
GWD-R.94 Andre Merzky
SAGA-RG Vrije Universiteit, Amsterdam

Version: 1.0 RC.5 October 11, 2009

SAGA API Extension: Message API

Status of This Document

This document provides information to the grid community, proposing a stan-
dard for an extension to the Simple API for Grid Applications (SAGA). As such
it depends upon the SAGA Core API Specification [?]. This document is sup-
posed to be used as input to the definition of language specific bindings for this
API extension, and as reference for implementors of these language bindings.
Distribution of this document is unlimited.

Copyright Notice

Copyright c© Open Grid Forum (2007). All Rights Reserved.

Abstract

This document specifies a Message API extension to the Simple API for Grid
Applications (SAGA), a high level, application-oriented API for grid application
development. This Message API is motivated by a number of use cases collected
by the OGF SAGA Research Group in GFD.70 [?], and by requirements derived
from these use cases, as specified in GFD.71 [?]). The API provides a wide
set of communication pattern, and targets widely distributed, loosely coupled,
heterogenous applications.

Contents

1 Introduction 3

1.1 Notational Conventions . 3

1.2 Security Considerations . 3

2 Requirements 4

GWD-R.94 October 11, 2009

2.1 Use Case derived Requirements 5

3 SAGA Message API 10

3.1 General API Structure . 10

3.2 Endpoint URLs . 11

3.3 State Model . 12

3.4 Endpoint Properties . 13

3.5 Memory Management . 17

3.6 Asynchronous Notification and Connection Management 18

3.7 Specification . 19

3.8 Specification Details . 24

3.9 Examples . 34

4 Intellectual Property Issues 35

4.1 Contributors . 35

4.2 Intellectual Property Statement 35

4.3 Disclaimer . 36

4.4 Full Copyright Notice . 36

References 37

saga-core-wg@ogf.org 2

GWD-R.94 Introduction October 11, 2009

1 Introduction

A significant number of SAGA use cases [?] cover data visualization systems.
The common communication mechanism for this set of use cases seems to be
the exchange of large messages between different applications. These applica-
tions are thereby often demand driven, i.e. require asynchronous notification of
incoming messages, and react on these messages independent from their origin.
Also, these use cases often include some form of pulish-subscriber mechanism,
where a server provides data messages to any number of interested consumers.

This API extension is tailored to provide exactly this functionality, at the same
time keeping coherence with the SAGA Core API Look-&-Feel, and keeping
other Grid related boundary conditions (in particular middleware abstraction
and authentication/authorization) in mind. The applicability of this package
is, however, not at all limited to visualization use cases. Instead, the goal is
to define a general purpose and easy to use API for event driven exchange of
potentially large binary blobs of data.

It is important to note that this API is not intented to replace MPI [?]: where
MPI is explicitely targeting tightly coupled parallel (as in ’distributed, but co-
located, mostly SIMD’) applications, the SAGA Message API targets loosely
coupled (as in ’widely distributed, heterogeneous, mostly MIMD’) applications,
and is thus targeting a completely different set of communication patterns.

1.1 Notational Conventions

In structure, notation and conventions, this documents follows those of the
SAGA Core API specification [?], unless noted otherwise.

1.2 Security Considerations

As the SAGA API is to be implemented on different types of Grid (and non-
Grid) middleware, it does not specify a single security model, but rather provides
hooks to interface to various security models – see the documentation of the
saga::context class in the SAGA Core API specification [?] for details.

A SAGA implementation is considered secure if and only if it fully supports
(i.e. implements) the security models of the middleware layers it builds upon,
and neither provides any (intentional or unintentional) means to by-pass these
security models, nor weakens these security models’ policies in any way.

saga-core-wg@ogf.org 3

GWD-R.94 Requirements October 11, 2009

2 Requirements

The SAGA Core API specification defines a stream API package, whose purpose
is to facilitat inter-process communication for distributed applications. The
paradigm provided is basically that of BSD sockets: a stream_server instance
can be created to accept incoming client connections, by calling serve(). The
connection themself are represented by stream instances, which can connect()
to stream_servers. The stream instances then allow to read() and write()
binary data.

That scheme is very general, and unversally implementable on most middle-
wares. Experience shows, however, that most application scenarios build addi-
tional layers on top of BSD stream like APIs. Those layers usually provide

• protocols,
• simplified bootstrapping,
• higher level communication patterns,
• message encapsulation,
• message ordering,
• message verification,
• reliability,
• atomicity,
• error recovery,

or some subset thereof. Providing these features is non trivial and error prone,
and results in large amount of duplicated application code. For that reason,
most applications actually rely on third party implementations, like readily
available p2p libraries, COM systems, etc. There exists, however, no commonly
available infrastructure which covers multiple of the above properties, and is
available for Grid environments, or other widely distributed infrastructures.

The goal of this API specification is thus to

• provide a uniform API to a wide variety of communication systems, to
simplify their usage with applications;

• define a general purpose communication API which fosters the implemen-
tation and deployment of communication libraries on Grid environments;

• define communication patterns beyond MPI and P2P, the two dominant
distributed message exchange systems in use today;

• do all that in the scope of the SAGA Look-&-Feel, so as to easy applica-
tion integration, application portability, and semmless integration with
other distributed API packages, such as security (saga::session and
saga::context).

saga-core-wg@ogf.org 4

GWD-R.94 Requirements October 11, 2009

According to these goals, and in refererence to the SAGA use cases [?], the
SAGA Message API should provide

1. diverse communication patterns;
2. diverse channel options: reliability, ordering, verification, atomicity, ...;
3. message abstraction (with arbitrary sized messages);
4. asynchronous communication and notification; and
5. extremely simple application bootstrapping.

It seems obvious that no single existing communication library will be able to
provide the complete scope of the SAGA API. Implementations of this API
are thus encouraged, or even required, to bind against different communication
libraries – but that again is a declared goal of this API specification. Also, as
discussed in detail in section 2.4 of the SAGA Core API specification [?], and
also in the SAGA Core Experience Document [?], the design of the SAGA API
enables and encourages implementations with multiple backend bindings, and
in particular with late bindings.

