overwrite’ flag is set,
otherwise it is an ’AlreadyExists’ exception.

- if a directory is to be moved, but the target
exists and is not a directory, and not a link
to a directory, an ’AlreadyExists’ exception
is thrown even if the ’Overwrite’ flag is set.

- if the instance points at an symbolic link,
the source is not dereferenced before linking,
unless the ’Dereference’ flag is given. If
derefencing is impossible (e.g. on a broken
link), an ’IncorrectState’ exception is thrown.

- other flags are not allowed, and cause a
’BadParameter’ exception.

- the default flags are ’None’ (0).
- similar to ’ln’ as defined by POSIX.

- move
Purpose: rename source to target, or move source to

target if target is a directory.
Format: move (in saga::url target,

in int flags = None);
Inputs: target: name to move to

flags: flags defining the operation
modus

InOuts: -
Outputs: -
PreCond: -
PostCond: - an identical copy exists at target.

- the original entry is removed.
- ’Owner’ of target is the id of the context
use to perform the opereration if target gets
created.

Perms: Query
Write
Exec for parent directory.
Write for parent directory.
Query for target.
Exec for target’s parent directory.
Write for target

saga-core-wg@ogf.org 221

GFD-R-P.90 SAGA Name Spaces May 12, 2009

if target does exist.
Write for target’s parent directory

if target does not exist.
Throws: NotImplemented

IncorrectURL
BadParameter
DoesNotExist
AlreadyExists
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the target is a directory, the source entry
is moved into that directory

- a ’BadParameter’ exception is thrown if the
source is a directory and the ’Recursive’ flag
is not set.

- a ’BadParameter’ exception is thrown if the
source is not a directory and the ’Recursive’
flag is set.

- if the target lies in a non-existing part of
the name space, a ’DoesNotExist’ exception is
thrown, unless the ’CreateParents’ flag is
given - then that part of the name space must
be created.

- if the target already exists, it will be
overwritten if the ’Overwrite’ flag is set,
otherwise it is an ’AlreadyExists’ exception.

- if the instance points at an symbolic link,
the source is not dereferenced before moving,
unless the ’Dereference’ flag is given.
If derefencing is impossible (e.g. on a broken
link), an ’IncorrectState’ exception is thrown.

- other flags are not allowed, and cause a
’BadParameter’ exception.

- the default flags are ’None’ (0).
- similar to ’mv’ as defined by POSIX.

- remove
Purpose: removes this entry, and closes it
Format: remove (in int flags = None);
Inputs: target: entry to be removed
InOuts: -

saga-core-wg@ogf.org 222

GFD-R-P.90 SAGA Name Spaces May 12, 2009

Outputs: -
PreCond: -
PostCond: - the original entry is closed and removed.
Perms: Query

Write
Exec for parent directory.
Write for parent directory.

Throws: NotImplemented
BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - a ’BadParameter’ exception is thrown if the
entry is a directory and the ’Recursive’ flag
is not set.

- a ’BadParameter’ exception is thrown if the
entry is not a directory and the ’Recursive’
flag is set.

- the entry will not be dereferenced unless the
’Dereference’ flag is given. If derefencing is
impossible (e.g. on a broken link), an
’IncorrectState’ exception is thrown.

- other flags are not allowed, and cause a
’BadParameter’ exception.

- the default flags are ’None’ (0).
- if the instance was not closed before, this
call performs a close() on the instance, and
all notes to close() apply.

- similar to ’rm’ as defined by POSIX.

- close
Purpose: closes the object
Format: close (in float timeout = 0.0);
Inputs: timeout seconds to wait
InOuts: -
Outputs: -
PreCond: -
PostCond: - the entry instance is closed.
Perms: -
Throws: NotImplemented

NoSuccess
Notes: - any subsequent method call on the object

saga-core-wg@ogf.org 223

GFD-R-P.90 SAGA Name Spaces May 12, 2009

MUST raise an ’IncorrectState’ exception
(apart from DESTRUCTOR and close()).

- close() can be called multiple times, with no
side effects.

- if close() is implicitely called in the
DESTRUCTOR, it will never throw an exception.

- for resource deallocation semantics, see
Section 2.

- for timeout semantics, see Section 2.

// overload permissions because of namespace specific flags

- permissions_allow
Purpose: enable a permission
Format: permissions_allow (in string id,

in int perm,
in int flags = None);

Inputs: id: id to set permission for
perm: permission to enable
flags: mode of operation

InOuts: -
Outputs: -
PreCond: -
PostCond: - the permissions are enabled.
Perms: Owner
Throws: NotImplemented

BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - all notes to permissions_allow from the
saga::permissions interface apply.

- allowed flags are: ’Recursive’, ’Dereference’.
All other flags cause a ’BadParameter’
exception.

- specifying ’Recursive’ for a non-directory
causes a ’BadParameter’ exception.

- permissions_deny
Purpose: disable a permission flag
Format: permissions_deny (in string id,

saga-core-wg@ogf.org 224

GFD-R-P.90 SAGA Name Spaces May 12, 2009

in int perm,
in int flags);

Inputs: id: id to set permission for
perm: permission to disable
flags: mode of operation

InOuts: -
Outputs: -
PreCond: -
PostCond: - the permissions are disabled.
Perms: Owner
Throws: NotImplemented

BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - all notes to permissions_deny from the
saga::permissions interface apply.

- allowed flags are: ’Recursive’, ’Dereference’.
All other flags cause a ’BadParameter’
exception.

- specifying ’Recursive’ for a non-directory
causes a ’BadParameter’ exception.

Class ns directory

ns_directory inherits all navigation and manipulation methods from ns_entry,
but adds some more methods to these sets: instead of dir.copy (target)
they allow, for example, to do dir.copy (source, target). Other methods
added allow to change the cwd of the instance (which changes the values re-
turned by the get_name(), get_cwd() and get_url() inspection methods),
and others allow to open new ns_entry and ns_directory instances (open()
and open_dir()).

For all methods which have the same name as in the ns_entry class, the descrip-
tions and semantics defined in ns_entry apply, unless noted here otherwise.

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in session s,

saga-core-wg@ogf.org 225

GFD-R-P.90 SAGA Name Spaces May 12, 2009

in saga::url name,
in int flags = Read,
out ns_directory obj)

Inputs: name: initial working dir
flags: open mode
s: session handle for

object creation
InOuts: -
Outputs: obj: the newly created object
PreCond: -
PostCond: - the directory is opened.

- ’Owner’ of target is the id of the context
use to perform the opereration, if the
directory gets created.

Perms: Exec for parent directory.
Write for parent directory if Create is set.
Write for name if Write is set.
Read for name if Read is set.

Throws: NotImplemented
IncorrectURL
BadParameter
DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the semantics of the inherited constructors
apply

- the constructor performs an open of the
entry - all notes to the respective open
call apply.

- the default flag set is ’Read’.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in ns_directory obj)
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - the directory is closed.
Perms: -
Throws: -
Notes: - the semantics of the inherited destructors

saga-core-wg@ogf.org 226

GFD-R-P.90 SAGA Name Spaces May 12, 2009

apply

Methods for navigation in the name space hierarchy:

- change_dir
Purpose: change the working directory
Format: change_dir (in saga::url dir);
Inputs: dir: directory to change to
InOuts: -
Outputs: -
PreCond: -
PostCond: - dir is the directory the instance represents.
Perms: Exec for dir.
Throws: NotImplemented

IncorrectURL
BadParameter
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if ’dir’ can be parsed as URL, but contains an
invalid directory name, a ’BadParameter’
exception is thrown.

- if ’dir’ does not exist, a ’DoesNotExist’
exception is thrown.

- similar to the ’cd’ command in the POSIX
shell.

- list
Purpose: list entries in this directory
Format: list (in string name_pattern = ".",

in int flags = None
out array<saga::url> names);

Inputs: flags: flags defining the operation
modus

name_pattern: name or pattern to list
InOuts: -
Outputs: names: array of names matching the

name_pattern
PreCond: -

saga-core-wg@ogf.org 227

GFD-R-P.90 SAGA Name Spaces May 12, 2009

PostCond: -
Perms: Query for entries specified by name_pattern.

Exec for parent directories of these entries.
Query for parent directories of these entries.
Read for directories specified by name_pattern.
Exec for directories specified by name_pattern.
Exec for parent directories of these directories.
Query for parent directories of these directories.

Throws: NotImplemented
IncorrectURL
BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if name_pattern is not given (i.e. is an empty
string), all entries in the current working
directory are listed.

- if name_pattern is given and points to a
directory, the contents of that directory
are listed.

- the name_pattern follows the standard POSIX
shell wildcard specification, as described
above.

- list does not follow symbolically linked
directories, unless the ’Dereference’ flag
is specified - otherwise list lists symbolic
link entries with a matching name.

- if the ’DeReference’ flag is set, list
returns the name of link targets, not of the
link entry itself.

- the default flags are ’None’ (0).
- other flags are not allowed, and cause a
’BadParameter’ exception.

- if the name_pattern cannot be parsed, a
’BadParameter’ exception with a descriptive
error message is thrown.

- if the name_pattern does not match any entry,
an empty list is returned, but no exception is
raised.

- similar to ’ls’ as defined by POSIX.

- find

saga-core-wg@ogf.org 228

GFD-R-P.90 SAGA Name Spaces May 12, 2009

Purpose: find entries in the current directory and below
Format: find (in string name_pattern,

in int flags = Recursive,
out array<saga::url> names);

Inputs: name_pattern: pattern for names of
entries to be found

flags: flags defining the operation
modus

InOuts: -
Outputs: names: array of names matching the

name_pattern
PreCond: -
PostCond: -
Perms: Read for cwd.

Query for entries specified by name_pattern.
Exec for parent directories of these entries.
Query for parent directories of these entries.
Read for directories specified by name_pattern.
Exec for directories specified by name_pattern.
Exec for parent directories of these directories.
Query for parent directories of these directories.

Throws: NotImplemented
BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - find operates recursively below the current
working directory if the ’Recursive’ flag is
specified (default)

- find does not follow symbolically linked
directories, unless the ’Dereference’ flag
is specified - otherwise find lists symbolic
link entries with a matching name.

- the default flags are ’Recursive’ (1).
- other flags are not allowed, and cause a
’BadParameter’ exception.

- the name_pattern follows the standard POSIX
shell wildcard specification, as described
above.

- the matching entries returned are path names
relative to cwd.

- similar to ’find’ as defined by POSIX, but
limited to the -name option.

saga-core-wg@ogf.org 229

GFD-R-P.90 SAGA Name Spaces May 12, 2009

- exists
Purpose: returns true if entry exists, false otherwise
Format: exists (in saga::url name,

out boolean exists);
Inputs: name: name to be tested for

existence
InOuts: -
Outputs: exists: boolean indicating existence

of name
PreCond: -
PostCond: -
Perms: Query for name.

Exec for name’s parent directory.
Read for name’s parent directory.

Throws: NotImplemented
IncorrectURL
BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if ’name’ can be parsed as URL, but contains
an invalid entry name, an ’BadParameter’
exception is thrown.

- note that no exception is thrown if the entry
does not exist - the method just returns
’false’ in this case.

- similar to ’test -e’ as defined by POSIX.

- is_dir
Purpose: tests name for being a directory
Format: is_dir (in saga::url name,

out boolean test);
Inputs: name: name to be tested
InOuts: -
Outputs: test: boolean indicating if name

is a directory
PreCond: -
PostCond: -
Perms: Query for name.

Exec for name’s parent directory.

saga-core-wg@ogf.org 230

GFD-R-P.90 SAGA Name Spaces May 12, 2009

Read for name’s parent directory.
Throws: NotImplemented

IncorrectURL
BadParameter
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - returns true if the instance represents
a directory entry, false otherwise

- all notes to the ns_entry::is_dir() method
apply.

- if ’name’ can be parsed as URL, but contains
an invalid entry name, an ’BadParameter’
exception is thrown.

- if ’name’ is a valid entry name but the entry
does not exist, a ’DoesNotExist’ exception is
thrown.

- similar to ’test -d’ as defined by POSIX.

- is_entry
Purpose: tests name for being an ns_entry
Format: is_entry (in saga::url name,

out boolean test);
Inputs: name: name to be tested
InOuts: -
Outputs: test: boolean indicating if name

is a non-directory entry
PreCond: -
PostCond: -
Perms: Query for name.

Exec for name’s parent directory.
Read for name’s parent directory.

Throws: NotImplemented
IncorrectURL
BadParameter
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout

saga-core-wg@ogf.org 231

GFD-R-P.90 SAGA Name Spaces May 12, 2009

NoSuccess
Notes: - all notes to the ns_entry::is_entry() method

apply.
- if ’name’ can be parsed as URL, but contains
an invalid entry name, a ’BadParameter’
exception is thrown.

- if ’name’ is a valid entry name but the entry
does not exist, a ’DoesNotExist’ exception is
thrown.

- similar to ’test -f’ as defined by POSIX.

- is_link
Purpose: tests name for being a symbolic link
Format: is_link (in saga::url name,

out boolean test);
Inputs: name: name to be tested
InOuts: -
Outputs: test: boolean indicating if name

is a link
PreCond: -
PostCond: -
Perms: Query for name.

Exec for name’s parent directory.
Read for name’s parent directory.

Throws: NotImplemented
IncorrectURL
BadParameter
IncorrectState
DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - all notes to the ns_entry::is_link() method
apply.

- if ’name’ can be parsed as URL, but contains
an invalid entry name, a ’BadParameter’
exception is thrown.

- if ’name’ is a valid entry name but the entry
does not exist, a ’DoesNotExist’ exception is
thrown.

- similar to ’test -L’ as defined by POSIX.

saga-core-wg@ogf.org 232

GFD-R-P.90 SAGA Name Spaces May 12, 2009

- read_link
Purpose: returns the name of the link target
Format: read_link (in saga::url name,

out saga::url link);
Inputs: name: name to be resolved
InOuts: -
Outputs: link: resolved name
PreCond: -
PostCond: -
Perms: Query for name.

Exec for name’s parent directory.
Read for name’s parent directory.

Throws: NotImplemented
IncorrectURL
BadParameter
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - all notes to ns_entry::read_link() apply
- if ’name’ can be parsed as URL, but contains
an invalid entry name, a ’BadParameter’
exception is thrown.

- if ’name’ does not exist, a ’DoesNotExist’
exception is thrown.

Iterate over large directories:

- get_num_entries
Purpose: gives the number of entries in the directory
Format: get_num_entries (out int num);
Inputs: -
InOuts: -
Outputs: num: number of entries in the

directory
PreCond: -
PostCond: -
Perms: Query for cwd.

Exec for cwd.
Read for cwd.

saga-core-wg@ogf.org 233

GFD-R-P.90 SAGA Name Spaces May 12, 2009

Throws: NotImplemented
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - at the time of using the result of this call,
the actual number of entries may already have
changed (no locking is implied)

- vaguely similar to ’opendir’/’readdir’ (2) as
defined by POSIX.

- get_entry
Purpose: gives the name of an entry in the directory

based upon the enumeration defined by
get_num_entries

Format: get_entry (in int entry,
out saga::url name);

Inputs: entry: index of entry to get
InOuts: -
Outputs: name: name of entry at index
PreCond: -
PostCond: -
Perms: Query for cwd.

Exec for cwd.
Read for cwd.

Throws: NotImplemented
IncorrectState
DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - ’0’ is the first entry
- there is no sort order implied by the
enumeration, however an underlying
implementation MAY choose to sort the entries

- subsequent calls to get_entry and/or
get_num_entries may return inconsistent data,
i.e. no locking or state tracking is implied.
In particular, an index may be invalid - a
’DoesNotExist’ exception is then thrown (not a
’BadParameter’ exception).

saga-core-wg@ogf.org 234

GFD-R-P.90 SAGA Name Spaces May 12, 2009

- vaguely similar to ’opendir’/’readdir’ (2) as
defined by POSIX.

Management of name space entries:

- copy
Purpose: copy the entry to another part of the name space
Format: copy (in saga::url source,

in saga::url target,
in int flags = None);

Inputs: source: name to copy
target: name to copy to
flags: flags defining the operation

modus
InOuts: -
Outputs: -
PreCond: -
PostCond: - an identical copy of source exists at target.

- ’Owner’ of target is the id of the context
used to perform the opereration if target gets
created.

Perms: Query for source.
Exec for source’s parent directory.
Query for target.
Query for target’s parent directory.
Exec for target’s parent directory.
Write for target

if target does exist.
Write for target’s parent directory

if target does not exist.
Throws: NotImplemented

IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - all notes to the ns_entry::copy() method
apply.

- the default flags are ’None’ (0).

saga-core-wg@ogf.org 235

GFD-R-P.90 SAGA Name Spaces May 12, 2009

- if ’source’ or ’target’ can be parsed as URL,
but contain an invalid entry name, a
’BadParameter’ exception is thrown.

- if ’source’ or ’target’ are valid entry names
but the entry does not exist, a ’DoesNotExist’
exception is thrown.

