
SAGA Strawman API 1
Group: GGF SAGA-CORE-WG
Category: Recommendation
Title: SAGA API 1.0
Authors: Tom Goodale <goodale@cct.lsu.edu>

Shantenu Jha <s.jha@ucl.ac.uk>
Thilo Kielmann <kielmann@cs.vu.nl> ?????
Andre Merzky <andre@merzky.net>
John Shalf <jshalf@ncsa.uiuc.edu>
Christopher Smith <csmith@platform.com>

Date: May 01 2006
$Revision: 1.5 $

+---------------------------------------------------------------+

TODO: check with new GFD.63

Intellectual Property Statement
===============================

The GGF takes no position regarding the validity or scope of
any intellectual property or other rights that might be claimed
to pertain to the implementation or use of the technology
described in this document or the extent to which any license
under such rights might or might not be available; neither does
it represent that it has made any effort to identify any such
rights. Copies of claims of rights made available for
publication and any assurances of licenses. to be made
available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by
implementers or users of this specification can be obtained
from the GGF Secretariat.

The GGF invites any interested party to bring to its attention
any copyrights, patents or patent applications, or other
proprietary rights which may cover technology that may be
required to practice this recommendation. Please address the
information to the GGF Executive Director.

+---------------------------------------------------------------+

Copyright Notice
================

Copyright (C) Global Grid Forum (date). All Rights Reserved.
Distribution of this memo is unlimited.

This document and translations of it may be copied and
furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be

SAGA-CORE-WG SAGA 1.0



2 GWD-R
prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such
copies and derivative works. However, this document itself may
not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except
as needed for the purpose of developing Grid Recommendations in
which case the procedures for copyrights defined in the GGF
Document process must be followed, or as required to translate
it into languages other than English.

The limited permissions granted above are perpetual and will
not be revoked by the GGF or its successors or assigns.

This document and the information contained herein is provided
on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

+-------------------------------------------------------------+

SAGA 1.0 SAGA-CORE-WG



Contents 3
Contents

Titlepage 1
Contents 3
Introduction 4
1 Introduction 4

1.1 API Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
object 13
session 17
context 21
error 28
tasks 37
monitoring 48
attributes 66
namespaces 74
files 92
logicalfiles 103
job 111
stream 127
examples 140

SAGA-CORE-WG SAGA 1.0



4 GWD-R
1 Introduction

This document describes SAGA version 1.0, the Simple API for Grid Applications. SAGA has been defined
as a high-level API that directly addresses the needs of application developers. The purpose of SAGA is
twofold:

1. Provide a simple API that can be used with much less effort compared to the vanilla interfaces of
existing grid middleware. A guiding principle for achieving this simplicity is the 80–20 rule: serve 80 %
of the use cases with 20% of the effort. (compared to serving 100 % of all possible requirements)

2. Provide a standardized, common interfaces across various grid middleware systems and their versions.

1.1 API Scope

It had been decided to orient SAGA’s functionality on actual application needs. For this purpose, the SAGA
group has collected an as broad as possible set of use cases. The received use cases have been published as
GFD.xx [?]. From these use cases, the requirements on a SAGA API have been derived. The requirements
analysis has been published as GFD.yy [?].

In detail, the SAGA-RG received about 12-15 use cases (with some overlap) in the latter half of 2004, in
response to an open call for use cases. A list of the Use Cases can be found on the Wiki and the mailing list
archives:

Wiki: http://wiki.cct.lsu.edu/saga/space/Use+Cases
email archive: http://www.gridforum.org/mail archive/saga-rg/threads.html

In addition, several use cases were received by direct communication with other GGF groups: nine use
cases origine from the GridRPC-WG. They have varying degrees of detail and completeness, and are available
as gridrpc use cases.zip at the Wiki.

We have also looked at the OGSA use cases, published as GFD.29 [?]. The most significant OGSA
use cases in GFD.29 were determined to be the two scientific grid use cases; Severe Storm Modeling and
National Fusion Collaboratory. The OGSA use case document describes each use case at a rather high level,
and unfortunately does not include API information.