A second inspection of the enumerated list of requirements above shows that a
number of requirements is immediately solved by applying the SAGA Look-&-
Feel to the Message API: in particular item (3) and (4) (message abstraction,
and asynchronous communincation and notification) are intrinsically provided
by SAGA, with saga::buffer representing messages, saga::task instance rep-
resenting asynchronous operations, and saga::metric and saga::callback
presenting means for asynchronous notification. We also would like to refer
to the SAGA Advert API Extension ??, which allows for simple bootstrapping
of distributed applications, and may be of use for the purposes discussed in this
document, too. The advert API will, however, not be able to provide all means
for boostrapping communication patterns, and thus is not discussed in more
detail here 1.

2.1 Use Case derived Requirements

More specific requirements come from the relatively large set of use cases within
the SAGA group. In particular, those use cases allow to more specifically specify
the scope of the required API properties listed above. Table 1 lists specific
property examples to be covered by the Message API.

1We would like to encourage both implementors and users of the Message API to check the
Advert API, as it should seemlessly integrate with the Message API, and solve bootstrapping
and application coordination in many communication related use cases.

saga-core-wg@ogf.org 5

GWD-R.94 Requirements October 11, 2009

Use Case API Properties Requirements

#2: Cyber Infrastructure • message encapsulation ◦ ordered messages
◦ large binary data

• channel options ◦ secure end-to-end

#3: DIVA • message encapsulation ◦ message encryption
◦ ordered messages
◦ async delivery
◦ low latency delivery
◦ fault tolerance
◦ typed messages
◦ large binary data

• channel options ◦ QoS negotiation
◦ secure end-to-end
◦ low latency delivery
◦ protocol transparency

• communication pattern ◦ dynamic node migration
◦ group bootstrapping

#13: RoboGrid • channel options ◦ secure end-to-end

#15: Hybrid Monte Carlo • message encapsulation ◦ async delivery
Molecular Dynamics ◦ typed messages

• channel options ◦ QoS ensurance
◦ secure end-to-end

• communication pattern ◦ dynamic node addition

#16: Collaborative • message encapsulation ◦ message encryption
Visualization ◦ ordered messages

◦ async delivery
◦ low latency delivery
◦ typed messages
◦ large binary data

• channel options ◦ QoS negotiation

Use Case requirements (cont.)

saga-core-wg@ogf.org 6

GWD-R.94 Requirements October 11, 2009

Use Case API Properties Requirements

◦ secure end-to-end
◦ low latency delivery
◦ protocol transparency

• communication pattern ◦ dynamic node addition
◦ node scalability
◦ group bootstrapping

#17: UCoMS Project • message encapsulation ◦ message encryption
◦ low latency delivery
◦ large binary data

• channel options ◦ secure end-to-end
◦ protocol transparency

• communication pattern ◦ group bootstrapping

#18: Interactive • message encapsulation ◦ ordered messages
Visualization ◦ reliable delivery

◦ async delivery
◦ low latency delivery
◦ large binary data

• channel options ◦ QoS negotiation
◦ low latency delivery
◦ protocol transparency

• communication pattern ◦ group bootstrapping

#19: Interactive Image • message encapsulation ◦ message encryption
Reconstruction ◦ message signatures

◦ typed messages
◦ large binary data

• channel options ◦ QoS negotiation
◦ secure end-to-end
◦ protocol transparency

• communication pattern ◦ group bootstrapping

Use Case requirements (cont.)

saga-core-wg@ogf.org 7

GWD-R.94 Requirements October 11, 2009

Use Case API Properties Requirements

#20: Reality Grid • message encapsulation ◦ ordered messages
◦ unordered messages
◦ async delivery
◦ low latency delivery
◦ typed messages
◦ large binary data

• channel options ◦ secure end-to-end
◦ low latency delivery
◦ protocol transparency

• communication pattern ◦ dynamic node addition
◦ node scalability
◦ group bootstrapping

#22: Computational • message encapsulation ◦ ordered messages
Steering of Ground ◦ unordered messages
Water Pollution ◦ async delivery
Simulations ◦ low latency delivery

◦ typed messages
◦ large binary data

• channel options ◦ secure end-to-end
◦ low latency delivery
◦ protocol transparency

• communication pattern ◦ dynamic node addition
◦ group bootstrapping

#23: Visualization • message encapsulation ◦ message encryption
Service for the ◦ message signatures
Grid ◦ ordered messages

◦ unordered messages
◦ async delivery
◦ low latency delivery
◦ typed messages
◦ large binary data

• channel options ◦ secure end-to-end
◦ low latency delivery
◦ protocol transparency

Use Case requirements (cont.)

saga-core-wg@ogf.org 8

GWD-R.94 Requirements October 11, 2009

Use Case API Properties Requirements

• communication pattern ◦ dynamic node addition
◦ group bootstrapping

Table 1: Use Case driven requirements to the Message API. Use
cases are from [?].

Table 1 confirms our earlier impression that the set of requirements varies widely.
While we discussed earlier that no single backend will be able to cover the whole
scope of requirements, the table also suggests that no single application will
make use of all features to be rovided by the message API. The expected overlap
both between bckend properties and application requirements is, however, so
large, that it seems unwise to try to split the API package into significantly
smaller units. Instead, we decided to design the API such that its components
can be configured, and are inherently flexible enough, so that they are able to
function well in the wide variety of use cases at hand.

saga-core-wg@ogf.org 9

GWD-R.94 SAGA Message API October 11, 2009

3 SAGA Message API

The SAGA Message API provides a mechanism to communicate opaque mes-
sages between applications. The intent of the API package is to provide a
higher level abstraction on top of the SAGA Stream API: while the exchange
of opaque messages is in fact the main motivation for the SAGA Stream API,
it still requires a considerable amount of user level code2 in order to implement
this use case. In contrast, this message API extension guarantees that message
blocks of arbitrary size are delivered completely and intact, without the need
for additional application level coordination, synchronization, or protocol.

Any compliant implementation of the SAGA Message API will imply the utiliza-
tion of a communication protocol – that may, in reality, limit the interoperability
of implementations of this API. This document will, however, not address pro-
tocol level interoperability – other documents outside the SAGA API scope may
address it separately. 3

This SAGA API extension inherits the object, async and monitorable inter-
faces from the SAGA Core API [?]. It CAN be implemented on top of the
SAGA Stream API [ibidem].