- link
Purpose: create a symbolic link from the target entry to

the source entry so that any reference to the
target refers to the source entry

Format: link (in saga::url source,
in saga::url target,
in int flags = None);

Inputs: source: name to link
target: name to link to
flags: flags defining the operation

modus
InOuts: -
Outputs: -
PreCond: -
PostCond: - a symbolic link to source exists at target.

- ’Owner’ of target is the id of the context
used to perform the opereration if target gets
created.

Perms: Query for source.
Exec for source’s parent directory.
Query for target.
Query for target’s parent directory.
Exec for target’s parent directory.
Write for target

if target does exist.
Write for target’s parent directory

if target does not exist.
Throws: NotImplemented

IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

saga-core-wg@ogf.org 236

GFD-R-P.90 SAGA Name Spaces May 12, 2009

Notes: - all notes to the ns_entry::link() method
apply.

- if the ’Recursive’ flag is defined, the source
is recursively linked if it is a directory;
otherwise this flag is ignored.

- if the ’Dereference’ flag is specified, the
method applies to the link target of source.
The flag causes a ’BadParameter’ exception if
source is not a link.

- if the the target already exists, the
’Overwrite’ flag must be specified, otherwise
an ’AlreadyExists’ exception is thrown.

- the default flags are ’None’ (0).
- other flags are not allowed on this method,
and cause a ’BadParameter’ exception.

- if ’source’ can be parsed as URL, but contains
an invalid entry name, a ’BadParameter’
exception is thrown.

- if ’source’ is a valid entry name but the entry
does not exist, a ’DoesNotExist’ exception is
thrown.

- move
Purpose: rename source to target, or move source to

target if target is a directory.
Format: move (in saga::url source,

in saga::url target,
in int flags = None);

Inputs: source: name to move
target: name to move to
flags: flags defining the operation

modus
InOuts: -
Outputs: -
PreCond: -
PostCond: - an identical copy of source exists at target.

- source is removed.
- ’Owner’ of target is the id of the context
used to perform the opereration if target gets
created.

Perms: Query for source.
Write for source.
Exec for source’s parent directory.
Write for source’s parent directory.
Query for target.

saga-core-wg@ogf.org 237

GFD-R-P.90 SAGA Name Spaces May 12, 2009

Exec for target’s parent directory.
Write for target

if target does exist.
Write for target’s parent directory

if target does not exist.
Throws: NotImplemented

IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - all notes to the ns_entry::move() method
apply.

- if the ’Recursive’ flag is defined, the source
is recursively copied if it is a directory;
otherwise this flag is ignored.

- if the ’Dereference’ flag is specified, the
method applies to the link target of source.
The flag causes a ’BadParameter’ exception if
source is not a link.

- if the the target already exists, the
’Overwrite’ flag must be specified, otherwise
an ’AlreadyExists’ exception is thrown.

- the default flags are ’None’ (0).
- other flags are not allowed on this method,
and cause a ’BadParameter’ exception.

- if ’source’ can be parsed as URL, but contains
an invalid entry name, a ’BadParameter’
exception is thrown.

- if ’source’ is a valid entry name but the entry
does not exist, a ’DoesNotExist’ exception is
thrown.

- moving any parent or the current directoy
(e.g. ’.’, ’..’ etc.) is not allowed, and
throws a ’BadParameter’ exception

- remove
Purpose: removes the entry
Format: remove (in saga::url target,

in int flags = None);

saga-core-wg@ogf.org 238

GFD-R-P.90 SAGA Name Spaces May 12, 2009

Inputs: target: entry to be removed
InOuts: -
Outputs: -
PreCond: -
PostCond: - target is removed.

- target is closed if it refers to the cwd.
Perms: Query for target.

Write for target.
Exec for target’s parent directory.
Write for target’s parent directory.

Throws: NotImplemented
IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - all notes to the ns_entry::remove() method
apply.

- if the ’Recursive’ flag is defined, the target
is recursively removed if it is a directory;
otherwise this flag is ignored.

- if the ’Dereference’ flag is specified, the
method applies to the link target of target.
The flag causes a ’BadParameter’ exception if
target is not a link.

- the default flags are ’None’ (0).
- other flags are not allowed on this method,
and cause a ’BadParameter’ exception.

- if ’target’ can be parsed as URL, but contains
an invalid entry name, a ’BadParameter’
exception is thrown.

- if ’target’ is a valid entry name but the entry
does not exist, a ’DoesNotExist’ exception is
thrown.

- removing any parent or the current directoy
(e.g. ’.’, ’..’ etc.) is not allowed, and
throws a ’BadParameter’ exception

- make_dir
Purpose: creates a new directory

saga-core-wg@ogf.org 239

GFD-R-P.90 SAGA Name Spaces May 12, 2009

Format: make_dir (in saga::url target,
in int flags = None);

Inputs: target: directory to create
InOuts: -
Outputs: -
PreCond: -
PostCond: - ’Owner’ of target is the id of the context

used to perform the opereration if target gets
created.

Perms: Exec for target’s parent directory.
Write for target’s parent directory.
Write for target if Write is set.
Read for target if Read is set.

Throws: NotImplemented
IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the parent directory or directories do not
exist, the ’CreateParents’ flag must be set
or a ’DoesNotExist’ exception is thrown.
If set, the parent directories are created as
well.

- an ’AlreadyExists’ exception is thrown if the
directory already exists and the ’Exclusive’
flag is given.

- the default flags are ’None’ (0).
- other flags are not allowed on this method,
and cause a ’BadParameter’ exception.

- if ’target’ can be parsed as URL, but contains
an invalid entry name, a ’BadParameter’
exception is thrown.

- similar to ’mkdir’ (2) as defined by POSIX.

- open_dir
Purpose: creates a new ns_directory instance
Format: open_dir (in saga::url name,

in int flags = Read,
out ns_directory dir);

saga-core-wg@ogf.org 240

GFD-R-P.90 SAGA Name Spaces May 12, 2009

Inputs: name: directory to open
flags: flags defining the operation

modus
InOuts: -
Outputs: dir: opened directory instance
PreCond: -
PostCond: - the session of the returned instance is that of

the calling instance.
- ’Owner’ of name is the id of the context
used to perform the opereration if name gets
created.

- the namespace directory is created if it
does not yet exist, and the Create is set.

Perms: Exec for name’s parent directory.
Write for name’s parent directory if Create is set.
Write for name if Write is set.
Read for name if Read is set.

Throws: NotImplemented
IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the cwd of the new dir object instance is set
to ’name’

- a ’DoesNotExist’ exception is thrown if ’name’
does not exist and the ’Create’ flag is not
given.

- a ’AlreadyExist’ exception is thrown if ’name’
does exist and the ’Create’ flag and the
’Exclusive’ flag are given.
- no exception is thrown if ’name’ does exist and
the ’Create’ flag is given, and the ’Exclusive’
flag is not given.

- if the ’Create’ flag is given, all notes to the
ns_directory::make_dir() method apply.

- the default flag set is ’Read’.
- the flags ’Overwrite’, ’Recursive’ and
’Dereference’ are not allowed on this method,
and cause a ’BadParameter’ exception.

- ’name’ is always deeply dereferenced, however,

saga-core-wg@ogf.org 241

GFD-R-P.90 SAGA Name Spaces May 12, 2009

the cwd is still set to ’name’, and not to the
value of the link target.

- parent directories are created on the fly if
the ’CreateParents’ and ’Create’ flag are both
given, if they don’t exist.

- if ’name’ can be parsed as URL, but contains
an invalid directory name, a ’BadParameter’
exception is thrown.

- open
Purpose: creates a new ns_entry instance
Format: open (in saga::url name,

in int flags = Read,
out ns_entry entry);

Inputs: name: entry
flags: flags defining the operation

modus
InOuts: -
Outputs: entry: opened entry instance
PreCond: -
PostCond: - the session of the returned instance is that

of the calling instance.
- ’Owner’ of name is the id of the context
used to perform the opereration if name gets
created.

- the namespace entry is created if it does not
yet exist, and the CREATE flag is specified.

Perms: Exec for name’s parent directory.
Write for name’s parent directory if Create is set.
Write for name if Write is set.
Read for name if Read is set.

Throws: NotImplemented
IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - a ’BadParameter’ exception is thrown if ’name’
points to a directory, or is an invalid entry
name.

saga-core-wg@ogf.org 242

GFD-R-P.90 SAGA Name Spaces May 12, 2009

- a ’DoesNotExist’ exception is thrown if ’name’
does not exist, and the ’Create’ flag is not
given.

- a ’AlreadyExists’ exception is thrown if ’name’
does exist, and the ’Create’ and ’Exclusive’
flags are given.

- ’name’ is always deeply dereferenced, the cwd,
however, is not changed to the link targets
cwd.

- parent directories are created on the fly if
the ’CreateParents’ and ’Create’ flag are both
given, if they don’t exist.

- the entry is locked on open if the ’Lock’ flag
is given. If the entry is already in a locked
state, the open will fail and a descriptive
error will be issued. If a entry is opened in
locked mode, any other open on that entry MUST
fail with a ’NoSuccess’ exception if the ’Lock’
flag is given. Note that a entry can be opened
in unlocked mode, and then in locked mode,
without an error getting raised. The
application programmer must take precautions
to avoid such situations. The lock will get
removed on destruction of the entry object, and
also on close. If an implementation does not
support locking, a descriptive ’BadParameter’
exception MUST get thrown if the ’Lock’ flag
is given. Read-locks and Write-locks are not
distinguished.

- the default flag set is ’Read’.
- the flags ’Recursive’ and ’Dereference’ are
not allowed on this method, and cause a
’BadParameter’ exception.

- similar to ’open’ (2) as defined by POSIX.

Management of name space entries - wildcard versions:

- copy
Purpose: copy the entry to another part of the name space
Format: copy (in string source,

in saga::url target,
in int flags = None);

Notes: - the syntax and semantics of this call is
identical to its URL based couterpart.

saga-core-wg@ogf.org 243

GFD-R-P.90 SAGA Name Spaces May 12, 2009

- the ’source’ string can contain wildcards, as
described above.

- on error conditions on any of the expanded
list of source entries, the respective error
described in the URL version of the method is
thrown - the state of the operations on the
other elements of the expanded entry list is
undefined.

- if source expands to multiple entries, then the
target URL MUST specify a directory -
otherwise a ’BadParameter’ exception is thrown.

- link
Purpose: create a symbolic link from the target entry to

the source entry so that any reference to the
target refers to the source entry

Format: link (in string source,
in saga::url target,
in int flags = None);

Notes: - the syntax and semantics of this call is
identical to its URL based couterpart.

- the ’source’ string can contain wildcards, as
described above.

- on error conditions on any of the expanded
list of source entries, the respective error
described in the URL version of the method is
thrown - the state of the operations on the
other elements of the expanded entry list is
undefined.

- if source expands to multiple entries, then the
target URL MUST specify a directory -
otherwise a ’BadParameter’ exception is thrown.

- move
Purpose: moves sources to a target directory.
Format: move (in string source,

in saga::url target,
in int flags = None);

Notes: - the syntax and semantics of this call is
identical to its URL based couterpart.

- the ’source’ string can contain wildcards, as
described above.

- on error conditions on any of the expanded
list of source entries, the respective error
described in the URL version of the method is

saga-core-wg@ogf.org 244

GFD-R-P.90 SAGA Name Spaces May 12, 2009

thrown - the state of the operations on the
other elements of the expanded entry list is
undefined.

- if source expands to multiple entries, then the
target URL MUST specify a directory -
otherwise a ’BadParameter’ exception is thrown.

- remove
Purpose: removes entries
Format: remove (in string target,

in int flags = None);
Notes: - the syntax and semantics of this call is

identical to its URL based counterpart.
- the ’target’ string can contain wildcards, as
described above.

- on error conditions on any of the expanded
list of target entries, the respective error
described in the URL version of the method is
thrown - the state of the operations on the
other elements of the expanded entry list is
undefined.

// overload permissions because of namespace specific flags

- permissions_allow
Purpose: enable a permission
Format: permissions_allow (in saga::url target,

in string id,
in int perm,
in int flags = None);

Inputs: target: entry to set permissions for
id: id to set permission for
perm: permission to enable
flags: mode of operation

InOuts: -
Outputs: -
PreCond: -
PostCond: - the permissions are enabled.
Perms: Owner of target
Throws: NotImplemented

IncorrectURL
BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed

saga-core-wg@ogf.org 245

GFD-R-P.90 SAGA Name Spaces May 12, 2009

AuthenticationFailed
Timeout
NoSuccess

Notes: - all notes to permissions_allow from the
saga::permissions interface apply.

- allowed flags are: ’Recursive’, ’Dereference’.
All other flags cause a ’BadParameter’
exception.

- specifying ’Recursive’ for a non-directory
causes a ’BadParameter’ exception.

- permissions_deny
Purpose: disable a permission flag
Format: permissions_deny (in saga::url target,

in string id,
in int perm,
in int flags = None);

Inputs: target: entry to set permissions for
id: id to set permission for
perm: permission to disable
flags: mode of operation

InOuts: -
Outputs: -
PreCond: -
PostCond: - the permissions are disabled.
Perms: Owner of target
Throws: NotImplemented

IncorrectURL
BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - all notes to permissions_deny from the
saga::permissions interface apply.

- allowed flags are: ’Recursive’, ’Dereference’.
All other flags cause a ’BadParameter’
exception.

- specifying ’Recursive’ for a non-directory
causes a ’BadParameter’ exception.

// permissions calls - wildcard versions

saga-core-wg@ogf.org 246

GFD-R-P.90 SAGA Name Spaces May 12, 2009

- permissions_allow
Purpose: enable a permission
Format: permissions_allow (in string target,

in string id,
in int perm,
in int flags = None);

Notes: - the syntax and semantics of this call is
identical to its URL based couterpart.

- the ’source’ string can contain wildcards, as
described above.

- on error conditions on any of the expanded
list of source entries, the respective error
described in the URL version of the method is
thrown - the state of the operations on the
other elements of the expanded entry list is
undefined.

- permissions_deny
Purpose: disable a permission flag
Format: permissions_deny (in string target,

in string id,
in int perm,
in int flags = None);

Notes: - the syntax and semantics of this call is
identical to its URL based couterpart.

- the ’source’ string can contain wildcards, as
described above.

- on error conditions on any of the expanded
list of source entries, the respective error
described in the URL version of the method is
thrown - the state of the operations on the
other elements of the expanded entry list is
undefined.

4.2.4 Examples:

Code Example

1 More examples are given in the File and Logical_File packages.

2

3 Example: provide recursive directory listing for a given

4 directory

5

saga-core-wg@ogf.org 247

GFD-R-P.90 SAGA Name Spaces May 12, 2009

6 Note: - check for ’.’ and ’..’ recursion are left as an

7 exercise to the reader.

8 - string operations and printf statements are

9 obviously simplified.

10

11 +---+

12 // c++ example

13 std::string indent (int indent)

14 {

15 std::string s = " ";

16

17 for (int i = 0; i < indent; i++, s += " ");

18

19 return (s);

20 }

21

22 void list_dir (saga::url url,

23 int indent = 0)

24 {

25 try

26 {

27 // create directory and iterate over entries

28 saga::ns_dir dir (url);

29

30 printf ("\n%s ---> %s\n", indent (indent), url.get_url ());

31

32 for (int i = 0; i < dir.get_num_entries (); i++)

33 {

34 char type = ’?’;

35 string info = "";

36

37 // get name of next entry

38 saga::url name = dir.get_entry (i);

39

40 // get type and other infos

41 if (dir.is_link (name))

42 {

43 // check where link points to

44 if (dir.exists(dir.read_link (name))){info=" ---> ";}

45 else {info=" -|-> ";}

46 info += dir.read_link (name);

47 type = ’l’;

48 }

49 else if (dir.is_entry(name)){ type = ’f’; }

50 else if (dir.is_dir (name)){ type = ’d’; info = "/";}

51

52 printf ("%s > %3d - %s - %s%s\n",

53 indent (indent), i + 1,

54 type, name.get_cstr (), info);

55

saga-core-wg@ogf.org 248

GFD-R-P.90 SAGA Name Spaces May 12, 2009

56 // recursion on directories

57 if (dir.is_dir (name))

58 {

59 list_dir (name, indent++);

60 }

61 }

62

63 printf ("\n%s <--- %s\n", indent (indent), url.get_url ());

64 }

65

66 // catch all errors - see elsewhere for better examples

67 // of error handling in SAGA

68 catch (const saga::exception & e)

69 {

70 std::cerr << "Oops! SAGA exception: "

71 << e.get_message ()

72 << std::endl;

73 }

74

75 return;

76 }

saga-core-wg@ogf.org 249

GFD-R-P.90 SAGA File Management May 12, 2009

4.3 SAGA File Management

The ability to access the contents of files regardless of their location is central
to many of the SAGA use cases. This section addresses the most common
operations detailed in these use cases.