There are also several groups in GGF that have worked on high level interfaces and API’s; relevant
API’s and frameworks that have helped guiding the scope and designing the SAGA API can be found at:
http://wiki.cct.lsu.edu/saga/space/Related+Grid+APIs.

In addition to these groups within the GGF, there are several projects and groups that have worked on
APIs and frameworks that are similar in spirit to a SAGA API. These in turn have helped motivate a SAGA
API. See the latter half of http://wiki.cct.lsu.edu/saga/space/Related+Grid+APIs for a partial listing. The
work of all these groups has been considered while defining the SAGA API, and close collaboration with these
groups ensures good mapping consistency between the APIs. Simply put, SAGA covers all those efforts,
simplifies them, and provides a consistent look and feel. The SAGA Requirements Document [?] discusses
this topic in more detail.

Based upon the use cases received and the discussions of the SAGA design team, and the group as a
whole, it was felt that a two phase approach should be taken for developing the API.

1. The packages for phase (or version) one would be for the most significant and mature areas like file
transfer, streams, job submission. They can be understood as those which are required the most, if
not all use cases, which are well understood, and for which prototypes exist (at least partially). Along
with this first version of areas, the API also needs to define necessary auxiliary APIs, such as as session
and error handling etc.
This document specifies exactly the API for these areas, being referred to as SAGA Version 1.0.

2. The packages for the second phase will be those which are to be found in some use cases only, like
computational steering, or for an advert service.

Based upon the above reasoning, areas of functionality that were included in SAGA Version 1.0 are the
following. They are also referred to as SAGA’s packages.

SAGA 1.0 SAGA-CORE-WG



Introduction 5
• jobs

• files (and logical files)

• streams

• auxiliary API’s for

– session handle and security context

– errors

– asynchronous method calls (tasks)

– attributes

Possible areas of functionality (packages) to be included in future SAGA Versions are:

• steering and monitoring

• possibly combining logical/physical files (read on logical files)

• advert service (see GAT [?]: persistent information service)

• GridRPC [?]

• GridCPR [?]

• Task dependencies (simple work flows and batches)

• extensions to existing classes

The versions as described above do not imply a hierarchy of API interfaces: all packages are motivated
by their use cases, there is no split into ’lower level’ and ’higher level’ packages. The only exception is the
group of auxiliary API’s.

Dependencies between packages have been kept to a minimal level, to allow each package to be used
independently of any other; this also may allow partially conformant API implementations (see below).

Style and Design Issues:
------------------------

An Object Oriented (OO) approach was adopted, as it is easier
to produce a procedural API from an OO API than the converse,
and one of the goals of SAGA is to provide APIs which are as
natural as possible in each implementation language. Advanced
OO features such as polymorphism were avoided, bothe for
simplicity and also to avoid complications when mapping to a
procedural language.

The design team chose SIDL (Scientific Interface Definition
Language; http://www.llnl.gov/CASC/components/babel.html) to
specify the API. This provides a language neutral
represention of the API, but with well-defined syntax and
clear mapping to implementation languages.

The need for asynchroneous calls was explicitely stated by the
user community, as reasonable synchroneous behaviour cannot
always be expected in Grids. The team discussed the merits of

SAGA-CORE-WG SAGA 1.0



6 GWD-R
callback and polling mechanism and agreed that a non-blocking
polling mechanism would be used initially. The SAGA task
interface provides a mechanism to associate an asynchronous
call with each blocking API call, and a polling mechanism to
determine the state of the task; in the future a callback
mechanism may augment this.

Object Oriented versus Procedural, Language issues:
---------------------------------------------------

The abstract SAGA API specification is object oriented, and
specified in SIDL. Normative bindings for specific languages,
both object oriented and procedural, will be defined in
additional documents.

In several places, flags are denoted as bitfields
(specifically, integer enums which can be combined by logical
AND and OR), this is for notational convenience, and a
language binding should use the most natural mechanism
available.