3.1 General API Structure

Communication channels are not directly visible on API level, but their end-
points are represented by stateful instances of the endpoint class and its derivates.
Those endpoints allow to connect to a communication channel, to accept connec-
tions from a communication channel, and to test for, send and receive messages
on that communication channel. What exact type of channel the endpoint in-
terfaces to is determined by

• the URL used to open the channel; and
• the channel properties (attributes) requested by the endpoint instances.

The type of channel behind the endpoint determines

• the set of connected endpoints on the channel (one or more);
• the properties of messages recieved on the channel; and

2Code is needed to run a protocol on the base SAGA stream, and to manage messages to
be sent/received.

3DISCUSSION (AM): This is very similar to, say, saga::job, where we also
assume a specific backend which will in practice limit interop: jobs submitted to
one bckend are unlikely to be manageable by an application binding to another
backend. That is what we habe URLs for, right?

saga-core-wg@ogf.org 10

GWD-R.94 SAGA Message API October 11, 2009

• the availability of additional actions for operating and controling the con-
nection (only in derivated endpoint classes, see below).

In particular the channel properties mentioned above allow the API to span
the range of communication patterns targeted by this API. For example, those
properties determine if the channel is reliable/unreliable, if message arrive or-
dered/unordered, verified/unverified, exactly-once/at-least-once/at-most-once,
etc. Obviously, some combinations of channel properties will not be imple-
mentable4 (e.g. UnReliable AND ExactlyOnce), but should otherwise allow to
specify the required communication characteristics.

The most important property of communication channels is its Topology: it
determines the overall communication pattern, such as the number of endpoints
connected to one channel, the policy of message forwarding to multiple other
endpoints, etc. Intuitive examples values of the Topology property are ’Peert-
to-Peer’, ’Point-to-Point’, ’Multicast’, and ’Publish-Subscriber’.5

Messages are encapsulated in instances of the msg class – a derivate of saga::buffer
which adds some additional inspection properties (like message origin)6. As
those message instances manage pure byte buffers (see saga::buffer specifica-
tion in [?]), applications may usually want to derive that class further to add
structure to that byte buffer, as needed. This API specification stays, however,
clear of defining data models or data formats, as that would most certainly blow
the this API well out of scope. Instead, domain specific data models and data
formats can easily be added on application level, as described.

3.2 Endpoint URLs

The endpoint URLs used in the SAGA Message API follow the conventions
layed out for the SAGA Stream API [?]: the URL’s schema should allow the
application to pick interoperable backends, but any backend MUST perform
semantically exactly as specified in this document.

4or at least will not make much sense
5DISCUSSION (AM): Well, those are all we have right now, really. We should

check carefully if we want to support more patterns explicitely, or if we leave the
rest to implicit specification via the other properties – but then we could also
consider to add properties like ’NumberOfEndpoints’, ’MessageForwardingPol-
icy’, etc, to be able to really fully specify, for example, the difference between
PublishSubscriber and PeerToPeer.

6DISCUSSION (AM): Should we predefine some message properties which
SHOULD be available for inspection, like TTL, ID (for ordering), SendTimeS-
tamp, RcvTimeStamp or CreationTimeStamp? What to do if the backend does
not provide those? Are SAGA-impl estimates acceptable? Probably too many
constraints on the backend...

saga-core-wg@ogf.org 11

GWD-R.94 SAGA Message API October 11, 2009

3.3 State Model

Closed

Open

external

endpoint::close()

endpoint::connect()

endpoint::serve()

Initial State

CONSTRUCTOR

Figure 1: The SAGA Message endpoint state model

The state model for message endpoint instances is very simple: an endpoint
gets constructed in Closed state. A successful call to serve() or connect()
moves it into Open state, where it can send and receive messages. The endpoint
stays in Open state as long as the backend is accepting and delivering messages
– otherwise (e.g. if the peer disconnects on a Point-to-Point connction, or if
a Pub-channel closes on a Publish-Subscriber backend), the endpoint is being
moved back into the ’Closed’ state. An explicit call to close() does also move
the endpoint back into the Closed state.

Note that an get_state() check on an endpoint, which returns Open, is no
guarantee that the folllowing message can be successfully transmitted: there
is always a race condition of checking the state versus actually sending the
message. Thus, the test(), send() and recv() operations can always throw
an IncorrectState exception.7 8

7DISCUSSION (AM): Should there be versions of these calls which do not
throw, but return errors? Try/Catch can be costly, and send/recv is all about
performance. Also, we do that for file I/O!

8DISCUSSION (AM): One could imagine additional states, such as ’Serving’
or ’Dropped’. ’Serving’ would not really make sense though: one could not move
a server endpoint out of that state – that only happens if a client connects. Sim-
ilar to ’Dropped’ – any check for dropped is automatically a race condition:

if (ep.state() != "Dropped") ep.send (msg);

The connection could get dropped after the test, before the send. So, we need to
recover on send anyway... Also, a more detailed state model gets really compli-
cated if multiple clients can connect, or connect/disconnect/reconnect.

saga-core-wg@ogf.org 12

GWD-R.94 SAGA Message API October 11, 2009

3.4 Endpoint Properties

As described above: the exact backend channel which is serving a specific end-
point instance is determined by the endpoint’s URL on creation time, and by
the properties set on the endpoint via the SAGA Messaga API. It thus seems
obvious that either (a) changes of endpoint properties lead to a disconnect of the
existing backend, and move the endpoint into the Closed state, or (b) changes
of endpoint properties are only evaluated when connect() or serve() is called
(which makes inspection of endpoint properties slightly more difficult9). This
API follows the semantic described in (b).10

Two endpoints which communicate with each other MUST have compatible
properties 11 – otherwise the connection setup with connect() MUST fail.

The individual endpoint properties and their respective values are described
below.

3.4.1 Connection Topology

The message API as presented here allows for four different connection topolo-
gies: PointToPoint, Multicast, PublishSubscriber, and PeerToPeer. FIXME:
check for more. Should that be extensible? How?

• PointToPoint Topology:

two parties can interchange messages in both directions (both endpoints
can send() and recv() messages). An PointToPoint endpoint can only
have one remote connection at any time. All additional connection at-
tempts via connect() MUST fail with an IncorrectState exception.
All additional incoming connections on a serve() MUST be declined.