It is important to note that interactions with files as opaque entities (i.e. as
entries in file name spaces) are covered by the namespace package. The classes
presented here supplement the namespace package with operations for the read-
ing and writing of the contents of files. For all methods, the descriptions and
notes of the equivalent methods in the namespace package apply if available,
unless noted here otherwise.

The described classes are syntactically and semantically POSIX oriented [21, 22,
23]. Executing large numbers of simple POSIX-like remote data access opera-
tions is, however, prone to latency related performance problems. To allow for
efficient implementations, the presented API borrows ideas from GridFTP and
other specifications which are widely used for remote data access. These exten-
sions should be seen as just that: optimizations. Implementations of this pack-
age MUST implement the POSIX-like read(), write() and seek() methods,
and MAY implement the additional optimized methods (a ’NotImplemented’
exception MUST be thrown if these are not implemented). The optimizations
included here are:

Scattered I/O Scattered I/O operations are already defined by POSIX, as
readv() and writev(). Essentially, these methods represent vector versions of
the standard POSIX read()/write() methods; the arguments are, basically,
vectors of instructions to execute, and buffers to operate upon. In other words,
readv() and writev() can be regarded as specialized bulk methods, which
cluster multiple I/O operations into a single operation. Advantage of such an
approach are that it is easy to implement, is very close to the original POSIX I/O
in semantics, and in some cases even very fast. Disadvantages are that for many
small I/O operations (a common occurence in SAGA use cases), the description
of the I/O operations can be larger than the sent, returned or received data.

Pattern-Based I/O (FALLS) One approach to address the bandwith lim-
itation of scattered I/O is to describe the required I/O operations at a more
abstract level. Regularly repeating patterns of binary data can be described by
the so-called ’Family of Line Segments’ (FALLS) [14]. The pattern-based I/O
routines in SAGA use such descriptions to reduce the bandwidth limitation of
scattered I/O. The advantage of such an approach is that it targets very com-
mon data access patterns (at least those very commonly found in SAGA use
cases). The disadvantages are that FALLS is a paradigm not widely known or
used, and that FALLS is by definition, limited to regular patterns of data, and

saga-core-wg@ogf.org 250

GFD-R-P.90 SAGA File Management May 12, 2009

hence is inefficient for more randomized data access.

0 2 64 8 10 12 14 1631 5 7 11 13 15 179

0 21

3 4 5

6 7 8

Figure 5: The highlighted elements are
defined by "(0,17,36,6,(0,0,2,6))".

FALLS (FAmiLy of Line Segments) were
originally introduced for transformations
in parallel computing. There is also a par-
allel filesystem which uses FALLS to de-
scribe the file layout. They can be used
to describe regular subsets of arrays with
a very compact syntax.

FALLS pattern are formed as 5-tuples:
"(from,to,stride,rep,(pat))". The
from element defines the starting offset
for the first pattern unit, to defines the
finishing offset of the first pattern unit,
stride defines the distance between con-
secutive pattern units (begin to begin),
and rep defines the number of repetitions
of the pattern units. The optional 5th
element pat allows to defines nested pat-
terns, where the internal pattern defines the unit the outer pattern is applied to
(by default that is one byte). As an example: the following FALLS describe the
highlighted elements of the matrix in Fig 5: "(0,17,36,6,(0,0,2,6))": the
inner pattern describes a pattern unit of one byte length (from 0 to 0), with a
distance of 2 to the next application, and 6 repetitions. These are the 6 bytes
per line which are marked. The outer pattern defines the repeated application
of the inner pattern, starting at 0, ending at 17 (end of line), distance of 36 (to
begin of next but one line), and repetition of 6.

Extended I/O GridFTP (which was designed for a similar target domain)
introduced an additional remote I/O paradigm, that of Extended I/O opera-
tions.

In essence, the Extended I/O paradigm allows the formulation of I/O requests
using custom strings, which are not interpreted on the client but on the server
side; these can be expanded to arbitrarily complex sets of I/O operations. The
type of I/O request encoded in the string is called mode. A server may support
one or many of these extended I/O modes. Whereas the approach is very flexible
and powerful and has proven its usability in GridFTP, a disadvantage is that it
requires very specific infrastructure to function, i.e. it requires a remote server
instance which can interpret opaque client requests. Additionally, no client side
checks or optimizations on the I/O requests are possible. Also, the application
programmer needs to estimate the size of the data to be returned in advance,
which in some cases is very difficult.

saga-core-wg@ogf.org 251

GFD-R-P.90 SAGA File Management May 12, 2009

The three described operations have, if compared to each other, increasing se-
mantic flexibility, and are increasingly powerful for specific use cases. However,
they are also increasingly difficult to implement and support in a generic fashion.
It is up to the SAGA implementation and the specific use cases, to determine
the level of I/O abstraction that serves the application best and that can be
best supported in the target environment.

4.3.1 Specification

package saga.file
{
enum flags
{
None = 0, // same as in namespace::flags
Overwrite = 1, // same as in namespace::flags
Recursive = 2, // same as in namespace::flags
Dereference = 4, // same as in namespace::flags
Create = 8, // same as in namespace::flags
Exclusive = 16, // same as in namespace::flags
Lock = 32, // same as in namespace::flags
CreateParents = 64, // same as in namespace::flags
Truncate = 128,
Append = 256,
Read = 512, // same as in namespace::flags
Write = 1024, // same as in namespace::flags
ReadWrite = 1536, // same as in namespace::flags
Binary = 2048

}

enum seek_mode
{
Start = 1,
Current = 2,
End = 3

}

class iovec : extends saga::buffer
// from buffer saga::object
// from object saga::error_handler

{
CONSTRUCTOR (in array<byte> data = "",

saga-core-wg@ogf.org 252

GFD-R-P.90 SAGA File Management May 12, 2009

in int size = 0,
in int offset = 0,
in int len_in = size,
out buffer obj);

set_offset (in int offset);
get_offset (out int offset);

set_len_in (in int len_in);
get_len_in (out int len_in);

get_len_out (out int len_out);
}

class file : extends saga::ns_entry,
// from ns_entry saga::object
// from ns_entry saga::async
// from ns_entry saga::permissions
// from object saga::error_handler

{
CONSTRUCTOR (in session s,

in saga::url name,
in int flags = Read,
out file obj);

DESTRUCTOR (in file obj);

// inspection
get_size (out int size);

// POSIX-like I/O
read (inout buffer buf,

in int len_in = -1,
out int len_out);

write (in buffer buf,
in int len_in = -1,
out int len_out);

seek (in int offset,
in seek_mode whence,
out int position);

// scattered I/O
read_v (inout array<iovec> iovecs);
write_v (inout array<iovec> iovecs);

// pattern-based I/O
size_p (in string pattern,

saga-core-wg@ogf.org 253

GFD-R-P.90 SAGA File Management May 12, 2009

out int size);
read_p (in string pattern,

inout buffer buf,
out int len_out);

write_p (in string pattern,
in buffer buf,
out int len_out);

// extended I/O
modes_e (out array<string> emodes);
size_e (in string emode,

in string spec,
out int size);

read_e (in string emode,
in string spec,
inout buffer buf,
out int len_out);

write_e (in string emode,
in string spec,
in buffer buf,
out int len_out);

}
}

class directory : extends saga::ns_directory
// from ns_directory saga::ns_entry
// from ns_entry saga::object
// from ns_entry saga::async
// from ns_entry saga::permissions
// from object saga::error_handler

{
CONSTRUCTOR (in session s,

in saga::url name,
in int flags = Read,
out directory obj);

DESTRUCTOR (in directory obj);

// inspection methods
get_size (in saga::url name,

in int flags = None,
out int size);

is_file (in saga::url name,
in int flags = None,
out boolean test);

saga-core-wg@ogf.org 254

GFD-R-P.90 SAGA File Management May 12, 2009

// factory-like methods
open_dir (in saga::url name,

in int flags = Read,
out directory dir);

open (in saga::url name,
in int flags = Read,
out file file);

}

4.3.2 Specification Details

Enum flags

The flags enum is inherited from the namespace package. A number of file
specific flags are added to it. All added flags are used for the opening of file
and directory instances, and are not applicable to the operations inherited
from the namespace package.

Truncate
Upon opening, the file is truncated to length 0, i.e. a following read()
operation will never find any data in the file. That flag does not apply
to directories.

Append
Upon opening, the file pointer is set to the end of the file, i.e. a following
write() operation will extend the size of the file. That flag does not
apply to directories.

Class iovec

The iovec class inherits the saga::buffer class, and three additional state
attributes: offset, len in and len out (with the latter one being read-only).
With that addition, the new class can be used very much the same way as the
iovec structure defined by POSIX for readv/writev, with the buffer len in
beeing interpreted as the POSIX iov len, i.e. the number of bytes to read/write.

If len in is not specified, that length is set to the size of the buffer. It is a
BadParameter error if len in is specified to be larger than size, for application
managed buffers (see Section 3.4 for details on buffer memory management).
Before an iovec instance is used, it’s len in MUST be set to a non-zero value;
otherwise it’s use will cause a BadParameter exception.

saga-core-wg@ogf.org 255

GFD-R-P.90 SAGA File Management May 12, 2009

After a read v() or write v() operations completes, len out will report the
number of bytes read. Before completion, the SAGA implementation MUST
report len out to be -1.

- CONSTRUCTOR
Purpose: create an iovec instance
Format: CONSTRUCTOR (in array<byte> data = "",

in int size = -1,
in int offset = 0,
in int len_in = size,
out iovec obj);

Inputs: type: data to be used
size: size of data to be used
offset offset for I/O operation
len_in: number of bytes to read

or write on read_v/write_v
InOuts: -
Outputs: buffer: the newly created iovec
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter

NoSuccess
Notes: - all notes from the buffer CONSTRUCTOR apply.

- if len_in is larger than size, and size is
not given as -1, a ’BadParameter’ exception
is thrown.

- DESTRUCTOR
Purpose: destroy an iovec instance
Format: DESTRUCTOR (in iovec obj);
Inputs: obj: the iovec to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: - all notes from the buffer DESTRUCTOR apply.

- set_offset
Purpose: set offset
Format: set_offset (in int offset);
Inputs: offset: value for offset

saga-core-wg@ogf.org 256

GFD-R-P.90 SAGA File Management May 12, 2009

InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter
Notes: - if offset is smaller that zero, a

’BadParameter’ exception is thrown.

- get_offset
Purpose: retrieve the current value for offset
Format: get_offset (out int offset);
Inputs: -
InOuts: -
Outputs: offset: value of offset
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

- set_len_in
Purpose: set len_in
Format: set_len_in (in int len_in);
Inputs: len_in: value for len_in
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter
Notes: - if len_in is larger than size, and size is

not set to -1, a ’BadParameter’ exception
is thrown.

- get_len_in
Purpose: retrieve the current value for len_in
Format: get_len_in (out int len_in);
Inputs: -
InOuts: -
Outputs: len_in: value of len_in
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

saga-core-wg@ogf.org 257

GFD-R-P.90 SAGA File Management May 12, 2009

- get_len_out
Purpose: retrieve the value for len_out
Format: get_len_out (out int len_out);
Inputs: -
InOuts: -
Outputs: len_out: value of len_out
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: - len_out reports the number of bytes read

or written in a completed read_w or write_w
operation.

- before completion of the operation, the
returned value is -1.

- for implementation managed memory, the
value of len_out is always the same as
for size.

Class file

This class represents an open file descriptor for read/write operations on a phys-
ical file. Its concept is similar to the file descriptor returned by the open (2)
call in POSIX.

In language bindings where this is appropriate, several methods can return
error codes indicating failure, instead of always raising an exception. These
error codes are, as described in Section 3.1, defined as POSIX errno values.
These codes SHOULD be used in identical situations as described in POSIX.
The calls which can use return error codes are documented.

- CONSTRUCTOR
Purpose: create the obj
Format: CONSTRUCTOR (in session s,

in saga::url name,
in int flags = Read,
out file obj)

Inputs: s: session to associate the
object with

name: location of file
flags: mode for opening

saga-core-wg@ogf.org 258

GFD-R-P.90 SAGA File Management May 12, 2009

InOuts: -
Outputs: obj: the newly created object
PreCond: -
PostCond: - the file is opened.

- ’Owner’ of target is the id of the context
use to perform the opereration, if the file
gets created.

Perms: Exec for parent directory.
Write for parent directory if Create is set.
Write for name if Write is set.
Read for name if Read is set.

Throws: NotImplemented
IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - all notes from the directory::open() method
apply.

- the default flags are ’Read’ (512).

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in file obj)
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - the file is closed.
Perms: -
Throws: -
Notes: - the semantics of the inherited destructors

apply

additional inspection methods:

- get_size
Purpose: returns the number of bytes in the file
Format: get_size (out int size);

saga-core-wg@ogf.org 259

GFD-R-P.90 SAGA File Management May 12, 2009

Inputs: -
InOuts: -
Outputs: size: number of bytes in the file
PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - similar to the ’st_size’ field from ’stat’ (2)
as defined by POSIX

POSIX-like I/O methods:

- read
Purpose: reads up to len_in bytes from the file into

the buffer.
Format: read (inout buffer buf,

in int len_in = -1,
out int len_out);

Inputs: len_in: number of bytes to be read
InOuts: buf: buffer to read data into
Outputs: len_out: number of bytes successfully

read
PreCond: -
PostCond: - the data from the file are available in the

buffer.
Perms: Read
Throws: NotImplemented

BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the actual number of bytes read into buffer
is returned in len_out. It is not an error
to read less bytes than requested, or in fact
zero bytes, e.g. at the end of the file.

saga-core-wg@ogf.org 260

GFD-R-P.90 SAGA File Management May 12, 2009

- errors are indicated by returning negative
values for len_out, which correspond to
negatives of the respective POSIX ERRNO error
code.

- the file pointer is positioned at the end of
the byte area successfully read during this
call.

- the given buffer must be large enough to
store up to len_in bytes, or managed by the
implementation - otherwise a ’BadParameter’
exception is thrown.

- the notes about memory management from the
buffer class apply.

- if the file was opened in write-only mode (i.e.
no ’Read’ or ’ReadWrite’ flag was given), this
method throws an ’PermissionDenied’ exception.

- if len_in is smaller than 0, or not given,
the buffer size is used for len_in.
If that is also not available, a
’BadParameter’ exception is thrown.

- similar to read (2) as specified by POSIX

- write
Purpose: writes up to len_in bytes from buffer into

the file at the current file position.
Format: write (in buffer buf,

in int len_in = -1,
out int len_out);

Inputs: len_in: number of bytes to write
buf: buffer to write data from

InOuts: -
Outputs: len_out: number of bytes successfully

written
PreCond: -
PostCond: - the buffer data are written to the file.
Perms: Write
Throws: NotImplemented

BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - errors are indicated by returning negative

saga-core-wg@ogf.org 261

GFD-R-P.90 SAGA File Management May 12, 2009

values for len_out, which correspond to
negatives of the respective POSIX ERRNO error
code.

- the file pointer is positioned at the end
of the byte area written during this call.

- if the file was opened in read-only mode (i.e.
no ’Write’ or ’ReadWrite’ flag was given), this
method throws an ’PermissionDenied’ exception.

- the given buffer must hold enough data to
write - otherwise, only the available data
will be written, and and len_out will be set
to the number of bytes written.

- the notes about memory management from the
buffer class apply.

- if len_in is smaller than 0, or not given,
the buffer size is used for len_in.
If that is also not available, a
’BadParameter’ exception is thrown.

- if data are written beyond the current end of
file, the intermediate gap is filled with ’\0’
bytes.

- similar to write (2) as specified by POSIX

- seek
Purpose: reposition the file pointer
Format: seek (in int offset,

in seek_mode whence,
out int position);

Inputs: offset: offset in bytes to move
pointer

whence: offset is relative to
’whence’

InOuts: -
Outputs: position: position of pointer after

seek
PreCond: -
PostCond: - the file pointer is moved to the new position.

- following read() or write() operations use
that position.

Perms: Read or Write.
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed

saga-core-wg@ogf.org 262

GFD-R-P.90 SAGA File Management May 12, 2009

Timeout
NoSuccess

Notes: - seek repositions the file pointer for
subsequent read, write and seek calls.

- initially (after open), the file pointer is
positioned at the beginning of the file,
unless the ’Append’ flag was given - then
the initial position is the end of the file.

- the repositioning is done relative to the
position given in ’Whence’, so relative to
the ’Begin’ or ’End’ of the file, or to the
’Current’ position.

- errors are indicated by returning negative
values for len_out, which correspond to
negatives of the respective POSIX ERRNO error
code.

- the file pointer can be positioned after the
end of the file without extending it.

- the given offset can be positive, negative, or
zero.

- note that a subsequent read at or behind the end
of file returns no data.

- similar to lseek (2) as specified by POSIX.

Scattered I/O methods:

- read_v
Purpose: gather/scatter read
Format: read_v (inout array<iovec> iovecs);
Inputs: -
InOuts: iovecs: array of iovec structs

defining start (offset) and
length (len_in) of each
individual read, the buffer
to read into, and integer
to store result into
(len_out).