The document contains several examples illustrating the use of
the APIs, and these have naturally been shown using specific
languages, such as C++. These examples should not be taken as
normative, but merely as illustrative of the use of the API.
When normaltivee language bindings are available these
examples may be revised to reflect these bindings. In order
to give a feeling of the Look-and-Feel in other languages,
Appendix A lists some of the examples in different languages;
again, Appendix A is illustrative, not normative.

SIDL
----

As stated above, SIDL was choosen as specification language
for this API specification. However, the document stays not
true to the SIDL language in several places. This section
gives a very short introdution to SIDL, and also lists a
number of ’Notes to Implementors’ on how to interprete this
specification.

SIDL from the Babel project is similar to COM and CORBA IDL,
but has an emphasis on scientific computing, with support of
multi dimensional arrays etc. Although the SAGA spec does not
use these features extensively, the multi language scope of
Babel for mappings from SIDL to programming languages appealed
to the authors of this specification.

The key SIDL concepts used in this document are

SAGA 1.0 SAGA-CORE-WG



Introduction 7

- package: specifies a name space (see note below)
- interface: a set of methods
- class: stateful object and set of methods
- method: a service a caller can invoke on a object
- type: contraint to value of method parameters

SIDL supports single inheritance of classes, and multiple
inheritance of interfaces. Method definitions have
signatures, which define what parameters are accepted on
method invocation. These parameters can be

- in: passed by value
- out: passed by reference
- inout: passed by reference

A implementation can destroy and re-allocate parameters which
are passed by reference, no assumptions in that respect should
be made to the implementation.

Notes to implementors:
----------------------

SIDL has the notion of packages, which are equivalent to Java
packages or C++ name spaces. Packages are used in this
specification, for the purpose of cross referencing different
API sections. The packages are not supposed to show up in the
implementations class names or name spaces, apart from the top
level ’saga’ name space.

SIDL does also have the notion of ’versions’, which are
actually required on packages. We do not use versions in this
specification, as the specification itself is versioned.

SIDL defines a string to be a char*. We feel however that
strings have more powerful and native expressions in some
languages (such as C++, Perl and Java), and use string for
these native types. a char* is expressed in this document
as array<byte,1> .

This specification defines all method calls as VOID (or rather
does not specify a return type for any method call at all).
Instead we define out parameters. Out parameters in SIDL are
passed by reference. However, for this specification we
expect language bindings to use one output parameter as return
value to function calls where appropriate.

We are using output parameter for the following reason: most
calls in the SAGA specification can be use asynchroneously.
As such, they return a task object, and have additional output

SAGA-CORE-WG SAGA 1.0



8 GWD-R
parameters as described in the spec. Only the synchroneous
versions do not return tasks, and can hence use normal output
parameters.

+-------------------------------------------------------------+

Compliant Implementations:
==========================

A implementation of the SAGA API is "SAGA compliant" if it
implements all objects and methods of the SAGA API
specification. However, the implementation MAY throw a
NOT\_IMPLEMENTED exception for calls; however, that exception
is to be used only in necessary cases, for example if a
underlying Grid Middleware does not provide some capability,
and if that capability can also not be emulated. The
implementation MUST carefully document and motivate the use of
the NOT\_IMPLEMENTED exception.

The semantics for all methods is explicitely described for all
methods, and must be followed by compliant implmentations,
unless explicitely stated otherwise.

Also, a compliant implementation MUST follow the SAGA API
specification both syntactically and semantically. The
consistency model supported by the implementation MUST be
documented. The thread safety or unsafety of the
implementation MUST be documented. The underlying middleware
security model MUST be documented, as MUST its mapping to the
SAGA::Context object.

A implementation is "partial SAGA compliant" if it follows the
comformance guidlines above, but implements only some packages
(some objects are not implemented).

All other implementations of the API are not "SAGA compliant".

Please note that the current specification does not as of yet
define ’subsystens’ sufficiently well -- that will be fixed in
the final specification.