• Multicast Topology:

The initiating endpoint calls serve() – that endpoint is called ’Server’.
’Client’ endpoints can connect() to that server. Messages sent by the
Server endpoint are received by all Client endpoints. Messages sent by
any Client endpoint are received only by the Server endpoint. A single

9The application has to take care of race conditions: for example, if a new endpoint gets the
property ’Topology’ set to ’Peer-to-Peer’, and is moved into Open state, and the application
then sets the ’Topology’ to ’Point-to-Point’, inspection will show ’Point-to-Point’, although
that value is actually only getting evaluated after reconnect, i.e after calling ’close()’ and
’connect()’.

10DISCUSSION (AM): Alternative text: All properties of endpoint instances
are specified at the creation time of that instance: reliability level, connection
topology, message ordering etc. are thus constant for the lifetime of an endpoint,
and apply to all connections on that endpoint.

11DISCUSSION (AM): define ’compatible properties’ ! Should that be ’the
same’ properties’?

saga-core-wg@ogf.org 13

GWD-R.94 SAGA Message API October 11, 2009

endpoint can simultaneously act as a Server and as a Client, bu calling
both connect() and serve() on the same endpoint instance.

• PublishSubscriber Topology:

PublishSubscriber stands for Publish-Subscriber topology, and means
that participating parties can interchange messages in both directions
(all endpoints can send() and recv() messages). Messages sent by any
endpoint are always received by all other clients connected to that chan-
nel. Note that a PublishSubscriber endpoints connected to some chan-
nel remain Open even if no other endpoints are subscribed (i.e. connected)
to that channel.

Calling serve() on a PublishSubscriber endpoint implies the creation
of a publishing channel. If close() is called on that endpoint, all other
endoints subscribed to that channel are disconnected.12

• PeerToPeer Topology:

On PeerToPeer networks, connectivity is transitive. That means that,
for example, if an endpoint A is connected to an endpoint B, which in
turn is connected to an endpoint C, then messages from A will also arrive
at C. Multiple endpoints can call serve() and connect(), in any order.
PeerToPeer networks can get disconnected (in our example: if B fails):
the backend MAY be able to continue to deliver messages from A to C
and vice versa.

In either topology, the number of clients connecting to an applications endpoint
(which calls serve()) can be limited by an integer argument to serve(). This
argument is optional and defaults to -1 (unlimited). PointToPoint endpoints
can, however, only connect to one client at any given time. A connect() always
implies the setup of a single connection.

Client Addressing:
In all topologies, senders can uniquely identify receivers by their id. If they
do so, only that specific receiver will receive the respective message, regardless
of the topology used by the endpoints (i.e. also in the Multicast, PeerToPeer
and PublishSubscriber cases). A message always carries an identifier of the
originating endpoint, thus messages can be answered (i.e. sent back) to the
originating endpoint.

3.4.2 Reliability

The use cases addressed by the SAGA Message API cover a variety of reliable
and unreliable message transfers. The level of reliability required for the message
transfer is specified by an endpoint property. It defaults to Reliable.

12DISCUSSION (AM): Ensure that, semantically, there can only be one pub-
lisher. For multiple publishers either use PeerToPeer, or create more endpoints.

saga-core-wg@ogf.org 14

GWD-R.94 SAGA Message API October 11, 2009

The available realiability levels are:

UnReliable: messages MAY (or may not) reach the remote
clients.

Consistent: UnReliable, but if a message arrives at one client
it MUST arrive at all clients.

SemiReliable: messages MUST arrive at at least
one client.

Reliable: all messages MUST arrive at
all clients.

Note that, for PointToPoint Topology, and in fact in all cases where exactly
two endpoints are interconnected, SemiReliable degenerates to Reliable, and
Consistent degenerates to Unreliable.

A Reliable implementation can obviously provide all use cases. SemiReliable
or Consistent implementations also cover the Unreliable use case.

Consistent and SemiReliable, and more so Reliable semantics, do often
imply a significant protocol overhead, which in particular may affect message
latencies. An application should carefully evaluate what reliability requirements
it actually has.

3.4.3 Atomicity

Many transport protocols guarantee that messages arrive exactly once. There
are, however, many use cases where that is not strictly required. The Atomicity
flag specifies that, and allows for more efficient policies.

The available atomicity levels are:

AtMostOnce: messages arrive exactly once, or not at all.
AtLeastOnce: messages are guaranteed to arrive,

but may arrive more than once.
ExactlyOnce: message arrive exactly once.

Obviously, an implementation which serves messages ExactlyOnce can serve all
three use cases.

There are seemingly incompatible combinations of Reliability and Atomicity,
such as for example ’UnReliable & ExactlyOnce’. Although such a property
set makes not much sense semantically, it can be provided by a ’Reliable &
ExactlyOnce’ implementation.

saga-core-wg@ogf.org 15

GWD-R.94 SAGA Message API October 11, 2009

AtLeastOnce, and more so ExactlyOnce semantics, do often imply a signifi-
cant protocol overhead, which in particular may affect message latencies. An
application should carefully evaluate what atomicity requirements it actually
has.

3.4.4 Correctness and Completeness

The SAGA Message use cases are partly able to handle incorrect and incomplete
messages (e.g. for MPEG streams). The level of correctness required for the
message transfer can be specified by the Correctness proporty. It defaults to
Verified.

The available correctnes levels are:

Unverified: no correctness nor completeness of messages
is guaranteed.

Verified: Any message that is received is guaranteed
to be correct and complete.

Correctness and completeness is usually be provided by adding a checksum to
the message, and by verifying that checksum before delivery. That procedure
usually implies significant memory, compute and latency overheads. An appli-
cation should careful evaluate what correctness requirements it actually has.

3.4.5 Message Ordering

Many applications will be able to handle out-of-order messages without prob-
lems; other applications will require messages to arrive in order. The Ordering
property allows to specify that requirement. It defaults to Ordered.

The available ordering levels are:

Unordered: messages arrive in any order.
Ordered: messages send from one client to another client

arrive in the same order as they have been sent.
GloballyOrdered: messages send from any client to any other client

arrive in the same order as they have been sent.

In Ordered mode, the order of sent messages is only preserved locally – global
ordering is not guaranteed to be preserved:

Assume three endpoints A, B and C, all connected to each other with
PublishSubscriber, Reliable, EactlyOnce, Verified, Ordered. If A

saga-core-wg@ogf.org 16

GWD-R.94 SAGA Message API October 11, 2009

sends two messages [a1, a2], in this order, it is guaranteed that both B

and C receive the messages in this order [a1, a2]. If, however, A sends a
message [a1] and then B sends a message [b1], C may receive the mes-
sages in either order, [a1, b1] or [b1, a1].