Outputs: -
PreCond: -
PostCond: - data from the file are available in the

iovec buffers.
Perms: Read
Throws: NotImplemented

BadParameter

saga-core-wg@ogf.org 263

GFD-R-P.90 SAGA File Management May 12, 2009

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the behaviour of each individual read is as
in the normal read method, and all notes from
the read() method apply.

- an exception MUST be thrown if any of the
individual reads detects a condition which
would raise an exception for the normal
read() method.

- the notes about memory management from the
buffer class apply.

- if for any of the given iovecs no len_in is
given, then the buffer’s (size - offset) is
used as len_in. If that is also not available,
a ’BadParameter’ exception is thrown.

- if for any of the given iovecs, the of
(offset + len_in) is larger than size,
a ’BadParameter’ exception is thrown.

- if the file was opened WriteOnly, a
’PermissionDenied’ exception is thrown.

- similar to readv (2) as specified by POSIX

- write_v
Purpose: gather/scatter write
Format: write_v (inout array<iovec> iovecs);
Inputs: -
InOuts: iovecs: array of iovec structs

defining start (offset) and
length (len_in) of each
individual write, and
buffers containing the data
to write (len_out)

Outputs: -
PreCond: -
PostCond: - the iovec buffer data are written to the file.
Perms: Write
Throws: NotImplemented

IncorrectState
BadParameter
PermissionDenied
AuthorizationFailed

saga-core-wg@ogf.org 264

GFD-R-P.90 SAGA File Management May 12, 2009

AuthenticationFailed
Timeout
NoSuccess

Notes: - the behaviour of each individual write is as
in the normal write method.

- an exception MUST be thrown if any of the
individual writes detects a condition which
would raise an exception for the normal write
method.

- the notes about memory management from the
buffer class apply.

- if for any of the given iovecs no len_in is
given, then the buffer’s (size - offset) is
used as len_in. If that is also not available,
a ’BadParameter’ exception is thrown.

- if for any of the given iovecs, the of
(offset + len_in) is larger than size,
a ’BadParameter’ exception is thrown.

- if the file was opened ReadOnly, a
’PermissionDenied’ exception is thrown.

- similar to writev (2) as specified by POSIX

Pattern-based I/O methods:

- size_p
Purpose: determine the storage size required for a

pattern I/O operation
Format: size_p (in string pattern,

out int size);
Inputs: pattern: pattern to determine size for
InOuts: -
Outputs: size: size required for I/O

operation with that pattern
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

saga-core-wg@ogf.org 265

GFD-R-P.90 SAGA File Management May 12, 2009

Notes: - the method does, in general, not perform a
remote operation, but is intended to help
the application programmer to correctly handle
pattern-based I/O and associated buffer sizes.

- if the pattern cannot be parsed or interpreted,
a ’BadParameter’ exception is thrown.

- read_p
Purpose: pattern-based read
Format: read_p (in string pattern,

inout buffer buf,
out int len_out);

Inputs: pattern: pattern specification for
read operation

InOuts: buf: buffer to store read data
into

Outputs: len_out: number of successfully read
bytes

PreCond: -
PostCond: - data from the file are available in the

buffers.
Perms: Read
Throws: NotImplemented

BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the pattern cannot be parsed or interpreted,
a ’BadParameter’ exception is thrown.

- all notes for the read() method apply for the
individual reads resulting from the
interpretation of the pattern.

- an exception MUST be thrown if any of the
individual writes detects a condition which
would raise an exception for the normal write
method.

- write_p
Purpose: pattern-based read
Format: write_p (in string pattern,

in buffer buf,

saga-core-wg@ogf.org 266

GFD-R-P.90 SAGA File Management May 12, 2009

out int len_out);
Inputs: pattern: pattern specification for

write operation
buf: buffer to be written

InOuts: -
Outputs: len_out: number of bytes successfully

written
PreCond: -
PostCond: - the buffer data are written to the file.
Perms: Write
Throws: NotImplemented

BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the pattern cannot be parsed or interpreted,
a ’BadParameter’ exception is thrown.

- all notes for the write() method apply for the
individual writes resulting from the
interpretation of the pattern.

- an exception MUST be thrown if any of the
individual writes detects a condition which
would raise an exception for the normal write
method.

Extended I/O methods:

- modes_e
Purpose: list the exetnded modes available in this

implementation, and/or on server side
Format: modes_e (out array<string> emodes);
Inputs: -
InOuts: -
Outputs: emodes: list of modes available for

extended I/O
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState
PermissionDenied

saga-core-wg@ogf.org 267

GFD-R-P.90 SAGA File Management May 12, 2009

AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the method does, in general, not perform a
remote operation, but is intended to help
the application programmer to determine what
extended I/O methods are supported by the
implementation.

- size_e
Purpose: determine the strorage size required for an

extended I/O operation
Format: size_e (in string emode,

(in string spec,
out int size);

Inputs: emode: extended mode to use
spec: specification to determine

size for
InOuts: -
Outputs: size: size required for I/O

operation with that
emode/spec

PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the method does, in general, not perform a
remote operation, but is intended to help
the application programmer to correctly handle
extended I/O and associated buffer sizes.

- if the specification cannot be parsed or
interpreted, a ’BadParameter’ exception is
thrown.

- read_e
Purpose: extended read

saga-core-wg@ogf.org 268

GFD-R-P.90 SAGA File Management May 12, 2009

Format: read_e (in string emode,
in string spec,
inout buffer buf,
out int len_out);

Inputs: emode: extended mode to use
spec: specification of read

operation
InOuts: buf: buffer to store read data

into
Outputs: len_out: number of successfully read

bytes
PreCond: -
PostCond: - data from the file are available in the

buffers.
Perms: Read
Throws: NotImplemented

BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the emode is not supported, a ’BadParameter’
exception is thrown.

- if the spec cannot be parsed or interpreted,
a ’BadParameter’ exception is thrown.

- all notes from the read() method apply to the
individual reads resulting from the
interpretation of the emode and spec.

- an exception MUST be thrown if any of the
individual writes detects a condition which
would raise an exception for the normal write
method.

- write_e
Purpose: extended write
Format: write_e (in string emode,

in string spec,
in buffer buf,
out int len_out);

Inputs: emode: extended mode to use
spec: specification of write

operation
buf: buffer to store read data

saga-core-wg@ogf.org 269

GFD-R-P.90 SAGA File Management May 12, 2009

into
InOuts: -
Outputs: len_out: number of bytes successfully

written
PreCond: -
PostCond: - the buffer data are written to the file.
Perms: Write
Throws: NotImplemented

BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the emode is not supported, a ’BadParameter’
exception is thrown.

- if the spec cannot be parsed or interpreted,
a ’BadParameter’ exception is thrown.

- all notes from the write() method apply to the
individual writes resulting from the
interpretation of the ’emode’ and ’spec’.

- an exception MUST be thrown if any of the
individual writes detects a condition which
would raise an exception for the normal write
method.

Class directory

- CONSTRUCTOR
Purpose: open the directory
Format: CONSTRUCTOR (in session s,

in saga::url name,
in int flags = Read,
out directory obj)

Inputs: s: session to associate the
object with

name: location of directory
flags: mode for opening

InOuts: -
Outputs: obj: the newly created object
PreCond: -

saga-core-wg@ogf.org 270

GFD-R-P.90 SAGA File Management May 12, 2009

PostCond: - the directory is opened.
- ’Owner’ of target is the id of the context
use to perform the opereration, if the
directory gets created.

Perms: Exec for parent directory.
Write for parent directory if Create is set.
Write for name if Write is set.
Read for name if Read is set.

Throws: NotImplemented
IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the default flags are ’Read’ (512).
- the semantics of the inherited constructors
apply

- DESTRUCTOR
Purpose: destroy the directory object
Format: DESTRUCTOR (in directory obj)
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - the directory is closed.
Perms: -
Throws: -
Notes: - the semantics of the inherited destructors

apply.

inspection methods:

- get_size
Purpose: returns the number of bytes in the file
Format: get_size (in saga::url name,

in int flags = None,
out int size);

Inputs: name: name of file to inspect

saga-core-wg@ogf.org 271

GFD-R-P.90 SAGA File Management May 12, 2009

flags: mode for operation
InOuts: -
Outputs: size: number of bytes in the file
PreCond: -
PostCond: -
Perms: Query
Throws: NotImplemented

IncorrectURL
BadParameter
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if ’name’ can be parsed as URL, but contains
an invalid entry name, a ’BadParameter’
exception is thrown.

- if the entry ’name’ points to does not exist,
a ’DoesNotExist’ exception is thrown.

- if the ’name’ points to a link and the
’Dereference’ flag is set, the size is
returned for the link target. If that target
does not exist, a ’DoesNotExist’ exception is
thrown.

- the default flags are ’None’ (0).
- other flags are not allowed on this method,
and cause a ’BadParameter’ exception.

- similar to the ’st_size’ field from ’stat’ (2)
as defined by POSIX

- is_file
Alias: for is_entry in saga::ns_directory

Factory-like methods for creating objects:
--

- open_dir
Purpose: creates a directory object
Format: open_dir (in saga::url name,

in int flags = Read,
out directory dir)

Inputs: name: name of directory to open
flags: flags defining operation

saga-core-wg@ogf.org 272

GFD-R-P.90 SAGA File Management May 12, 2009

modus
InOuts: -
Outputs: dir: opened directory instance
PreCond: -
PostCond: - the session of the returned instance is that of

the calling instance.
- ’Owner’ of name is the id of the context
used to perform the opereration if name gets
created.

Perms: Exec for name’s parent directory.
Write for name’s parent directory if Create is set.
Write for name if Write is set.
Read for name if Read is set.

Throws: NotImplemented
IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - all notes from the ns_directory::open_dir()
method apply.

- default flags are ’Read’ (512).

- open
Purpose: creates a new file instance
Format: open (in saga::url name,

in int flags = Read,
out file file);

Inputs: name: file to be opened
flags: flags defining operation

modus
InOuts: -
Outputs: file: opened file instance
PreCond: -
PostCond: - the session of the returned instance is that of

the calling instance.
- ’Owner’ of name is the id of the context
used to perform the opereration if name gets
created.

Perms: Exec for name’s parent directory.

saga-core-wg@ogf.org 273

GFD-R-P.90 SAGA File Management May 12, 2009

Write for name’s parent directory if Create is set.
Write for name if Write is set.
Read for name if Read is set.

Throws: NotImplemented
IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - all notes from the ns_directory::open() method
apply.

- the file is truncated to length 0 on the open
operation if the ’Trunc’ flag is given.

- the file is in opened in append mode if the
’Append’ flag is given (a seek(0, End) is
performed after the open). If the ’Append’
flag is not given, the file pointer is
initially placed at the beginning of the file
(a seek(0,Start) is performed after the open).

- the ’Binary’ flag is to be silently ignored on
systems which do not support it.

- at least one of the flags ’Read’, ’Write’ or
’ReadWrite’ must be given, otherwise a
’BadParameter’ exception is thrown.

- the flag set ’Read | Write’ is equivalent to
the flag ’ReadWrite’.

- default flags are ’Read’ (512).

4.3.3 Examples

Example: open a file. If its size is greater than 10, then read the first 10 bytes
into a string, and print it.

Code Example

1 // c++ example

2 void head (saga::url url)

3 {

4 try {

saga-core-wg@ogf.org 274

GFD-R-P.90 SAGA File Management May 12, 2009

5 // get type and other infos

6 saga::file f (url);

7

8 off_t size = f.get_size ();

9

10 if (size > 10)

11 {

12 char buf[11];

13

14 ssize_t len_out = f.read (saga::buffer (buf));

15

16 if (10 == len_out)

17 {

18 std::cout << "head: "

19 << buffer.get_data ()

20 << std::endl;

21 }

22 }

23 }

24

25 // catch any possible error - see elsewhere for better

26 // examples of error handling in SAGA

27 catch (const saga::exception & e)

28 {

29 std::cerr << "Oops! SAGA error: "

30 << e.get_message ()

31 << std::endl;

32 }

33

34 return;

35 }

saga-core-wg@ogf.org 275

GFD-R-P.90 SAGA Replica Management May 12, 2009

4.4 SAGA Replica Management

This section of the SAGA API describes the interaction with replica systems.
Numerous SAGA use cases required replica management functionality in the
API – however, only a small number of operation have been requested. The
methods described here are hence limited to the creation and maintainance of
logical files, replicas, and to search on logical file meta data.

The saga::logical_file class implements the saga::attributes interface.
It is important to realize that this is intended to reflect the ability of replica
systems to associate meta data with logical files. The SAGA attribute model
(string based key/value pairs) can, with all probability, only give a crude repre-
sentation of meta data models used in real world replica systems – however, the
definition of a more abstract and comprehensive data model for replica meta
data was felt to be outside the scope of a SAGA API definition. Implemen-
tations are expected to map the native data model to key/value pairs as well
as possible, and MUST document that mapping process (and in particular the
supported keys) carefully.

Please note that the interactions with logical files as opaque entities (as entries in
logical file name spaces) are covered by the namespace package. The interfaces
presented here supplement the namespace package with operations for operating
on entries in replica catalogues.

It is up to the used backend to ensure that multiple replica locations registered
on a logical file are indeed identical copies – the SAGA API does not imply any
specific consistency model. The SAGA implementation MUST document the
consistency model used.

4.4.1 Definitions

Logical File: A logical file represents merely an entry in a name space which
has (a) an associated set of registered (physical) replicas of that file, and (b) an
associated set of meta data describing that logical file. Both sets can be empty.
To access the content of a logical file, a saga::file needs to be created with
one of the registered replica locations.

Replica: A replica (or physical file) is a file which is registered on a logical file.
In general, all replicas registered on the same logical file are identical. Often,
one of these replicas is deemed to be a master copy (often it is the first replica
registered, and/or the only one which can be changed) – that distinction is,
however, not visible in the SAGA API.

saga-core-wg@ogf.org 276

GFD-R-P.90 SAGA Replica Management May 12, 2009

Logical Directory: A logical directory represents a directory entry in the
name space of logical files. Several replica system implementations have the
notion of containers, which, for our purposes, represent directories which can
have, just as logical files, associated sets of meta data. In the presented API,
logical directories and containers are the same.

Note that the Truncate, Append and Binary flags have no meaning on logical
files. The respective enum values for these flags for saga::files have been
reserved though, for (a) future use, and (b) consistency with the saga::file
flag values.

The find() method of the saga::logical_directory class represents a combi-
nation of (a) the find() method from the saga::ns_directory class, and (b)
the find_attributes() method from the saga::attributes interface. The
method accepts patterns for meta data matches (attr pattern) and a single
pattern for file name matches (name_pattern), and returns a list of logical
file names which match all attr pattern and the name pattern (AND seman-
tics). The attr pattern are formatted as defined for find_attribute() of the
saga::attributes interface. The name_pattern are formatted as defined for
the find() method of the saga::ns_directory class. In general, the allowed
patterns are the same as defined as wildcards in the description of the SAGA
namespace package.

4.4.2 Specification

package saga.logical_file
{
enum flags
{
None = 0, // same as in namespace::flags
Overwrite = 1, // same as in namespace::flags
Recursive = 2, // same as in namespace::flags
Dereference = 4, // same as in namespace::flags
Create = 8, // same as in namespace::flags
Exclusive = 16, // same as in namespace::flags
Lock = 32, // same as in namespace::flags
CreateParents = 64, // same as in namespace::flags
// 128, reserved for Truncate
// 256, reserved for Append
Read = 512, // same as in namespace::flags
Write = 1024, // same as in namespace::flags
ReadWrite = 1536, // same as in namespace::flags
// 2048 reserved for Binary

saga-core-wg@ogf.org 277

GFD-R-P.90 SAGA Replica Management May 12, 2009

}

class logical_file : extends saga::ns_entry
implements saga::attributes

// from ns_entry saga::object
// from ns_entry saga::async
// from object saga::error_handler

{
CONSTRUCTOR (in session s,

in saga::url name,
in int flags = Read,
out logical_file obj);

DESTRUCTOR (in logical_file obj);

// manage the set of associated replicas
add_location (in saga::url name);
remove_location (in saga::url name);
update_location (in saga::url name_old,

in saga::url name_new);
list_locations (out array<saga::url> names);

// create a new physical replica
replicate (in saga::url name,

in int flags = None);

// Attributes (extensible):
//
// no attributes pre-defined

}

class logical_directory : extends saga::ns_directory
implements saga::attributes

// from ns_directory saga::ns_entry
// from ns_entry saga::object
// from ns_entry saga::async
// from object saga::error_handler

{

CONSTRUCTOR (in session s,
in saga::url name,
in int flags = Read,
out logical_directory obj);

DESTRUCTOR (in logical_directory obj);

saga-core-wg@ogf.org 278

GFD-R-P.90 SAGA Replica Management May 12, 2009

// inspection methods
is_file (in saga::url name,

out boolean test);

// open methods
open_dir (in saga::url name,

in int flags = Read,
out logical_directory dir);

open (in saga::url name,
in int flags = Read,
out logical_file file);

// find logical files based on name and meta data
find (in string name_pattern,

in array<string> attr_pattern,
in int flags = Recursive,
out array<saga::url> names);

}
}

4.4.3 Specification Details

Enum flags

The flags enum is inherited from the namespace package. No additional flags
are added.