Notes to implementors:
----------------------

Early versus late bindings:

An implementation may choose to use late binding to
middleware. That means that the middleware binding might

SAGA 1.0 SAGA-CORE-WG



Introduction 9
change between subsequent SAGA calls. For example, a file
open might be performed via the HTTP binding, but a subsequent
read() on that file might be performed with GridFTP.

Late bindings has some advantages in terms of flexibility and
error recovery. However, it implies a certain amount of
object state to be kept on client side, which might have
semantic consequences. For example, a file write might fail
on HTTP for some reasons, but might succeed via GridFTP. The
situation might be inversed for file reads. In order to allow
alternating access via both protocols, the file pointer
information (e.g. the file object state) MUST be hold on
client side.

It is left to the later experience documents about the SAGA
API implementations to discuss potential problems arising from
early/late binding implementations.

+-------------------------------------------------------------+

Security considerations:
========================

As the API is supposed to get implemented on very different
types of Grid (and non-Grid) middleware, it does not specify a
single security model, but rather provides hooks to interface
to various security models - see the documentation of
SAGA.Context for details. A SAGA implementation is considered
secure if it fully supports/implements the security model of
the middleware layer(s) it depends upon, and does not provide
any (intentional and unintentional) means to bypass that
security model, and does not weaken the security model
policies.

+-------------------------------------------------------------+

Relation to OGSA:
=================

Although we feel that widely off target, the SAGA API
specification effort has often been compared to, and seen in
rivalry to the OGSA standardization effort. That is NOT
correct. Reasons are the following:

- OGSA strives to define interfaces on Service and middleare
level,

SAGA aims on application level.

SAGA-CORE-WG SAGA 1.0



10 GWD-R

- OGSA strives to be complete, and to fully cover any
potential Grid Service in its architectural frame.

SAGA is by definition incomplete (80:20 rule), and aims
for coverage of the mostly used grid functionalities on
application level, with NO ambition to be complete in any
sense.

- OGSA is an Architecture (or a framework for an
architecture).

SAGA is an API.

- OGSA cannot sensibly interface to SAGA.

SAGA implementations can interface to (a subset of) OGSA
compliant services (and in fact usually will do so).

- The OGSA spec aims at middleware developers.

The SAGA spec aims at application developers.

For these and more reasons we think that SAGA and OGSA are
complemetary, but by NO means competetive. The only
communality we are aware of is the broadness of both
approaches: both OGSA and SAGA strive to cover more than one
specific area of, well, middleware and application,
respectively.

+-------------------------------------------------------------+

The ’URL Problem’:
==================

The end user might expect the SAGA API, as a high level and
simple API, to handle protocol specific issues transparently.
in particular, she might expect that SAGA gracefully and
intelligently handles an URL such as http://host.net/tmp/file
even if HTTP as protocol is, in fact, not available at
host.net, but for example the FTP protocoll is,

However, that innocent looking problem has farreaching
consequences, and in fact is, to our best knowledge, unsolved.
Consider the following server setup on host.net:

SAGA 1.0 SAGA-CORE-WG



Introduction 11
FTP Server: server root: /var/ftp/pub/
HTTP Server: server root: /var/http/htdocs/

The entity described by the two URLs

http://host.net/tmp/file
ftp://host.net/tmp/file

does hence refer to distinct files on host.net! Even worse:
it might be impossible to access the HTTP file space via the
FTP service, and vice versa.

Similar consideration hold for absolute file names, and for
file names relative to the users home dir: consider

httpd://host.net/\~{}merzky/tmp/file

That URL point on my linux box to

file:////home/merzky/public\_html/tmp/file

and not, as could have been expected, to

file:////home/merzky/tmp/file

Hence, a reliable translation of URLs between different
protocols (schemes) is only possible, if the exact server
setup of all affected protocol serving services is known.
That knowledge is often not available.

Further, even if a correct translation of protocols and hence
URLs suceeds, there is no guarantee that the referred file is
actually available via that protocol -- that again depends on
the service configuration.