If GloballyOrdered, that order is preserved, which implies either a global syn-
chronization mechanism, or exact global timestamps.

Ordering, and in particular global ordering, usually implies significant memory,
compute and latency overheads. An application should careful evaluate what
ordering requirements it actually has.

3.5 Memory Management

13

Sending Messages
On sending messages, memory management (allocation and deallocation) is al-
ways performed on application level. Depending on the actual language bind-
ings, message data will be passed by-reference (preferred) or by-value. If passed
by-reference, the implementation MUST NOT access the memory block, and
the application MUST NOT change the size of a message nor the content of a
message while a send() operation with this message is in progress – the meth-
ods MAY cause an IncorrectState exception otherwise. If the message data
block is larger than the specified size of the given msg instance, the message
is truncated, and no error is returned. The application MUST ensure that the
given message size is indeed the accessible size of the given message data block,
otherwise the behavior of the send() is undefined.

Receiving Messages
When receiving messages, the application can choose to perform memory man-
agement for the messages itself, or to leave memory management to the imple-
mentation.

Application level memory management holds similar restrictions as listed above
for sending: the implementation MUST NOT access the memory block, and
the application MUST NOT change size or content of the message data block
while the receive() operation is active. If the received message is larger than
the size of the given msg instance, the message is truncated, and no error is
returned. Unless the backend is able to handle that situation, there is no way
to receive the remainder of the message. The application MUST ensure that

13DISCUSSION (AM): This section needs to be synced with the saga::buffer

syntax and semantics!

saga-core-wg@ogf.org 17

GWD-R.94 SAGA Message API October 11, 2009

the given message size is indeed the accessible size of the given message block –
otherwise the behaviour of the recv()

Memory is managed by the API implementation if the msg instance is created
with a negative size argument (e.g. -1). If the message is under implementation
management, the data block of the msg instance gets allocated by the implemen-
tation, and MUST NOT be accessed by the application before the receive()
operation completed successfully, nor after the msg instance has been deleted
(e.g. went out of scope).FIXME: check with buffer semantics!

An implementation managed msg instance MUST refuse to perform a set_size()
or set_data() operation, throwing an IncorrectState exception. A message
put under implementation memory management always remains under imple-
mentation memory management, and cannot be used for application level mem-
ory management anymore. Also, a message under application memory manage-
ment cannot be put under implementation management later, i.e. set_size()
cannot be called with negative arguments – that would raise a BadParameter
exception.

If an implementation runs out of memory while receiving a message into a
implementation managed msg instance, a NoSuccess exception with the error
message ’’insufficient memory’’ MUST be thrown.

3.6 Asynchronous Notification and Connection Manage-
ment

Event driven applications are a major use case for the SAGA Message API –
asynchronous notification is thus very important for this API extension. That
feature is, in general, provided via the monitoring interface defined in the SAGA
Core API Specification [?].

The available metrics on the endpoint class allow to monitor the endpoint
instance for connecting, disconnecting and dropping client connections, for state
changes, and of course for incoming messages. All metrics will allow to identify
the respective remote party by its connection URL, which will be stored in the
RemoteID field of the context associated with a metric change – that context
is only available when using callbacks though. Alternatively, that remote party
is also identifyable via the msg instance itseld, which can expected for sender
and receiver URL (the receiver URL will usually be the endpoint URL which
received the message).

Native remote endoint URLs are not always available – the implementation
SHOULD in this case assign an internal URL for each client, to allow to iden-
tify clients uniquely. If the implementation can not reliably distinguish client
endpoints (e.g. on some Peer-to-Peer or Publish-Subscriber backends), then it

saga-core-wg@ogf.org 18

GWD-R.94 SAGA Message API October 11, 2009

MUST leave the respective context attribute empty, and throw a DoesNotExist
exception on the message excpection.

3.7 Specification

package saga.message
{
enum state
{
Open = 1,
Closed = 2

}

enum topology
{
PointToPoint = 1,
Multicast = 3,
PublishSubscriber = 2,
PeerToPeer = 4

}

enum reliability
{
UnReliable = 1,
Consistent = 3,
SemiReliable = 2,
Reliable = 4

}

enum atomicity
{
AtMostOnce = 1,
AtLeastOnce = 2,
ExactlyOnce = 3

}

enum correctness
{
Unverified = 1,
Verified = 2

}

enum ordering

saga-core-wg@ogf.org 19

GWD-R.94 SAGA Message API October 11, 2009

{
Unordered = 1,
Ordered = 2,
GloballyOrdered = 3

}

class msg : implements saga::buffer
// from buffer saga::object
// from object saga::error_handler

{
CONSTRUCTOR (in array<byte> data = 0,

in int size = 0,
out msg obj);

DESTRUCTOR (in msg obj);

set_receiver (in int receiver_id);
get_sender (out int sender_id);

}

interface endpoint : implements saga::object
implements saga::async
implements saga::monitorable

// from object saga::error_handler
{
// inspection methods
get_url (out string url);
get_receivers (out array<string> urls);

// management methods
serve (in int n = -1);
connect (in string url = "",

in float timeout = -1.0);
close (void);

// I/O methods
send (in msg msg,

in url receiver = "",
in float timeout = -1.0);

test (out int size,
in url sender = "",
in float timeout = -1.0);

recv (inout msg msg,
in url sender = "",
in float timeout = -1.0);

saga-core-wg@ogf.org 20

GWD-R.94 SAGA Message API October 11, 2009

// Attributes:
// name: State
// desc: endpoint state in respect to the state diagram
// mode: ReadOnly
// type: Enum
// value: -
// notes: possible values: ’Open’ or ’Closed’
//
// name: Topology
// desc: informs about the connection topology
// of the endpoint
// mode: ReadOnly
// type: Enum
// value: "PointToPoint"
//
// name: Reliability
// desc: informs about the reliability level
// of the endpoint
// mode: ReadOnly
// type: Enum
// value: "Reliable"
//
// name: Atomicity
// desc: informs about the atomicity level
// of the endpoint
// mode: ReadOnly
// type: Enum
// value: "ExactlyOnce"
//
// name: Correctness
// desc: informs about the message correctness
// of the endpoint
// mode: ReadOnly
// type: Enum
// value: "Verified"
//
// name: Ordering
// desc: informs about the message ordering
// of the endpoint
// mode: ReadOnly
// type: Enum
// value: "Ordered"
//
//
// Metrics:

saga-core-wg@ogf.org 21

GWD-R.94 SAGA Message API October 11, 2009

// name: State
// desc: fires if the endpoint state changes
// mode: Read
// unit: 1
// type: Enum
// value: ""
// notes: - has the literal value of the endpoints
// state attribute
//
// name: Connect
// desc: fires if a receiver connects
// mode: Read
// unit: 1
// type: String
// value: ""
// notes: - this metric can be used to perform
// authorization on the connecting receivers.
// - the value is the endpoint URL of the
// remote party, if known.
//
// name: Closed
// desc: fires if the connection gets closed by
// the remote endpoint
// mode: Read
// unit: 1
// type: String
// value: ""
// notes: - the value is the endpoint id of the
// remote party, if known.
//
// name: Message
// desc: fires if a message arrives
// mode: Read
// unit: 1
// type: String
// value: ""
// notes: - the value is the endpoint id of the
// sending party, if known.

}
-
- class endpoint_simple : implements saga::endpoint
- // from endpoint saga::object
- // from endpoint saga::async
- // from endpoint saga::monitorable
- // from object saga::error_handler
- {

saga-core-wg@ogf.org 22

GWD-R.94 SAGA Message API October 11, 2009

- CONSTRUCTOR (in session session,
- in string url = "",
- in int topology = PointToPoint,
- in int reliablility = Reliable,
- in int atomicity = ExactlyOnce,
- in int ordering = Ordered,
- in int correctness = Verified,
- out sender obj);
- DESTRUCTOR (in sender obj);
- }
-
- class endpoint_multicast : implements saga::endpoint
- // from endpoint saga::object
- // from endpoint saga::async
- // from endpoint saga::monitorable
- // from object saga::error_handler
- {
- CONSTRUCTOR (in session session,
- in string url = "",
- in int topology = Multicast,
- in int reliablility = Reliable,
- in int atomicity = ExactlyOnce,
- in int ordering = Ordered,
- in int correctness = Verified,
- out sender obj);
- DESTRUCTOR (in sender obj);
- }
-
- class endpoint_pub_sub : implements saga::endpoint
- // from endpoint saga::object
- // from endpoint saga::async
- // from endpoint saga::monitorable
- // from object saga::error_handler
- {
- CONSTRUCTOR (in session session,
- in string url = "",
- in int topology = PublishSubscriber,
- in int reliablility = Reliable,
- in int atomicity = ExactlyOnce,
- in int ordering = Ordered,
- in int correctness = Verified,
- out sender obj);
- DESTRUCTOR (in sender obj);
-
- list_channels (out array<std::string> channels);
-

saga-core-wg@ogf.org 23

GWD-R.94 SAGA Message API October 11, 2009

- join (in string channel);
- leave (in string channel);
-
- // I/O methods
- send (in string channel,
- in float timeout = -1.0,
- in msg msg);
- test (in string channel,
- in float timeout = -1.0,
- out int size);
- recv (in string channel,
- in float timeout = -1.0,
- inout msg msg);
- }
-
- class endpoint_peer_to_peer : implements saga::endpoint
- // from endpoint saga::object
- // from endpoint saga::async
- // from endpoint saga::monitorable
- // from object saga::error_handler
- {
- CONSTRUCTOR (in session session,
- in string url = "",
- in int topology = PeerToPeer,
- in int reliablility = UnReliable,
- in int atomicity = Unknown,
- in int ordering = UnOrdered,
- in int correctness = Verified,
- out sender obj);
- DESTRUCTOR (in sender obj);
- }
}

3.8 Specification Details

class msg

The msg object encapsulates a sequence of bytes to be communicated between
applications. A msg instance can be sent (by an endpoint calling send()), or
received (by an endpoint calling recv()). A message does not belong to a
session, and a msg object instance can thus be used in multiple sessions, for
multiple endpoints.

saga-core-wg@ogf.org 24

GWD-R.94 SAGA Message API October 11, 2009

- CONSTRUCTOR
Purpose: create a new message object
Format: CONSTRUCTOR (in int size = 0,

out sender obj);
Inputs: size: the size of the message
Outputs: obj: new message object
Throws: NotImplemented

NoSuccess
Notes: - see notes on memory management

- DESTRUCTOR
Purpose: Destructor for sender object.
Format: DESTRUCTOR (in sender obj)
Inputs: sender: object to be destroyed
Outputs: -
Throws: -
PostCond: - the connection is closed..
Notes: - see notes on memory management.

- set_size
Purpose: set the size of the message data buffer
Format: set_size (in int size);
Inputs: size: size of data buffer
Outputs: -
Throws: NotImplemented

BadParameter
IncorrectState
NoSuccess

Notes: - see notes on memory management.
- size must be positive, otherwise a
’BadParameter’ exception is thrown.

- set_size() cannot be called on an
implementation managed msg instance.
That raises a ’IncorrectState’ exception.

- the method does not cause a memory resize etc,
but merely informs the implementation on the
size to be used for the data buffer on send()
or recv().

- get_size
Purpose: get the size of the message data buffer

saga-core-wg@ogf.org 25

GWD-R.94 SAGA Message API October 11, 2009

Format: get_size (out int size);
Inputs: -
Outputs: size: size of data buffer
Throws: NotImplemented

NoSuccess
Notes: - see notes on memory management.

- on application managed messages, the call
returns exactly the value which was set during
construction, or via set_size().

- on implementation managed buffers, the call
returns the currently allocated buffer size.
That size can reliably be used to access the
data buffer.

- set_data
Purpose: set the data buffer for the message
Format: set_data (inout array<byte> buffer);
Inputs: -
InOuts: buffer data buffer for message
Outputs: -
Throws: NotImplemented

IncorrectState
NoSuccess

Notes: - see notes on memory management.
- set_data() cannot be called on an
implementation managed msg instance.
That raises a ’IncorrectState’ exception.

- the given data buffer will not be resized, or
reallocated, or deallocated by the
implementation, but only read from or written
to. In can thus be, for example, a mmapped
memory segment.

- get_data
Purpose: get the data buffer for the message
Format: get_data (out array<byte> buffer);
Inputs: -
Outputs: buffer data buffer for message
Throws: NotImplemented

NoSuccess
Notes: - see notes on memory management.