Class logical file

This class provides the means to handle the contents of logical files. These
contents consists of strings representing locations of physical files (replicas) as-
sociated with the logical file.

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in session s,

in saga::url name,

saga-core-wg@ogf.org 279

GFD-R-P.90 SAGA Replica Management May 12, 2009

in int flags = Read,
out logical_file obj)

Inputs: s: session to associate with
the object

name: location of file
flags: mode for opening

InOuts: -
Outputs: obj: the newly created object
PreCond: -
PostCond: - the logical_file is opened.

- ’Owner’ of target is the id of the context
use to perform the opereration, if the
logical_file gets created.

Perms: Exec for parent directory.
Write for parent directory if Create is set.
Write for name if Write is set.
Read for name if Read is set.

Throws: NotImplemented
IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the semantics of the inherited constructors
and of the logical_directory::open() method
apply.

- the default flags are ’Read’ (512).

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in logical_file obj)
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - the logical_file is closed.
Perms: -
Throws: -
Notes: - the semantics of the inherited destructors

apply.

saga-core-wg@ogf.org 280

GFD-R-P.90 SAGA Replica Management May 12, 2009

manage the set of associated replicas:

- add_location
Purpose: add a replica location to the replica set
Format: add_location (in saga::url name);
Inputs: name: location to add to set
InOuts: -
Outputs: -
PreCond: -
PostCond: - name is in the list of replica locations for

the logical file.
Perms: Write
Throws: NotImplemented

IncorrectURL
BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - this methods adds a given replica location
(name) to the set of locations associated with
the logical file.

- the implementation MAY choose to interpret the
replica locations associated with the logical
file. It MAY return an ’IncorrectURL’ error
indicating an invalid location if it is unable
or unwilling to handle that specific locations
scheme. The implementation documentation MUST
specify how valid replica locations are formed.

- if ’name’ can be parsed as URL, but contains
an invalid entry name, a ’BadParameter’
exception is thrown.

- if the replica is already in the set, this
method does nothing, and in particular MUST
NOT raise an ’AlreadyExists’ exception

- if the logical file was opened ReadOnly, a
’PermissionDenied’ exception is thrown.

- remove_location
Purpose: remove a replica location from the replica set
Format: remove_location (in saga::url name);

saga-core-wg@ogf.org 281

GFD-R-P.90 SAGA Replica Management May 12, 2009

Inputs: name: replica to remove from set
InOuts: -
Outputs: -
PreCond: -
PostCond: - name is not anymore in list of replica

locations for the logical file.
Perms: Write
Throws: NotImplemented

IncorrectURL
BadParameter
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - this method removes a given replica location
from the set of replicas associated with the
logical file.

- the implementation MAY choose to interpret the
replica locations associated with the logical
file. It MAY return an ’IncorrectURL’ error
indicating an invalid location if it is unable
or unwilling to handle that specific locations
scheme. The implementation documentation MUST
specify how valid replica locations are formed.

- if ’name’ can be parsed as URL, but contains
an invalid entry name, a ’BadParameter’
exception is thrown.

- if the location is not in the set of
replicas, a ’DoesNotExist’ exception is
thrown.

- if the set of locations is empty after this
operation, the logical file object is still
a valid object (see replicate() method
description).

- if the logical file was opened ReadOnly, a
’PermissionDenied’ exception is thrown.

- update_location
Purpose: change a replica location in replica set
Format: update_location (in saga::url name_old,

in saga::url name_new);
Inputs: name_old replica to be updated

saga-core-wg@ogf.org 282

GFD-R-P.90 SAGA Replica Management May 12, 2009

name_new update of replica
InOuts: -
Outputs: -
PreCond: -
PostCond: - name_old is not anymore in list of replica

locations for the logical file.
- name_new is in the list of replica locations
for the logical file.

Perms: Read
Write

Throws: NotImplemented
IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - this method removes a given replica location
from the set of locations associated with the
logical file, and adds a new location.

- the implementation MAY choose to interpret the
replica locations associated with the logical
file. It MAY return an ’IncorrectURL’ error
indicating an invalid location if it is unable
or unwilling to handle that specific locations
scheme. The implementation documentation MUST
specify how valid replica locations are formed.

- if ’name’ can be parsed as URL, but contains
an invalid entry name, a ’BadParameter’
exception is thrown.

- if the old replica location is not in the
set of locations, a ’DoesNotExist’ exception
is thrown.

- if the new replica location is already in the
set of locations, an ’AlreadyExists’ exception
is thrown.

- if the logical file was opened ReadOnly, an
’PermissionDenied’ exception is thrown.

- if the logical file was opened WriteOnly, an
’PermissionDenied’ exception is thrown.

saga-core-wg@ogf.org 283

GFD-R-P.90 SAGA Replica Management May 12, 2009

- list_locations
Purpose: list the locations in the location set
Format: list_locations (out array<saga::url> names);
Inputs: -
InOuts: -
Outputs: names: array of locations in set
PreCond: -
PostCond: -
Perms: Read
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - this method returns an array of urls
containing the complete set of locations
associated with the logical file.

- an empty array returned is not an error -
the logical file object is still a valid
object (see replicate() method description).

- if the logical file was opened WriteOnly, an
’PermissionDenied’ exception is thrown.

- replicate
Purpose: replicate a file from any of the known

replica locations to a new location, and, on
success, add the new replica location to the
set of associated replicas

Format: replicate (in saga::url name,
in int flags = None);

Inputs: name: location to replicate to
flags: flags defining the operation

modus
InOuts: -
Outputs: -
PreCond: -
PostCond: - an identical copy of one of the available

replicas exists at name.
- name is in the list of replica locations
for the logical file.

Perms: Read
Write

Throws: NotImplemented

saga-core-wg@ogf.org 284

GFD-R-P.90 SAGA Replica Management May 12, 2009

IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the method implies a two step operation:
1) create a new and comlete replica at the

given location, which then represents
a new replica location.

2) perform an add_location() for the new
replica location.

- all notes to the saga::ns_entry::copy() and
saga::locaical_file::add_location methods
apply.

- the method is not required to be atomic, but:
the implementation MUST be either
successfull in both steps, or throw an
exception indicating if both methods failed,
or if one of the methods succeeded.

- a replicate call on an instance with empty
location set raises an ’IncorrectState’
exception, with an descriptive error message.

- the default flags are ’None’ (0). The
interpretation of flags is as described for
the ns_entry::copy() method.

- The ’Recursive’ flag is not allowed, and
causes a ’BadParameter’ exception.

- if the logical file was opened ReadOnly, an
’PermissionDenied’ exception is thrown.

- if the logical file was opened WriteOnly, an
’PermissionDenied’ exception is thrown.

Class logical directory

This class represents a container for logical files in a logical file name space. It
allows traversal of the catalog’s name space, and the manipulation and creation
(open) of logical files in that name space.

saga-core-wg@ogf.org 285

GFD-R-P.90 SAGA Replica Management May 12, 2009

Constructor / Destructor:

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in session s,

in saga::url name,
in int flags = Read,
out logical_directory

obj)
Inputs: s: session to associate with

the object
name: location of directory
flags: mode for opening

InOuts: -
Outputs: obj: the newly created object
PreCond: -
PostCond: - the logical_directory is opened.

- ’Owner’ of target is the id of the context
use to perform the opereration, if the
logical_directory gets created.

Perms: Exec for parent directory.
Write for parent directory if Create is set.
Write for name if Write is set.
Read for name if Read is set.

Throws: NotImplemented
IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the semantics of the inherited constructors
and of the logical_directory::open_dir()
method apply.

- the default flags are ’Read’ (512).

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in logical_directory obj)

saga-core-wg@ogf.org 286

GFD-R-P.90 SAGA Replica Management May 12, 2009

Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - the logical_directory is closed.
Perms: -
Throws: -
Notes: - the semantics of the inherited destructors

apply.

- is_file
Alias: for is_entry of saga::ns_directory

- open_dir
Purpose: creates a new logical_directory instance
Format: open_dir (in saga::url name,

in int flags = Read,
out logical_directory dir);

Inputs: name: name of directory to open
flags: flags defining operation

modus
InOuts: -
Outputs: dir: opened directory instance
PreCond: -
PostCond: - the session of the returned instance is that of

the calling instance.
- ’Owner’ of name is the id of the context
used to perform the opereration if name gets
created.

Perms: Exec for name’s parent directory.
Write for name’s parent directory if Create is set.
Write for name if Write is set.
Read for name if Read is set.

Throws: NotImplemented
IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

saga-core-wg@ogf.org 287

GFD-R-P.90 SAGA Replica Management May 12, 2009

Notes: - all notes from the ns_directory::open_dir()
method apply.

- default flags are ’Read’ (512).

- open
Purpose: creates a new logical_file instance
Format: open (in saga::url name,

in int flags = Read,
out logical_file file);

Inputs: name: file to be opened
flags: flags defining operation

modus
InOuts: -
Outputs: file: opened file instance
PreCond: -
PostCond: - the session of the returned instance is that of

the calling instance.
- ’Owner’ of name is the id of the context
used to perform the opereration if name gets
created.

Perms: Exec for name’s parent directory.
Write for name’s parent directory if Create is set.
Write for name if Write is set.
Read for name if Read is set.

Throws: NotImplemented
IncorrectURL
BadParameter
AlreadyExists
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - all notes from the ns_directory::open() method
apply.

- the flag set ’Read | Write’ is equivalent to
the flag ’ReadWrite’.

- default flags are ’Read’ (512).

- find
Purpose: find entries in the current directory and below,

with matching names and matching meta data

saga-core-wg@ogf.org 288

GFD-R-P.90 SAGA Replica Management May 12, 2009

Format: find (in string name_pattern,
in array<string> attr_pattern,
in int flags = Recursive,
out array<saga::url> names);

Inputs: name_pattern: pattern for names of
entries to be found

attr_pattern: pattern for meta data
key/values of entries to be
found

flags: flags defining the operation
modus

InOuts: -
Outputs: names: array of names matching both

pattern
PreCond: -
PostCond: -
Perms: Read for cwd.

Query for entries specified by name_pattern.
Exec for parent directories of these entries.
Query for parent directories of these entries.
Read for directories specified by name_pattern.
Exec for directories specified by name_pattern.
Exec for parent directories of these directories.
Query for parent directories of these directories.

Throws: NotImplemented
BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - the description of find() in the Introduction
to this section applies.

- the semantics for both the find_attributes()
method in the saga::attributes interface and
for the find() method in the
saga::ns_directory class apply. On
conflicts, the find() semantic supersedes
the find_attributes() semantic. Only entries
matching all attribute patterns and the name
space pattern are returned.

- the default flags are ’Recursive’ (2).

saga-core-wg@ogf.org 289

GFD-R-P.90 SAGA Replica Management May 12, 2009

4.4.4 Examples

Code Example

1 // c++ example

2 int main ()

3 {

4 saga::logical_file lf ("lfn://remote.catalog.net/tmp/file1");

5

6 lf.replicate ("gsiftp://localhost//tmp/file.rep");

7 saga::file f ("gsiftp://localhost//tmp/file.rep");

8

9 std::cout << "size of local replica: "

10 << f.get_size ()

11 << std::endl;

12

13 return (0);

14 }

saga-core-wg@ogf.org 290

GFD-R-P.90 SAGA Streams May 12, 2009

4.5 SAGA Streams

A number of use cases involve launching remotely located components in or-
der to create distributed applications. These use cases require simple remote
socket connections to be established between these components and their control
interfaces.

The target of the streams API is to establish the simplest possible authenticated
socket connection with hooks to support application level authorization. The
stream API has the following characteristics

1. It is not performance oriented: If performance is required, then it is better
to program directly against the APIs of existing performance oriented
protocols like GridFTP or XIO. The API design should allow, however,
for high performance implementations.

2. It is focused on TCP/IP socket connections. There has been no attempt
to generalize this to arbitrary streaming interfaces (although it does not
prevent such things as connectionless protocols from being supported).

3. It does not attempt to create a programming paradigm that diverges very
far from baseline BSD sockets, Winsock, or Java Sockets.

This API greatly reduces the complexity of establishing authenticated socket
connections in order to communicate with remotely located components. It
however, provides very limited functionality and is thus suitable for applications
that do not have very sophisticated requirements (as per 80-20 rule). It is
envisaged that as applications become progressively more sophisticated, they
will gradually move to more sophisticated, native APIs in order to support
those needs.

Several SAGA use cases require a more abstract communication API, which
exchanges opaque messages instead of byte streams. That behaviour can be
modelled on top of this stream API, but future versions of the SAGA API may
introduce higher level communication APIs.

4.5.1 Endpoint URLs

The SAGA stream API uses URLs to specify connection endpoints. These URLs
are supposed to allow SAGA implementations to be interoperable. For example,
the URL

tcp://remote.host.net:1234/

saga-core-wg@ogf.org 291

GFD-R-P.90 SAGA Streams May 12, 2009

is supposed to signal that a standard tcp connection can be established with
host remote.host.net on port 1234. No matter what the specified URL scheme
is, the SAGA stream API impementation MUST have the same semantics on
API level, i.e. behave like a reliable byte-oriented data stream.

4.5.2 Endpoint Permissions

The SAGA API allows for application level authorization of stream commu-
nications: an application is able to set permissions on saga::stream server
and saga::stream instances. These permissions control what remote party can
perform what action on those streams, e.g. control what remote parties are able
to connect to an endpoint, or to write to them etc.

Not all implementations will be able to fully implement that security model –
the implementation MUST carefully document which permissions are supported,
and which are not.

4.5.3 Specification

package saga.stream
{
enum state
{
New = 1
Open = 2,
Closed = 3,
Dropped = 4,
Error = 5

}

enum activity
{
Read = 1,
Write = 2,
Exception = 4

}

class stream_service : implements saga::object
implements saga::async
implements saga::monitorable
implements saga::permissions

saga-core-wg@ogf.org 292

GFD-R-P.90 SAGA Streams May 12, 2009

// from object saga::error_handler
{
CONSTRUCTOR (in session s,

in saga::url url,
out stream_service obj);

DESTRUCTOR (in stream_service obj);

get_url (out saga::url url);

serve (in float timeout = -1.0,
out stream stream);

close (in float timeout = 0.0);

// Metrics:
// name: stream_server.client_connect
// desc: fires if a client connects
// mode: ReadOnly
// unit: 1
// type: Trigger
// value: 1

}

class stream : extends saga::object
implements saga::async
implements saga::attributes
implements saga::monitorable

// from object saga::error_handler
{
// constructor / destructor
CONSTRUCTOR (in session s,

in saga::url url = "",
out stream obj);

DESTRUCTOR (in stream obj);

// inspection methods
get_url (out saga::url url);
get_context (out context ctx);

// management methods
connect (void);
wait (in int what,

in float timeout = -1.0,
out int cause);

close (in float timeout = 0.0);

saga-core-wg@ogf.org 293

GFD-R-P.90 SAGA Streams May 12, 2009

// I/O methods
read (inout buffer buf,

in int len_in = -1,
out int len_out);

write (in buffer buf,
in int len_in = -1,
out int len_out);

// Attributes:
//
// name: Bufsize
// desc: determines the size of the send buffer,
// in bytes
// mode: ReadWrite, optional
// type: Int
// value: system dependend
// notes: - the implementation MUST document the
// default value, and its meaning (e.g. on what
// layer that buffer is maintained, or if it
// disables zero copy).
//
// name: Timeout
// desc: determines the amount of idle time
// before dropping the line, in seconds
// mode: ReadWrite, optional
// type: Int
// value: system dependend
// notes: - the implementation MUST document the
// default value
// - if this attribute is supported, the
// connection MUST be closed by the
// implementation if for that many seconds
// nothing has been read from or written to
// the stream.
//
// name: Blocking
// desc: determines if read/writes are blocking
// or not
// mode: ReadWrite, optional
// type: Bool
// value: True
// notes: - if the attribute is not supported, the
// implementation MUST be blocking
// - if the attribute is set to ’True’, a read or
// write operation MAY return immediately if

saga-core-wg@ogf.org 294

GFD-R-P.90 SAGA Streams May 12, 2009

// no data can be read or written - that does
// not constitute an error (see EAGAIN in
// POSIX).
//
// name: Compression
// desc: determines if data are compressed
// before/after transfer
// mode: ReadWrite, optional
// type: Bool
// value: schema dependent
// notes: - the implementation MUST document the
// default values for the available schemas
//
// name: Nodelay
// desc: determines if packets are sent
// immediately, i.e. without delay
// mode: ReadWrite, optional
// type: Bool
// value: True
// notes: - similar to the TCP_NODELAY option
//
// name: Reliable
// desc: determines if all sent data MUST arrive
// mode: ReadWrite, optional
// type: Bool
// value: True
// notes: - if the attribute is not supported, the
// implementation MUST be reliable

// Metrics:
// name: stream.state
// desc: fires if the state of the stream changes,
// and has the value of the new state
// enum
// mode: ReadOnly
// unit: 1
// type: Enum
// value: New
//
// name: stream.read
// desc: fires if a stream gets readable
// mode: ReadOnly
// unit: 1
// type: Trigger
// value: 1

saga-core-wg@ogf.org 295

GFD-R-P.90 SAGA Streams May 12, 2009

// notes: - a stream is considered readable if a
// subsequent read() can sucessfully read
// 1 or more bytes of data.
//
// name: stream.write
// desc: fires if a stream gets writable
// mode: ReadOnly
// unit: 1
// type: Trigger
// value: 1
// notes: - a stream is considered writable if a
// subsequent write() can sucessfully write
// 1 or more bytes of data.
//
// name: stream.exception
// desc: fires if a stream has an error condition
// mode: ReadOnly
// unit: 1
// type: Trigger
// value: 1
// notes: -
//
// name: stream.dropped
// desc: fires if the stream gets dropped by the
// remote party
// mode: ReadOnly
// unit: 1
// type: Trigger
// value: 1

}
}

4.5.4 Specification Details

Enum state

A SAGA stream can be in several states – the complete state diagram is shown
in Figure 64.5.4. The stream states are:

New

saga-core-wg@ogf.org 296

GFD-R-P.90 SAGA Streams May 12, 2009

intern

CONSTRUCTOR()

connect()

close()

intern

connect()
failed

Final State

Initial State

success

wait()

stream_server

Closed Dropped

Open

New

Error

Figure 6: The SAGA stream state model (See Figure 1 for a legend).