SAGA ’solution’ to the ’URL Problem’:
-------------------------------------

1) A SAGA compliant implementation MAY be able to
transparently translate URLs, but is not required to do so.
Futher, that behaviour CAN vary during the runtime of the
program.

2) The SAGA API specification allows the use of the
placeholder ’any’ (as in any://host.net/tmp/file). An SAGA
compliant implementation MAY be able to choose a suitable
protocol.

3) Abstract name spaces, such as the name space used by
Replica Systems, or by Grid File Systems, efficiently and
transparently hides that problem from the end user. SAGA

SAGA-CORE-WG SAGA 1.0



12 GWD-R
encourages implementations to use such name spaces.

4) A URL which cannot be handled for the stated reasons MUST
cause the exception Incorrect\_URL to be thrown. Note that
this holds only for those cases, where a given URL cannot
be handled \emph{as such}, e.g. because the protocol is
unsupported, any:// cannot be handled, or a necessary URL
translation failed. Any other error related to the URL
(e.g. file at service is not available) MUST be indicated
by the error codes/exceptions as state at the method
specifications in this document.

+-------------------------------------------------------------+

Additional Notes
================

- For files, flags are used to specify if a open is
truncating, creating, and/or appending to an existing
entity. For jobs, and in particular for file staging, the
LSF scheme is used (e.g. "url >> local\_file" for appending a
remote file to a local one after staging). We are aware of
that seeming inconsistency. However, we think that a
forcefull unification of both schemes would be more awkward
to use, and ate the same time less useful.

- About consistency we had a lengthy discussion, with the
aggreement that the consistency model is to be defined and
documented by the implementation. The API spec itself does
not assume any specific consistency model, as we feel that
(a) POSIX consistency is not achievable within reasonable
effort/performance, (b) if the user assumes the worst (no
consistency), he will still be able to make good use of the
API, and (c) reality will be somewhere in the middle.

+-------------------------------------------------------------+

SAGA 1.0 SAGA-CORE-WG



object 13

+-------------------------------------------------------------+

#####
# # ##### # ###### #### #####
# # # # # # # # #
# # ##### # ##### # #
# # # # # # # #
# # # # # # # # # #
##### ##### #### ###### #### #

+-------------------------------------------------------------+

Summary:
========

The basic SAGA object interface provides methods which are
essential for all SAGA objects. For now, it provides a unique
ID which helps to maintain list of SAGA objects in the
application, and inspection to allow to test for the objects
type and the attached session.

+-------------------------------------------------------------+

Specification:
==============

package saga.object
{
enum object_type
{
Unknown = -1,
Exception = 1,
Session = 2,
Context = 3,
NSEntry = 4,
NSDirectory = 5,
File = 6,
Directory = 7,
LogicalFile = 8,
LogicalDirectory = 9,
JobServer = 10,
Job = 11,
JobDescription = 12,
Session = 13,
StreamServer = 14,
Stream = 15,

}

SAGA-CORE-WG SAGA 1.0



14 GWD-R

interface object
{
get_id (out int id );
get_type (out object_type type );
get_session (out session session);

}
}

+-------------------------------------------------------------+

Details:
========

class object:

- get_id:
Purpose: query the object ID
Format: get_id (out int id);
Inputs: none
Outputs: id id of object

- get_type:
Purpose: query the object type
Format: get_type (out object_type type);
Inputs: none
Outputs: type type of object

- get_session:
Purpose: query the objects session
Format: get_session (out session s);
Inputs: none
Outputs: s session of object
Throws: IncorrectState
Notes - if no specific session was attached to the

object on creation time, the default SAGA
session is returned.

- some objects don’t have sessions attached,
such as job_description or the session object
itself. For such objects, the method raises
an InvalidState exception.