- get_data() returns the current message buffer.
Depending on the language binding, that can be
a reference to the actual buffer (which avoids

saga-core-wg@ogf.org 26

GWD-R.94 SAGA Message API October 11, 2009

memcopies, preferred), or a copy of the
message buffer.

- if a reference is returned for a implementation
managed msg instance, that reference MUST NOT
be changed by the application, and MUST NOT be
accessed after the msg instance is destroyed,
e.g. goes out of scope.

- the returned buffer may be empty or NULL.

class endpoint

The endpoint object represents a connection endpoint for the message exchange,
and can send() and recv() messages. It can be connected to other endpoints
(connect()), and can be contacted by other endpoints (serve()). All other
endpoints connected to the endpoint instance will receive the messages sent
on that endpoint instance. The endpoint instance will also receive all mes-
sages sent by any of the other endpoints (global order is not guaranteed to be
preserved!).

- CONSTRUCTOR
Purpose: create a new endpoint object
Format: CONSTRUCTOR (in session session,

in string url = "",
in int reliable = 1,
in int topology = 1,
in int ordering = 1,
in int correctness = 1,

out endpoint obj);
Inputs: session: session to be used for

object creation
url: specification for

connection setup (serving)
reliable: flag defining transfer

reliability
topology: flag defining connection

topology
ordering: flag defining message

ordering
Outputs: obj: new endpoint object

saga-core-wg@ogf.org 27

GWD-R.94 SAGA Message API October 11, 2009

Throws: NotImplemented
IncorrectURL
AuthorizationFailed
AuthenticationFailed
PermissionDenied
NoSuccess

PostCond: - the endpoint is in ’New’ state, and can now
serve client connections (see serve()), or
connect to other endpoints (see connect()).

- the given URL can be used to specify the
protocol, network interface, port number etc
which are to be used for the serve() method.
The URL can be empty - the implementation
will then use default values. These defaults
MUST be documented by the implementation.

- the URL error semantics as defined in the SAGA
Core API specification applies.

- DESTRUCTOR
Purpose: Destructor for sender object.
Format: DESTRUCTOR (in sender obj)
Inputs: sender: object to be destroyed
Outputs: -
Notes: -

inspection methods:

- get_url
Purpose: get URL to be used to connect to this server
Format: get_url (out string url);
Inputs: -
Outputs: url: string containing the

contact URL of this
endpoint.

Throws: NotImplemented
IncorrectState

Notes: - returns a URL which can be passed to the
receiver constructor to create a client
connection to this endpoint.

- this method can only be called after serve()
has been called - otherwise an
’IncorrectState’ exception is thrown. The
return of a URL does not imply a guarantee

saga-core-wg@ogf.org 28

GWD-R.94 SAGA Message API October 11, 2009

that a endpoint can successfully connect with
this URL (e.g. the URL may be outdated on
’Closed’ endpoints).

- get_receivers
Purpose: get the endpoint URLs of connected clients
Format: get_url (out array<string> urls);
Inputs: -
Outputs: urls: endpoint URLs of connected

clients.
PreCond: - the sender is in ’Open’ state.
Throws: NotImplemented

IncorrectState
Notes: - the method causes an ’IncorrectState’

exception if the sender instance is not in
’Open’ state.

- the returned list can be empty
- if a remote endpoint does not has a URL (e.g.
if it did not yet call serve()), the
returned array element is an empty string.
That allows to count the connected clients.

management methods:

- serve
Purpose: start to serve incoming client connections
Format: serve (in int n = -1);
Inputs: n: number of clients to

accept
Outputs: -
Throws: IncorrectState

NoSuccess
PreCond: - the endpoint is in ’New’ or ’Open’ state, but

did not yet call serve().
PostCond: - the endpoint is in ’Open’ state, and accepts

client connections.
Notes: - if the endpoint is not in ’New’ or ’Open’ state

when this method is called, or if serve() was
called on this instance before, an
’IncorrectState’ exception is thrown.

- a diconnect()’ed endpoints cannot serve() again
(it is in ’Closed’ state).

- ’n’ defines the number of clients to accept.
If that many clients have been accepted

saga-core-wg@ogf.org 29

GWD-R.94 SAGA Message API October 11, 2009

successfully (e.g. messages could have been
sent to / received from these clients), the
serve call finishes.

- if ’n’ is set tp ’-1’, the default, no limit
on the accepted clients is applied. The call
then blocks indefinitely.

- connect
Purpose: connect to another endpoint
Format: connect (in float timeout = -1.0,

in string url);
Inputs: timeout: seconds to wait

url: specification for
connection setup

Outputs: -
Throws: IncorrectState

IncorrectURL
AuthorizationFailed
AuthenticationFailed
PermissionDenied
Timeout
NoSuccess

PreCond: - the endpoint is in ’New’ or ’Open’ state.
PostCond: - the endpoint is in ’Open’ state, and can

send and receive messages.
Notes: - if the endpoint is not in ’New’ or ’Open’

state when this method is called, an
’IncorrectState’ exception is thrown.

- a close()’ed endpoint cannot be connect()’ed
again (it is in ’Closed’ state).

- if reliability level, connection topology
or message ordering of the connecting
and connected endpoint do not match, the
method fails with a ’NoSuccess’ exception,
and a descriptive error message.

- the URL error semantics as defined in the
SAGA Core API specification applies.

- the timeout semantics as defined in the
SAGA Core API specification applies.

- close
Purpose: disconnect from all backend channels
Format: close (in float timeout = -1.0);
Inputs: timeout: seconds to wait

saga-core-wg@ogf.org 30

GWD-R.94 SAGA Message API October 11, 2009

Outputs: -
Throws: NotImplemented

Timeout
NoSuccess

PreCond: -
PostCond: - the endpoint is in ’Closed’ state.
Notes: - it is no error to call close() on a ’Closed’

endpoint.
- a close()’ed endpoint can serve() or
connect() again.

- the timeout semantics as defined in the
SAGA Core API specification applies.

I/O methods:

- send
Purpose: send a message to all connected endpoints
Format: serve (in float timeout = -1.0,

in msg msg);
Inputs: timeout: seconds to wait

msg: message to send
Outputs: -
Throws: NotImplemented

IncorrectState
Timeout
NoSuccess

Notes: - if the endpoint is not in ’Open’ state when
this method is called, an ’IncorrectState’
exception is thrown.