A newly constructed stream enters the initial New state. It is not con-
nected yet, and no I/O operations can be performed on it. connect()
must be called to advance the state to Open (on success) or Error (on
failure).

Open

The stream is connected to the remote endpoint, and I/O operations can
be called. If any error eccurs on the stream, it will move into the Error
state. If the remote party closes the connection, the stream will move
into the Dropped state. If close() is called on the stream, the stream
will enter the Closed state.

Closed

The close() method was called on the stream – I/O is no longer possi-
ble. This is a final state.

Dropped

The remote party closed the connection – I/O is no longer possible. This
is a final state.

saga-core-wg@ogf.org 297

GFD-R-P.90 SAGA Streams May 12, 2009

Error

An error occured on the stream – I/O is no longer possible. This is a
final state. The exact reason for reaching this state MUST be available
through the error_handler interface.

All method calls, apart from the DESTRUCTOR, will cause an IncorrectState
exception if the stream is in a final state.

Enum activity type

The SAGA stream API allows for event driven communication. A stream can
flag activities, i.e. Read, Write and Exception, and the application can react
on these activities. It is possible to poll for these events (using wait() with a
potential timeout), or to get asynchronous notification of these events, by using
the respective metrics.

Read

Data are available on the stream, and a subsequent read() will succeed.

Write

The stream is accepting data, and a subsequent write() will succeed.

Exception

An error occured on the stream, and a following I/O operation may fail.

Class stream service

The stream_service object establishes a listening/server object that waits for
client connections. It can only be used as a factory for client sockets. It doesn’t
do any read/write I/O.

- CONSTRUCTOR
Purpose: create a new stream_service object
Format: CONSTRUCTOR (in session s,

in saga::url url = "",
out stream_service obj);

Inputs: s: session to be used for
object creation

url: channel name or url,
defines the source side
binding for the stream

saga-core-wg@ogf.org 298

GFD-R-P.90 SAGA Streams May 12, 2009

InOuts: -
Outputs: obj: new stream_service object
PreCond: -
PostCond: - stream_service can wait for incoming

connections.
- ’Owner’ of name is the id of the context
used to create the stream_service.

- the stream_server has ’Exec’, ’Query’, ’Read’
and ’Write’ permissions for ’*’.

Perms: -
Throws: NotImplemented

IncorrectURL
BadParameter
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the given url is an empty string (the
default), the implementation will choose an
appropriate default value.

- the implementation MUST ensure that the given
URL is usable, and a later call to ’serve’
will not fail because of the information given
by the URL - otherwise, a ’BadParameter’
exception MUST be thrown.

- DESTRUCTOR
Purpose: Destructor for stream_service object.
Format: DESTRUCTOR (in stream_service obj)
Inputs: obj: object to be destroyed
InOuts: -
Outputs: -
PreCond: -
PostCond: - the stream_service is closed.
Perms: -
Throws: -
Notes: - if the instance was not closed before, the

destructor performs a close() on the instance,
and all notes to close() apply.

// inspection
- get_url
Purpose: get URL to be used to connect to this server
Format: get_url (out saga::url url);

saga-core-wg@ogf.org 299

GFD-R-P.90 SAGA Streams May 12, 2009

Inputs: -
InOuts: -
Outputs: url: the URL of the connection.
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - returns a URL which can be passed to
the stream constructor to create a connection
to this stream_service.

// stream management
- serve
Purpose: wait for incoming client connections
Format: serve (in float timeout,

out stream client);
Inputs: timeout: number of seconds to wait

for a client
InOuts: -
Outputs: client: new Connected stream object
PreCond: -
PostCond: - the returned client is in ’Open’ state.

- the session of the returned client is that of
the stream_server.

Perms: - Exec.
- Exec for the connecting remote party.

Throws: NotImplemented
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
NoSuccess
Timeout

Notes: - if successful, it returns a new stream object
that is connected to the client.

- if no client connects within the specified
timeout, a ’Timeout’ exception is thrown.

- if connection setup failed (not on timeout!),
the returned client is in the ’Error’ state.

saga-core-wg@ogf.org 300

GFD-R-P.90 SAGA Streams May 12, 2009

Its error_handler interface should give
detailed information about the reason.

- for timeout semantics, see Section 2.

- close
Purpose: closes a stream service
Format: close (in float timeout)
Inputs: timeout seconds to wait
InOuts: -
Outputs: -
PreCond: -
PostCond: - no clients are accepted anymore.

- no callbacks registered for the
’ClientConnect’ metric are invoked.

Perms: -
Throws: NotImplemented

NoSuccess
Notes: - any subsequent method call on the object

MUST raise an ’IncorrectState’ exception
(apart from DESTRUCTOR and close()).

- if close() is implicitely called in the
DESTRUCTOR, it will never throw an exception.

- close() can be called multiple times, with no
side effects.

- for resource deallocation semantics, see
Section 2.

- for timeout semantics, see Section 2.

Class stream

This is the object that encapsulates all client stream objects.

Constructor / Destructor:

- CONSTRUCTOR
Purpose: Constructor, initializes a client stream,

for later connection to a server.
Format: CONSTRUCTOR (in session s,

in saga::url url,

saga-core-wg@ogf.org 301

GFD-R-P.90 SAGA Streams May 12, 2009

out stream obj);
Inputs: s: saga session handle

url: server location as URL
InOuts: -
Outputs: obj: new, unconnected stream

instance
PreCond: -
PostCond: - the state of the socket is ’New’.
Perms: - Query for the stream_service represented by

url.
Throws: NotImplemented

IncorrectURL
BadParameter
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - server location and possibly protocol are
described by the input URL - see description
above.

- the ’url’ can be empty (which is the default).
A stream so constructed is only to be used
as parameter to an asynchronous
stream_server::serve() call. For such a
stream, a later call to connect() will fail.

- the implementation MUST ensure that the
information given in the URL are usable -
otherwise a ’BadParameter’ exception MUST be
thrown.

- the socket is only connected after the
connect() method is called.

- DESTRUCTOR
Purpose: destroy a stream object
Format: DESTRUCTOR (in stream obj)
Inputs: obj: stream to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - the socket is closed.
Perms: -
Throws: -
Notes: - if the instance was not closed before, the

destructor performs a close() on the instance,

saga-core-wg@ogf.org 302

GFD-R-P.90 SAGA Streams May 12, 2009

and all notes to close() apply.

Inspection methods:

- get_url
Purpose: get URL used for creating the stream
Format: get_url (out saga::url url);
Inputs: -
InOuts: -
Outputs: url: the URL of the connection.
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - returns a URL which can be passed to a
stream constructor to create another
connection to the same stream_service.

- the returned url may be empty, indicating that
this instance has been created with an empty
url as parameter to the stream CONSTRUCTOR().

- get_context
Purpose: return remote authorization info
Format: get_context (out context ctx);
Inputs: -
InOuts: -
Outputs: ctx: remote context
PreCond: - the stream is, or has been, in the ’Open’

state.
PostCond: - the returned context is deep copied, and does

not share state with any other object.
Perms: -
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed

saga-core-wg@ogf.org 303

GFD-R-P.90 SAGA Streams May 12, 2009

Timeout
NoSuccess

Notes: - the context returned contains the security
information from the REMOTE party, and can be
used for authorization.

- if the stream is in a final state, but has
been in ’Open’ state before, the returned
context represents the remote party the stream
has been connected to while it was in ’Open’
state.

- if the stream is not in ’Open’ state, and is
not in a final state after having been in
’Open’ state, an ’IncorrectState’ exception is
thrown.

- if no security information are available, the
returned context has the type ’Unknown’ and no
attributes are attached.

- the returned context MUST be authenticated, or
must be of type ’Unknown’ as described above.

Management methods:

- connect
Purpose: Establishes a connection to the target defined

during the construction of the stream.
Format: connect (void);
Inputs: -
InOuts: -
Outputs: -
PreCond: - the stream is in ’New’ state.
PostCond: - the stream is in ’Open’ state.
Perms: Exec for the stream_service represented by the

url used for creating this stream instance.
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - on failure, the stream state is changed to
’Error’

- if the stream instance is not in ’New’ state,
an ’IncorrectState’ exception is thrown.

saga-core-wg@ogf.org 304

GFD-R-P.90 SAGA Streams May 12, 2009

- close
Purpose: closes an active connection
Format: close (in float timeout)
Inputs: timeout seconds to wait
InOuts: -
Outputs: -
PreCond: -
PostCond: - stream is in ’Closed’ state
Perms: -
Throws: NotImplemented

IncorrectState
NoSuccess

Notes: - any subsequent method call on the object
MUST raise an ’IncorrectState’ exception
(apart from DESTRUCTOR and close()).

- if close() is implicitely called in the
DESTRUCTOR, it will never throw an exception.

- close() can be called multiple times, with no
side effects.

- for resource deallocation semantics, see
Section 2.

- for timeout semantics, see Section 2.

Stream I/O methods:

- read
Purpose: Read a data buffer from stream.
Format: read (inout buffer buf,

in int len_in = -1,
out int len_out);

Inputs: len_in: Maximum number of bytes
that can be copied into
the buffer.

InOuts: buf: buffer to store read data
into

Outputs: len_out: number of bytes read, if
successful.

PreCond: - the stream is in ’Open’ state.
PostCond: - data from the stream are available in the

buffer.
Perms: Read for the stream_service represented by the

url used for creating this stream instance.

saga-core-wg@ogf.org 305

GFD-R-P.90 SAGA Streams May 12, 2009

Throws: NotImplemented
BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the stream is blocking, the call waits
until data become available.

- if the stream is non-blocking, the call
returns immediately, even if no data are
available -- that is not an error condition.

- the actually number of bytes read into buffer
is returned in len_out. It is not an error
to read less bytes than requested, or in fact
zero bytes.

- errors are indicated by returning negative
values for len_out, which correspond to
negatives of the respective ERRNO error code

- the given buffer must be large enough to
store up to len_in bytes, or managed by the
implementation - otherwise a ’BadParameter’
exception is thrown.

- the notes about memory management from the
buffer class apply.

- if len_in is smaller than 0, or not given,
the buffer size is used for len_in.
If that is also not available, a
’BadParameter’ exception is thrown.

- if the stream is not in ’Open’ state, an
’IncorrectState’ exception is thrown.

- similar to read (2) as specified by POSIX

- write
Purpose: Write a data buffer to stream.
Format: write (in buffer buf,

in int len_in = -1,
out int len_out);

Inputs: len_in: number of bytes of data in
the buffer

buffer: buffer containing data
that will be sent out via
socket

InOuts: -

saga-core-wg@ogf.org 306

GFD-R-P.90 SAGA Streams May 12, 2009

Outputs: len_out: bytes written if successful
PreCond: - the stream is in ’Open’ state.
PostCond: - the buffer data are written to the stream.
Perms: Write for the stream_service represented by the

url used for creating this stream instance.
Throws: NotImplemented

BadParameter
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the stream is blocking, the call waits
until the data can be written.

- if the stream is non-blocking, the call
returns immediately, even if no data are
written -- that is not an error condition.

- it is not an error to write less than len_in
bytes.

- errors are indicated by returning negative
values for len_out, which correspond to
negatives of the respective ERRNO error code

- the given buffer must be large enough to
store up to len_in bytes, or managed by the
implementation - otherwise a ’BadParameter’
exception is thrown.

- the notes about memory management from the
buffer class apply.

- if len_in is smaller than 0, or not given,
the buffer size is used for len_in.
If that is also not available, a
’BadParameter’ exception is thrown.

- if the stream is not in ’Open’ state, an
’IncorrectState’ exception is thrown.

- similar to write (2) as specified by POSIX

- wait
Purpose: check if stream is ready for reading/writing, or

if it has entered an error state.
Format: wait (in int what,

in float timeout,
out int cause);

Inputs: what: activity types to wait for
timeout: number of seconds to wait

saga-core-wg@ogf.org 307

GFD-R-P.90 SAGA Streams May 12, 2009

InOuts: -
Outputs: cause: activity type causing the

call to return
PreCond: - the stream is in ’Open’ state.
PostCond: - the stream can be read from, or written to, or

it is in ’Error’ state.
Perms: -
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
NoSuccess

Notes: - wait will only check on the conditions
specified by ’what’

- ’what’ is an integer representing
OR’ed ’Read’, ’Write’, or ’Exception’ flags.

- ’cause’ describes the availability of the
socket (eg. OR’ed ’Read’, ’Write’, or
’Exception’)

- for timeout semantics, see Section 2.
- if the stream is not in ’Open’ state, an
’IncorrectState’ exception is thrown.

4.5.5 Examples

Code Example

1 Sample SSL/Secure Client:

2 -------------------------

3

4 Opens a stream connection using native security: the

5 context is passed in implicitly via the default SAGA

6 session’s contexts.

7

8 // C++/JAVA Style

9 ssize_t recvlen;

10 saga::buffer b;

11 saga::stream s ("localhost:5000");

12

13 s.connect ();

14 s.write (saga::buffer ("Hello World!"));

15

16 // blocking read, read up to 128 bytes

17 recvlen = s.read (b, 128);

18

saga-core-wg@ogf.org 308

GFD-R-P.90 SAGA Streams May 12, 2009

19

20 /* C Style */

21 ssize_t recvlen;

22

23 SAGA_stream sock = SAGA_Stream_open ("localhost:5000");

24 SAGA_buffer b_in = SAGA_Buffer_create ("Hello World");

25 SAGA_buffer b_out = SAGA_Buffer_create ("Hello World");

26

27 SAGA_Stream_connect (sock);

28 SAGA_Stream_write (sock, b_in);

29

30 /* blocking read, read up to 128 bytes */

31 recvlen = SAGA_Stream_read (sock, b_ou, 128);

32

33

34 c Fortran Style */

35 INTEGER err,SAGAStrRead,SAGAStrWrite,err

36 INTEGER*8 SAGAStrOpen,streamhandle

37 CHARACTER buffer(128)

38 SAGAStrOpen("localhost:5000",streamhandle)

39 call SAGAStrConnect(streamhandle)

40 err = SAGAStrWrite(streamhandle,"localhost:5000",12)

41 err = SAGAStrRead(streamhandle,buffer,128)

42

43

44 Sample Secure Server:

45 ---------------------

46

47 Once a connection is made, the server can use information

48 about the authenticated client to make an authorization

49 decision

50

51 // c++ example

52 saga::stream_service server ("tcp://localhost/5000");

53

54 saga::stream client;

55

56 // now wait for a connection

57 while (saga::stream::Open != client.get_state ())

58 {

59 // wait forever for connection

60 client = server.serve ();

61

62 // get remote security details

63 saga::context ctx = client.get_context ();

64

65 // check if context type is X509, and if DN is the

66 // authorized one

67 if (ctx.type () == "X509" &&

68 ctx.get_attribute ("DN") == some_auth_dn)

saga-core-wg@ogf.org 309

GFD-R-P.90 SAGA Streams May 12, 2009

69 {

70 // allowed - keep open and leave loop

71 client.write (saga::buffer ("Hello!"));

72 }

73 else

74 {

75 client.close (); // not allowed

76 }

77 }

78

79 // start activity on client socket...

80

81

82 Example for async stream server

83 -------------------------------

84

85 // c++ example

86 class my_cb : public saga::callback

87 {

88 privat:

89 saga::stream_service ss;

90 saga::stream s;

91

92 public:

93

94 my_cb (saga::stream_service ss_,

95 saga::stream s_)

96 {

97 ss = ss_;

98 s = s_;

99 }

100

101 bool cb (saga::monitorable mt,

102 saga::metric m,

103 saga::context c)

104 {

105 s = ss.serve ();

106 return (false); // want to be called only once

107 }

108 }

109

110 int main ()

111 {

112 saga::stream_service ss;

113 saga::stream s;

114 my_cb cb (ss, s);

115

116 ss.add_callback ("client_connect", cb);

117

118 while (true)

saga-core-wg@ogf.org 310

GFD-R-P.90 SAGA Streams May 12, 2009

119 {

120 if (s.state != saga::stream::Open)

121 {

122 // no client, yet

123 sleep (1);

124 }

125 else

126 {

127 // handle open socket

128 s.write ("Hello Client\r\n", 14);

129 s.close ();

130

131 // restart listening

132 ss.add_callback ("client_connect", cb);

133 }

134 }

135

136 return (-1); // unreachable

137 }

saga-core-wg@ogf.org 311

GFD-R-P.90 SAGA Remote Procedure Call May 12, 2009

4.6 SAGA Remote Procedure Call

GridRPC is one of the few high level APIs that have been specified by the
GGF [19]. Thus including the GridRPC specification in the SAGA API bene-
fits both SAGA and the GridRPC effort: SAGA becomes more complete and
provides a better coverage of its use cases with a single Look-&-Feel, whilst
GridRPC gets embedded into a set of other tools of similar scope, which opens
it to a potentially wider user community, and ensures its further development.

Semantically, the methods defined in the GridRPC specification, as described in
GFD.52 [19], map exactly with the RPC package of the SAGA API as described
here. In essence, the GridRPC API has been imported into the SAGA RPC
package, and has been equipped with the Look-&-Feel, error conventions, task
model, etc. of the SAGA API.

The rpc class constructor initialises the remote function handle. This process
may involve connection setup, service discovery, etc. The rpc class further
offers one method ’call’, which invokes the remote procedure, and returns the
respective return data and values. The asynchronous call versions described in
the GridRPC specification are realised by the SAGA task model, and are not
represented as separate calls here.

In the constructor, the remote procedure to be invoked is specified by a URL,
with the syntax:

gridrpc://server.net:1234/my_function

with the elements responding to:

gridrpc – scheme – identifying a grid rpc operation
server.net – server – server host serving the rpc call
1234 – port – contact point for the server
my_function – name – name of the remote method to invoke

All elements can be empty, which allows the implementation to fall back to a
default remote method to invoke.

The argument and return value handling is very basic, and reflects the tradi-
tional scheme for remote procedure calls, that is, an array of structures acts as
variable parameter vector. For each element of the vector, the parameter struct
describes its data buffer, the size of that buffer, and its input/output mode.

The mode value has to be initialized for each parameter, and size and buffer
values have to be initialized for each In and InOut struct. For Out parameters,
size may have the value 0 in which case the buffer must be un-allocated, and

saga-core-wg@ogf.org 312

GFD-R-P.90 SAGA Remote Procedure Call May 12, 2009

is to be created (e.g. allocated) by the SAGA implementation upon arrival of
the result data, with a size sufficient to hold all result data. The size value is
to be set by the implementation to the allocated buffer size. SAGA language
bindings MUST prescribe the responsibilities for releasing the allocated buffer,
according to usual procedures in the respective languages.

When an Out or InOut struct uses a pre-allocated buffer, any data exceeding the
buffer size are discarded. The application is responsible for specifying correct
buffer sizes for pre-allocated buffers; otherwise the behaviour is undefined.

This argument handling scheme allows efficient (copy-free) passing of parame-
ters. The parameter vector must be passed by reference because it is specified
as inout in SIDL. (See also Section 2.2.)

4.6.1 RPC Permissions

The SAGA API allows for application level authorization of RPC calls an appli-
cation is able to set permissions on saga::rpc instances. Not all implementa-
tions will be able to fully implement that security model – the implementation
MUST carefully document which permissions are supported, and which are not.

4.6.2 Specification

package saga.rpc
{
enum io_mode
{
In = 1, // input parameter
Out = 2, // output parameter
InOut = 3 // input and output parameter

}

class parameter : extends saga::buffer
// from buffer saga::object
// from object saga::error_handler

{
CONSTRUCTOR (in array<byte> data = "",

in int size = -1,
in io_mode mode = In,
out buffer obj);

set_io_mode (in io_mode mode);

saga-core-wg@ogf.org 313

GFD-R-P.90 SAGA Remote Procedure Call May 12, 2009

get_io_mode (out io_mode mode);
}

class rpc : implements saga::object
implements saga::async
implements saga::permissions

// from object saga::error_handler
{
CONSTRUCTOR (in session s,

in saga::url url = "",
out rpc obj);

DESTRUCTOR (in rpc obj);

// rpc method invocation
call (inout array<parameter> parameters);

// handle management
close (in float timeout = 0.0);

}
}

4.6.3 Specification Details

Enum io mode

The io mode enum specifies the modus of the rpc::parameter instances:

In

The parameter is an input parameter: its initial value will be evaluated,
and its data buffer will not be changed during the invocation of call().

Out

The parameter is an output parameter: its initial value will not be eval-
uated, and its data buffer will likely be changed during the invocation
of call().

InOut

The parameter is input and output parameter: its initial value will not
evaluated, and its data buffer will likely be changed during the invocation
of call().

saga-core-wg@ogf.org 314

GFD-R-P.90 SAGA Remote Procedure Call May 12, 2009

Class parameter

The parameter class inherits the saga::buffer class, and adds one additional
state attribute: io mode, which is read-only. With that addition, the new class
can conveniently be used to define input, inout and output parameters for RPC
calls.

- CONSTRUCTOR
Purpose: create an parameter instance
Format: CONSTRUCTOR (in array<byte> data = "",

in int size = -1,
in io_mode mode = In,
out parameter obj);

Inputs: type: data to be used
size: size of data to be used
io_mode: type of parameter

InOuts: -
Outputs: parameter: the newly created parameter
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

BadParameter
NoSuccess

Notes: - all notes from the buffer CONSTRUCTOR apply.

- DESTRUCTOR
Purpose: destroy an parameter instance
Format: DESTRUCTOR (in parameter obj);
Inputs: obj: the parameter to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: - all notes from the buffer DESTRUCTOR apply.

- set_io_mode
Purpose: set io_mode
Format: set_io_mode (in io_mode mode);
Inputs: mode: value for io mode

saga-core-wg@ogf.org 315

GFD-R-P.90 SAGA Remote Procedure Call May 12, 2009

InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

- get_io_mode
Purpose: retrieve the current value for io mode
Format: get_io_mode (out io_mode mode);
Inputs: -
InOuts: -
Outputs: mode: value of io mode
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

Class rpc

This class represents a remote function handle, which can be called (repeatedly),
and returns the result of the respective remote procedure invocation.

- CONSTRUCTOR
Purpose: initializes a remote function handle
Format: CONSTRUCTOR (in session s,

in saga::url url = "",
out rpc obj);

Inputs: s: saga session to use
url: remote method to

initialize
InOuts: -
Outputs: obj the newly created object
PreCond: -
PostCond: - the instance is open.
Perms: Query
Throws: NotImplemented

IncorrectURL
BadParameter
DoesNotExist

saga-core-wg@ogf.org 316

GFD-R-P.90 SAGA Remote Procedure Call May 12, 2009

PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if url is not given, or is empty (the
default), the implementation will choose an
appropriate default value.

- according to the GridRPC specification, the
constructor may or may not contact the RPC
server; absence of an exception does not imply
that following RPC calls will succeed, or that
a remote function handle is in fact available.

- the following mapping MUST be applied from
GridRPC errors to SAGA exceptions:
GRPC_SERVER_NOT_FOUND : BadParameter
GRPC_FUNCTION_NOT_FOUND : DoesNotExist
GRPC_RPC_REFUSED : AuthorizationFailed
GRPC_OTHER_ERROR_CODE : NoSuccess

- non-GridRPC based implementations SHOULD ensure
upon object construction that the remote handle
is available, for consistency with the
semantics on other SAGA object constructors.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in rpc obj)
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - the instance is closed.
Perms: -
Throws: -
Notes: - if the instance was not closed before, the

destructor performs a close() on the instance,
and all notes to close() apply.

- call
Purpose: call the remote procedure
Format: call (inout array<parameter> param);
Inputs: -
In/Out: param: argument/result values for call
InOuts: -
Outputs: -

saga-core-wg@ogf.org 317

GFD-R-P.90 SAGA Remote Procedure Call May 12, 2009

PreCond: - the instance is open.
PostCond: - the instance is avaiable for another call()

invocation, even if the present call did not
yet finish, in the asynchronous case.

Perms: Exec
Throws: NotImplemented

IncorrectURL
BadParameter
DoesNotExist
IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - according to the GridRPC specification, the
RPC server might not be contacted before
invoking call(). For this reason, all notes to
the object constructor apply to the call()
method as well.

- if an implementation finds inconsistent
information in the parameter vector, a
’BadParameter’ exception is thrown.

- arbitrary backend failures (e.g. semantic
failures in the provided parameter stack, or
any errors occuring during the execution of
the remote procedure) MUST be mapped to a
’NoSuccess’ exception, with a descriptive
error message. That way, error semantics of
the SAGA implementation and of the RPC
function implementation are strictly
distinguished.

- the notes about memory management from the
buffer class apply.

- close
Purpose: closes the rpc handle instance
Format: close (in float timeout = 0.0);
Inputs: timeout seconds to wait
InOuts: -
Outputs: -
PreCond: -
PostCond: - the instance is closed.
Perms: -
Throws: NotImplemented

saga-core-wg@ogf.org 318

GFD-R-P.90 SAGA Remote Procedure Call May 12, 2009

NoSuccess
Notes: - any subsequent method call on the object

MUST raise an ’IncorrectState’ exception
(apart from DESTRUCTOR and close()).

- if close() is implicitely called in the
DESTRUCTOR, it will never throw an exception.

- close() can be called multiple times, with no
side effects.

- for resource deallocation semantics, see
Section 2.

- for timeout semantics, see Section 2.

4.6.4 Examples

Code Example

1 // c++ example

2 // call a remote matrix multiplication A = A * B

3 try

4 {

5 rpc rpc ("gridrpc://rpc.matrix.net/matrix-mult");

6

7 std::vector <saga::rpc::parameter> params (2);

8

9 params[0].set_data (A); // ptr to matrix A

10 params[0].set_io_mode (saga::rpc::InOut);

11

12 params[1].set_data (B); // ptr to matrix B

13 params[1].set_io_mode (saga::rpc::In);

14

15 rpc.call (params);

16

17 // A now contains the result

18 }

19 catch (const saga::exception & e)

20 {

21 std::err << "SAGA error: "

22 << e.get_message ()

23 << std::endl;

24 }

25

26 +--+

27

28 // c++ example

29 // call a remote matrix multiplication C = A * B

30 try

31 {

saga-core-wg@ogf.org 319

GFD-R-P.90 SAGA Remote Procedure Call May 12, 2009

32 rpc rpc ("gridrpc://rpc.matrix.net//matrix-mult-2");

33

34 std::vector <saga::rpc::parameter> params (3);

35

36 params[0].set_data (NULL); // buffer will be created

37 params[0].set_io_mode (saga::rpc::Out);

38

39 params[1].set_data (A); // ptr to matrix A

40 params[1].set_io_mode (saga::rpc::In);

41

42 params[2].set_data (B); // ptr to matrix B

43 params[2].set_io_mode (saga::rpc::In);

44

45 rpc.call (params);

46

47 // params[0].get_data () now contains the result

48 }

49 catch (const saga::exception & e)

50 {

51 std::err << "SAGA error: "

52 << e.get_message ()

53 << std::endl;

54 }

55

56 +--+

57

58 // c++ example

59 // asynchronous version of A = A * B

60 try

61 {

62 rpc rpc ("gridrpc://rpc.matrix.net/matrix-mult");

63

64 std::vector <saga::rpc::parameter> params (2);

65

66 params[0].set_data (A); // ptr to matrix A

67 params[0].set_io_mode (saga::rpc::InOut);

68

69 params[1].set_data (B); // ptr to matrix B

70 params[1].set_io_mode (saga::rpc::In);

71

72 saga::task t = rpc.call <saga::task::ASync> (params);

73

74 // do something else

75

76 t.wait ();

77 // A now contains the result

78 }

79 catch (const saga::exception & e)

80 {

81 std::err << "SAGA error: "

saga-core-wg@ogf.org 320

GFD-R-P.90 SAGA Remote Procedure Call May 12, 2009

82 << e.get_message ()

83 << std::endl;

84 }

85

86 +--+

87

88 // c++ example

89 // parameter sweep example from

90 // http://ninf.apgrid.org/documents/ng4-manual/examples.html

91 //

92 // Monte Carlo computation of PI

93 //

94 try

95 {

96 saga::url uri[NUM_HOSTS]; // initialize...

97 long times, count[NUM_HOSTS], sum;

98

99 std::vector <saga::rpc> servers;

100

101 // create the rpc handles for all URIs

102 for (int i = 0; i < NUM_HOSTS; ++i)

103 {

104 servers.push_back (saga::rpc (uri[i]));

105 }

106

107 // create persistent storage for tasks and parameter structs

108 saga::task_container tc;

109 std::vector <std::vector <saga:parameter> > params;

110

111 // fill parameter structs and start async rpc calls

112 for (int i = 0; i < NUM_HOSTS; ++i)

113 {

114 std::vector <saga::rpc::parameter> param (3);

115

116 param[0].set_data (i); // use as random seed

117 param[0].set_io_mode (saga::rpc::In);

118

119 param[1].set_data (times);

120 param[1].set_io_mode (saga::rpc::In);

121

122 param[2].set_data (count[i]);

123 param[2].set_io_mode (saga::rpc::Out);

124

125 // start the async calls

126 saga::task t = servers[i].call <saga::task::Async> (param);

127

128 // save the task;

129 tc.add (t[i]);

130

131 // save the parameter structs

saga-core-wg@ogf.org 321

GFD-R-P.90 SAGA Remote Procedure Call May 12, 2009

132 params.push_back (param);

133 }

134

135 // wait for all async calls to finish

136 tc.wait (saga::task::All);

137

138 // compute and print pi

139 for (int i = 0; i < NUM_HOSTS; ++i)

140 {

141 sum += count[i];

142 }

143

144 std::out << "PI = "

145 << 4.0 * (sum / ((double) times * NUM_HOSTS))

146 << std::endl;

147 }

148 catch (const saga::exception & e)

149 {

150 std::err << "SAGA error: "

151 << e.get_message ()

152 << std::endl;

153 }

saga-core-wg@ogf.org 322

GFD-R-P.90 Intellectual Property Issues May 12, 2009

5 Intellectual Property Issues

5.1 Contributors

This document is the result of the joint efforts of many contributors. The
authors listed here and on the title page are those taking responsibility for the
content of the document, and all errors. The editors (underlined) are committed
to taking permanent stewardship for this document and can be contacted in the
future for inquiries.

Tom Goodale Shantenu Jha
t.r.goodale@cs.cardiff.ac.uk s.jha@ucl.ac.uk
Cardiff School of Computer Science Centre for Computational Science
5, The Parade, Roath University College London
Cardiff, CF24 3AA London, WC1H 0AJ
United Kingdom United Kingdom

Hartmut Kaiser Thilo Kielmann
hkaiser@cct.lsu.edu kielmann@cs.vu.nl
Center for Computation and Technology Vrije Universiteit
Louisiana State University Dept. of Computer Science
216 Johnston Hall De Boelelaan 1083
70803 Baton Rouge 1081HV Amsterdam
Louisiana, USA The Netherlands

Pascal Kleijer Andre Merzky
k-pasukaru@ap.jp.nec.com andre@merzky.net
NEC Corporation VU (see Kielmann)
HPC Marketing Promotion CCT/LSU (see Kaiser)
1-10, Nisshin-cho, Fuchu
183-8501 Tokyo
Japan

John Shalf Christopher Smith
jshalf@lbl.gov csmith@platform.com
Lawrence Berkeley Platform Computing Inc.
National Laboratory USA
Mailstop 50F
1 Cyclotron Road
94720 Berkeley
California, USA

saga-core-wg@ogf.org 323

GFD-R-P.90 Intellectual Property Issues May 12, 2009

The initial version of the presented SAGA API was drafted by the SAGA Design
Team. Members of that design team did not necessarily contribute text to the
document, but did certainly contribute to its current state, and very much so.
Additional to the authors listed above, the following people were members of
the design team, in alphabetical order:

Hrabri Rajic (Intel), Keith Jackson (LBL), David Konerding (LBL), Gregor von
Laszewski (ANL).