- error reporting is non-trivial, as some
message transfer may succeed for some clients,
and not for others. For reliable transfers,
or ’Verified’ correctness, the method MUST
raise a ’NoSuccess’ exception with detailed
information about the clients the transport
failed for. For unreliable transfer, the
method MAY raise such an exception if the
implementation deems the error condition
severe enough to disrupt the communication
altogether (i.e. future messages are unlikely
to get through). Again, the exception must
then give detailed information on the
client(s) which failed. For ’Unverified’
Correctness, such an exception MUST NOT be

saga-core-wg@ogf.org 31

GWD-R.94 SAGA Message API October 11, 2009

raised.
- a timeout can happen for all or for one
client - the returned error MUST indicate
which is the case, and which clients failed.

- the implementation MUST carefully document its
possible error conditions.

- if the endpoint reached the ’Open’ state by
calling serve(), and did not call connect(),
no client endpoint may be connected to this
endpoint instance. That does not cause an
error, but the message is silently discarded.

- the timeout semantics as defined in the
SAGA Core API specification applies.

- test
Purpose: test if a message is available for receive
Format: test (in float timeout = -1.0,

out int size);
Inputs: timeout: seconds to wait

size: size of incoming message
Outputs: -
Throws: NotImplemented

IncorrectState
NoSuccess

Notes: - if the endpoint is not in ’Open’ state when
this method is called, an ’IncorrectState’
exception is thrown.

- if the endpoint reached the ’Open’ state by
calling serve(), and did not call connect(),
no client endpoint may be connected to this
endpoint instance. That does not cause an
error -- the method will wait for the
specified timeout. The implementation MUST
respect messages originating from connections
which have been established during the timeout
waiting time.

- if no message is available for recv() after
the timeout, the method returns (it does not
throw a ’Timeout’ exception). The returned
size is set to -1.

- if a message is available for recv(), the
returned size is set to the size of the
incoming messages data buffer. The size MUST
be a valid value to be used to construct a new
msg object instance. The message for which
the size was returned MUST be the message

saga-core-wg@ogf.org 32

GWD-R.94 SAGA Message API October 11, 2009

which is returned on the next initiated recv()
call.

- if any (synchronous or asynchronous) recv()
calls are in operation while test is called,
they MUST NOT be served with the incoming
message if size is returned as positive value.
Instead, the next initiated recv() call get
served.

- the timeout semantics as defined in the
SAGA Core API specification applies.

- recv
Purpose: receive a message from remote endpoints
Format: test (in float timeout = -1.0,

inout msg msg);
Inputs: timeout: seconds to wait
InOuts: msg: received message
Outputs: -
Throws: NotImplemented

IncorrectState
Timeout
NoSuccess

Notes: - if the endpoint is not in ’Open’ state when
this method is called, an ’IncorrectState’
exception is thrown.

- if the endpoint reached the ’Open’ state by
calling serve(), and did not call connect(),
no client endpoint may be connected to this
endpoint instance. That does not cause an
error -- the method will wait for the
specified timeout. The implementation MUST
respect messages originating from connections
which have been established during the timeout
waiting time.

- error reporting is non-trivial, as some
message transfer may succeed for some clients,
and not for others. For reliable transfers,
or ’Verified’ correctness, the method MUST
raise a ’NoSuccess’ exception with detailed
information about the clients the transport
failed for. For unreliable transfer, the
method MAY raise such an exception if the
implementation deems the error condition
severe enough to disrupt the communication
altogether (i.e. future messages are unlikely
to get through). Again, the exception must

saga-core-wg@ogf.org 33

GWD-R.94 SAGA Message API October 11, 2009

then give detailed information on the
client(s) which failed. For ’Unverified’
Correctness, such an exception MUST NOT be
raised.

- if no message is available for recv() after
the timeout, the method throws a ’Timeout’
exception. The application must use test() to
avoid this.

- the timeout semantics as defined in the
SAGA Core API specification applies.

3.9 Examples

TO BE DONE

saga-core-wg@ogf.org 34

GWD-R.94 Intellectual Property Issues October 11, 2009

4 Intellectual Property Issues

4.1 Contributors

This document is the result of the joint efforts of several contributors. The au-
thors listed here and on the title page are those committed to taking permanent
stewardship for this document. They can be contacted in the future for inquiries
about this document.

Andre Merzky
andre@merzky.net
Vrije Universiteit
Dept. of Computer Science
De Boelelaan 1083
1081HV Amsterdam
The Netherlands

The initial version of the presented SAGA API was drafted by members of the
SAGA Research Group. Members of this group did not necessarily contribute
text to the document, but did contribute to its current state. Additional to the
authors listed above, we acknowledge the contribution of the following people,
in alphabetical order:

Andrei Hutanu (LSU), Hartmut Kaiser (LSU), Pascal Kleijer (NEC), Thilo
Kielmann (VU), Gregor von Laszewski (ANL), Shantenu Jha (LSU), and John
Shalf (LBNL).

4.2 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover tech-
nology that may be required to practice this recommendation. Please address
the information to the OGF Executive Director.

saga-core-wg@ogf.org 35

GWD-R.94 Intellectual Property Issues October 11, 2009

4.3 Disclaimer

This document and the information contained herein is provided on an ”As
Is” basis and the OGF disclaims all warranties, express or implied, including
but not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

4.4 Full Copyright Notice

Copyright (C) Open Grid Forum (2007). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the OGF Document process must
be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

saga-core-wg@ogf.org 36

GWD-R.94 References October 11, 2009

FIXME: clarify data format/data model/byte ordering etc. issues
FIXME: Check with WS-Notification, WS-Eventing, WS-Relaibility
and WS-ReliabaleMessaging.
FIXME: point out the saga core sections used (task, attrib, . . .)
FIXME: add examples, also for async and monitoring
FIXME: recv − > receive

saga-core-wg@ogf.org 37

	Introduction
	Notational Conventions
	Security Considerations

	Requirements
	Use Case derived Requirements

	SAGA Message API
	General API Structure
	Endpoint URLs
	State Model
	Endpoint Properties
	Memory Management
	Asynchronous Notification and Connection Management
	Specification
	Specification Details
	Examples

	Intellectual Property Issues
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice

	References