Further, the authors would like to thank all contributors from OGF’s SAGA-RG
and SAGA-CORE-WG, and other related groups. We would like to acknowl-
edge, in alphabetical order, the contributions of:

Gabriele Allen (LSU), Stephan Hirmer (LSU), Craig Lee (Aerospace Corpora-
tion), Hidemoto Nakada (AIST), Steven Newhouse (OMII-UK), Stephen Pick-
les (University of Manchester), Ed Seidel (LSU), Derek Simmel (PSC), Yusuke
Tanimura (AIST), Osamu Tatebe (University of Tsukuba).

5.2 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover tech-
nology that may be required to practice this recommendation. Please address
the information to the OGF Executive Director.

5.3 Disclaimer

This document and the information contained herein is provided on an “As
Is” basis and the OGF disclaims all warranties, express or implied, including
but not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

saga-core-wg@ogf.org 324

GFD-R-P.90 Intellectual Property Issues May 12, 2009

5.4 Full Copyright Notice

Copyright (C) Open Grid Forum (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the OGF Document process must
be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

saga-core-wg@ogf.org 325

GFD-R-P.90 SAGA Code Examples May 12, 2009

Appendix

A SAGA Code Examples

This appendix shows a couple of SAGA examples in different languages. As
stated in the introduction, these examples are not normative – language bindings
are outside the scope of this document. This appendix is rather supposed to
illustrate how the authors imagine the use of the API in various languages.

We hope that the examples illustrate that the API stays SIMPLE in various
language incarnations, as was the major design intent for the S AGA API.

Code Example

1

2 Example 1 (C++): Object State:

3 ==============================

4

5 // This example illustrates the expected life

6 // times of object states. State is shared in

7 // these cases, as only shallow copies occur.

8

9 int main (void)

10 {

11 { // task scope

12 saga::task t;

13

14 { // file scope

15 saga::file f;

16

17 { // session scope

18 saga::session s;

19

20 { // context scope

21 saga::context c (saga::context::UserPass);

22

23 s.add_context (c);

24 f (s, saga::url ("file:////tmp/data.bin"));

25 t = f.copy <saga::task::Task>

26 (saga::url ("file:////tmp/data.bak"));

27

28 } // leave context scope

29 // session keeps context state

30

31 } // leave session scope

32 // file keeps session state

33

34 } // file scope

saga-core-wg@ogf.org 326

GFD-R-P.90 SAGA Code Examples May 12, 2009

35 // task keeps file state

36

37 t.run ();

38 // task runs, and uses state of file, session,

39 // and context.

40 t.wait ();

41

42 } // task scope

43 // task releases file state

44 // file releases session state

45 // session releases context state

46

47 return (0);

48 }

49

50

51 +---+

52

53 Example 2: Files:

54 =================

55

56 open a file. if its size is > 10, then read the first 10

57 bytes into a string, print it, end return it.

58

59 --

60 Example 2a: C++

61 --

62 // c++ example

63 void head (const saga::url url)

64 {

65 try {

66 // get type and other infos

67 saga::file f (url);

68

69 off_t size = f.get_size ();

70

71 if (size > 10)

72 {

73 char buf[11];

74

75 ssize_t len_out = f.read (saga::buffer (buf));

76

77 if (10 == len_out)

78 {

79 std::cout << "head: "

80 << buffer.get_data ()

81 << std::endl;

82 }

83 }

84 }

saga-core-wg@ogf.org 327

GFD-R-P.90 SAGA Code Examples May 12, 2009

85

86 catch (const saga::exception & e)

87 {

88 std::cerr << "Oops! SAGA error: "

89 << e.get_message ()

90 << std::endl;

91 }

92

93 return;

94 }

95 --

96 --

97 Example 2b: C

98 -------------

99 void head (const SAGA_URL url)

100 {

101 SAGA_File my_file = SAGA_File_create (url);

102

103 if (NULL == my_file)

104 {

105 fprintf (stderr, "Could not create SAGA_File "

106 "for %s: %s\n",

107 SAGA_URL_get_url (url),

108 SAGA_Session_get_error (theSession));

109 return (NULL);

110 }

111

112 off_t size = SAGA_File_get_size (my_file);

113

114 if (size < 0)

115 {

116 fprintf (stderr, "Could not determine file size "

117 "for %s: %s\n",

118 SAGA_URL_get_url (url),

119 SAGA_Session_get_error (theSession));

120 return (NULL);

121 }

122 else if (size >= 10)

123 {

124 SAGA_buffer b = SAGA_Buffer_create ();

125 size_t bufflen;

126

127 ssize_t ret = SAGA_File_read (my_file, b, 10);

128

129 if (ret < 0)

130 {

131 fprintf (stderr, "Could not read file %s: %s\n",

132 SAGA_URL_get_url (url),

133 SAGA_Session_get_error (theSession));

134 }

saga-core-wg@ogf.org 328

GFD-R-P.90 SAGA Code Examples May 12, 2009

135 else if (ret < 10)

136 {

137 fprintf (stderr, "head: short read: %d\n", ret);

138 }

139 else

140 {

141 printf ("head: ’%s’\n", SAGA_Buffer_get_data (b));

142 }

143 }

144 else

145 {

146 fprintf (stderr, "head: file %s is too short: %d\n",

147 file, size);

148 }

149

150 return;

151 }

152

153 --

154 Example 2c: Java

155 ----------------

156

157 import org.ogf.saga.URI;

158 import org.ogf.saga.buffer.Buffer;

159 import org.ogf.saga.buffer.BufferFactory;

160 import org.ogf.saga.file.File;

161 import org.ogf.saga.file.FileFactory;

162 import org.ogf.saga.namespace.Flags;

163 import org.ogf.saga.session.Session;

164

165 public class Example {

166 // open a file. if its size is >= 10, then read the first

167 // 10 bytes into a string, print it, end return it.

168 public String head(Session session, URI uri)

169 {

170 try

171 {

172 File f = FileFactory.createFile(session, uri, Flags.READ);

173 long size = f.getSize();

174

175 if (10 <= size) {

176 Buffer buffer = BufferFactory.createBuffer(10);

177 int res = f.read(10, buffer);

178

179 if (10 == res) {

180 System.out.println("head: " + buffer);

181 } else {

182 System.err.println("head: read is short! " + res);

183 }

184 return new String(buffer.getData());

saga-core-wg@ogf.org 329

GFD-R-P.90 SAGA Code Examples May 12, 2009

185 } else {

186 System.err.println("file is too small: " + size);

187 }

188 } catch (Exception e) {

189 // catch any possible error - see elsewhere for better

190 // examples of error handling in SAGA

191 System.err.println ("Oops! " + e);

192 }

193

194 return null;

195 }

196 }

197 --

198 Example 2d: Perl (’normal’ error handling)

199 --

200

201 sub head ($)

202 {

203 my $url = shift;

204 my $my_file = new saga::file (url)

205 or die ("can’t create file for $url: $!\n");

206

207 my $size = my_file->get_size ();

208

209 if ($size > 10)

210 {

211 my $buffer = new saga::buffer (10)l

212 my $ret = my_file->read ($buffer)

213 or die ("can’t read from file $url: $!\n");

214

215 if ($ret == 10)

216 {

217 print "head: ", $buffer->get_data (), "\n";

218 }

219 else

220 {

221 printf STDERR "head: short read: %d\n" ($buffer);

222 }

223 }

224 else

225 {

226 print STDERR "file $url is too short: $size\n";

227 }

228

229 return;

230 }

231

232 --

233 Example 2e: Perl (exceptions)

234 -----------------------------

saga-core-wg@ogf.org 330

GFD-R-P.90 SAGA Code Examples May 12, 2009

235 sub head ($)

236 {

237 my $url = shift;

238

239 eval

240 {

241 my $my_file = new saga::file (url);

242 my $size = my_file->get_size ();

243

244 if ($size > 10)

245 {

246 my $buffer = new saga::buffer (10)l

247 my $ret = my_file->read ($buffer);

248

249 if ($ret == 10)

250 {

251 print "head: ", $buffer->get_data (), "\n";

252 }

253 else

254 {

255 printf "head: short read: %d \n", length ($buffer);

256 }

257 }

258 else

259 {

260 print "file $url is too short: $size\n";

261 }

262 }

263

264 if ($@ =~ /^saga/i)

265 {

266 print "catched saga error: $@\n" if $@;

267 }

268

269 return;

270 }

271

272 --

273 Example 2f: Fortran 90

274 ----------------------

275

276 C Fortran 90 example

277 SUBROUTINE HEAD(session, url, buffer)

278

279 INTEGER :: session, url, file, size, bufflen

280 CHARACTER*10 :: buffer

281

282 CALL SAGA_FILE_CREATE(session, url, file)

283 CALL SAGA_FILE_GET_SIZE(file, size)

284

saga-core-wg@ogf.org 331

GFD-R-P.90 SAGA Code Examples May 12, 2009

285 IF size .GT. 10 THEN

286

287 CALL SAGA_FILE_READ(file, 10, buffer, bufflen)

288

289 IF bufflen .EQ. 10 THEN

290 WRITE(5, *) ’head: ’, buffer

291 ELSE

292 WRITE(5, *) ’head: short read: ’, bufflen

293 ENDIF

294 ELSE

295 WRITE(5, *) ’file is too short’

296 ENDIF

297

298 END

299

300 --

301 Example 2g: Python

302 ------------------

303 # Python example

304 def head (session,url):

305

306 try:

307 my_file = saga.file(session,url)

308 size = my_file.get_size()

309

310 if (size > 10):

311 my_buffer = saga.buffer (10)

312 ret = my_file.read (my_buffer)

313 if (ret == 10):

314 print "head: ", my_buffer.get_data ()

315 else

316 print "head: short read: ", ret

317 else

318 print "head: file is too short: ", size

319

320 # catch any possible error - see elsewhere for better

321 # examples of error handling in SAGA

322 except saga.Exception, e:

323 print "Oops! SAGA error: ", e.get_message ()

saga-core-wg@ogf.org 332

GFD-R-P.90 References May 12, 2009

References

[1] W. Allcock, I. Foster, and R. Madduri. Reliable Data Transport: A Critical
Service for the Grid. Technical report, Global Grid Forum 11, June 2004.

[2] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann,
A. Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schütt, E. Sei-
del, and B. Ullmer. The Grid Application Toolkit: Towards Generic and
Easy Application Programming Interfaces for the Grid. Proceedings of the
IEEE, 93(3):534–550, 2005.

[3] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough,
D. Pulsipher, and A. Savva. Job Submission Description Language (JSDL)
Specification V1.0. Grid Forum Document GFD.56, 2005. Global Grid
Forum.

[4] Babel Project. Scientific Interface Definition Language (SIDL). http:
//www.llnl.gov/CASC/components/babel.html .

[5] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier
(URI): Generic Syntax. RFC 3986 (Standard), Jan. 2005.

[6] S. Bradner. Key Words for Use in RFCs to Indicate Requirement Levels.
RFC 2119, Internet Engineering Task Force (IETF), 1997. http://www.
ietf.org/rfc/rfc2119.txt.

[7] M. Drescher and A. Anjomshoaa. JSDL Parameter Sweep Job Extension
(draft 006). Grid Forum Working Draft, 2007. Open Grid Forum.

[8] M. Drescher and A. Anjomshoaa. JSDL SPMD Application Extension,
Version 1.0 (draft 008). Grid Forum Working Draft, 2007. Open Grid
Forum.

[9] DRMAA Working Group. Open Grid Forum. http://forge.ogf.org/
sf/projects/drmaa-wg/.

[10] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw,
B. Horn, F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, and J. V.
Reich. The Open Grid Services Architecture, Version 1.0. Technical report,
Global Grid Forum, 2005. GFD.30.

[11] Grid Checkpoint and Recovery Working Group (GridCPR), Open Grid
Forum (OGF). http://forge.ogf.org/sf/projects/gridcpr-wg.

[12] A. Grimshaw, S. Newhouse, D. Pulsipher, and M. Morgan. OGSA
Basic Execution Service, Version 1.0. Working document, OGSA Ba-
sic Execution Service Working Group, Open Grid Forum, Septem-
ber 2006. http://www.ogf.org/pipermail/ogsa-bes-wg/attachments/
20060906/c1849ef3/attachment-0003.doc.

saga-core-wg@ogf.org 333

http://www.llnl.gov/CASC/components/babel.html
http://www.llnl.gov/CASC/components/babel.html
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://forge.ogf.org/sf/projects/drmaa-wg/
http://forge.ogf.org/sf/projects/drmaa-wg/
http://forge.ogf.org/sf/projects/gridcpr-wg
http://www.ogf.org/pipermail/ogsa-bes-wg/attachments/20060906/c1849ef3/attachment-0003.doc
http://www.ogf.org/pipermail/ogsa-bes-wg/attachments/20060906/c1849ef3/attachment-0003.doc

GFD-R-P.90 References May 12, 2009

[13] S. Hirmer, H. Kaiser, A. Merzky, A. Hutanu, and G. Allen. Generic Support
for Bulk Operations in Grid Applications. In MCG ’06: Proceedings of the
4th International Workshop on Middleware for Grid Computing, page 9,
New York, NY, USA, November 2006. ACM Press.

[14] F. Isaila and W. Tichy. Clusterfile: A flexible physical layout parallel file
system. Concurrency and Computation: Practice and Experience, 15(7–
8):653–679, 2003.

[15] JSDL Working Group. Open Grid Forum. http://forge.ogf.org/sf/
projects/jsdl-wg/.

[16] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID)
URN Namespace. RFC 4122, Internet Engineering Task Force (IETF),
2005. http://www.ietf.org/rfc/rfc4122.txt .

[17] A. Merzky and S. Jha. A Collection of Use Cases for a Simple API for Grid
Applications. Grid Forum Document GFD.70, 2006. Global Grid Forum.

[18] A. Merzky and S. Jha. A Requirements Analysis for a Simple API for Grid
Applications. Grid Forum Document GFD.71, 2006. Global Grid Forum.

[19] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and
H. Casanova. A GridRPC Model and API for End-User Applications. Grid
Forum Document GFD.52, 2005. Global Grid Forum.

[20] M. Pereira, O. Tatebe, L. Luan, and T. Anderson. Resource Namespace Ser-
vice Specification. Working document, Grid File Systems Working Group,
Open Grid Forum, September 2006. http://www.ogf.org/pipermail/
gfs-wg/attachments/20060922/f2e549ed/attachment-0001.pdf.

[21] Portable Operating System Interface (POSIX) – Part 1: System
Application Program Interface (API) [C Language]. Information technology
– Portable Operating System Interface (POSIX). IEEE Computer Society,
345 E. 47th St, New York, NY 10017, USA, 1990.

[22] Portable Operating System Interface (POSIX) – Part 2: Shell and Utilities
(Volume 1). Information technology – Portable Operating System Interface
(POSIX). IEEE Computer Society, 345 E. 47th St, New York, NY 10017,
USA, 1993.

[23] Portable Operating System Interface (POSIX) – Part 2: Shell and Utilities
(Volume 2). Information technology – Portable Operating System Interface
(POSIX). IEEE Computer Society, 345 E. 47th St, New York, NY 10017,
USA, 1993.

[24] H. Rajic, R. Brobst, W. Chan, F. Ferstl, J. Gardiner, J. P. Robarts,
A. Haas, B. Nitzberg, H. Rajic, and J. Tollefsrud. Distributed Resource
Management Application API Specification 1.0. Grid Forum Document
GFD.22, 2004. Global Grid Forum.

saga-core-wg@ogf.org 334

http://forge.ogf.org/sf/projects/jsdl-wg/
http://forge.ogf.org/sf/projects/jsdl-wg/
http://www.ietf.org/rfc/rfc4122.txt
http://www.ogf.org/pipermail/gfs-wg/attachments/20060922/f2e549ed/attachment-0001.pdf
http://www.ogf.org/pipermail/gfs-wg/attachments/20060922/f2e549ed/attachment-0001.pdf

	Introduction
	How to read this Document
	Notational Conventions
	Security Considerations

	General Design Considerations
	API Scope and Design Process
	The SIDL Interface Definition Language
	Language Binding Issues
	Compliant Implementations
	Object Management
	Asynchronous Operations and Concurrency
	State Diagrams
	Execution Semantics and Consistency Model
	Optimizing Implementations, Latency Hiding
	Configuration Management
	The 'URL Problem'
	Miscellaneous Issues

	SAGA API Specification -- Look&Feel
	SAGA Error Handling
	SAGA Base Object
	SAGA URL Class
	SAGA I/O Buffer
	SAGA Session Management
	SAGA Context Management
	SAGA Permission Model
	SAGA Attribute Model
	SAGA Monitoring Model
	SAGA Task Model

	SAGA API Specification -- API Packages
	SAGA Job Management
	SAGA Name Spaces
	SAGA File Management
	SAGA Replica Management
	SAGA Streams
	SAGA Remote Procedure Call

	Intellectual Property Issues
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice

	SAGA Code Examples
	References