+-------------------------------------------------------------+

Examples:
=========

// c++ example

SAGA 1.0 SAGA-CORE-WG



object 15

// have 2 objects, streams and files, and do:
// - read 100 bytes
// - skip 100 bytes
// - read 100 bytes

char out1[100];
char out2[100];
char out_last[100];

// create map
std::map <saga::task, saga::object> tmap;

// create objects, and map
saga::file f (url[1]);
saga::stream s (url[2]);

s.connect ();

// create tasks for reading first 100 bytes, and map
saga::task t1 = f.read <saga::task> (100, buf1, &out1); tmap[t1] = f;
saga::task t2 = s.read <saga::task> (100, buf2, &out2); tmap[t2] = s;

// put in same container...
saga::task_container tc;

tc.add (t1);
tc.add (t2);

// ... and wait who gets done first
while ( saga::task t = tc.wait () )
{

// depending on type, skip 100 byte then create a
// new task for the next read, and re-add to the tc

if ( tmap[t].get_type () == saga::object::File )
{
saga::file (tmap[t]).seek (100, SEEK_SET);
tc.add (saga::file (tmap[t]).read <saga::task> (100, &out_last))

}
else
if ( tmap[t].get_type () == saga::object::Stream )
{
saga::stream (tmap[t]).read (100, NULL); // ignore result
tc.add (saga::stream (tmap[t]).read <saga::task> (100, &out_last))

}
else
{
throw saga::exception ("Something went terribly wrong");

}

SAGA-CORE-WG SAGA 1.0



16 GWD-R
// tc is filled again, we run forever, read/seeking from
// whoever we find after the wait.

}

+-------------------------------------------------------------+

Notes:
======

Really useful will the base saga object once we add
serialization - it will then be possible to serialize objects
(e.g. tasks!), and to resume operations on them at a later
point.

+-------------------------------------------------------------+

SAGA 1.0 SAGA-CORE-WG



session 17

-------------------------------------------------------------+

#####
# # ###### #### #### # #### # #
# # # # # # # ## #
##### ##### #### #### # # # # # #

# # # # # # # # # #
# # # # # # # # # # # ##
##### ###### #### #### # #### # #

-------------------------------------------------------------+

Summary:
========

The session object provides the functionality of a session
handle, which isolates independent sets of SAGA objects from
each other. Sessions also support the management of security
information (see saga::context).

+-------------------------------------------------------------+

Specification:
==============

package saga.session
{
class session
{
CONSTRUCTOR (out session obj);
DESTRUCTOR (in session obj);

add_context (in context context);
remove_context (in context context);
list_contexts (out array<context,1> contexts);

}
}

+-------------------------------------------------------------+

Details:
========

class session:
--------------

Multiple sessions can co-exist. A single session can be
shared between threads.

SAGA-CORE-WG SAGA 1.0



18 GWD-R

A context (which encapsulates security information in SAGA)
can be attached to a session. A SAGA implementation MAY
allow to attach more than one context to a single session.
However, a single context instance can get attached only
once to a specific session instance.

A session can be used as first parameter to all SAGA object
instantiation calls. SAGA objects created from other SAGA
objects inherit its session. Only some objects do not need
a session handle on creation time, and can hence be shared
between sessions. That includes:
- context
- job_description
- metric
- utility classes

If the session handle is omitted as first parameter, a
default session handle is used, with default security
context(s) attached. Example:

// create a file object in a specific session:
saga::file f (session, url);

// create a file object in the default session:
saga::file f (url);

Any SAGA operation CAN throw a IncorrectSession exception if
involves two different session handles.

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (out session obj)
Inputs: none
Outputs: obj: the newly created object

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in session obj)
Inputs: obj: the object to destroy
Outputs: none

- add_context
Purpose: attach a security context to a session handle
Format: add_context (in context context);
Inputs: context Security context to add
Outputs: none
Throws: BadParameter

AlreadyExists

SAGA 1.0 SAGA-CORE-WG



session 19
- remove_context
Purpose: detach a security context from a session handle
Format: add_context (in context context);
Inputs: context Security context to remove
Outputs: none
Throws: BadParameter

DoesNotExist

- list_contexts
Purpose: retrieve all contexts attached to a session
Format: list_contexts (out array<context>

contexts);
Inputs: none
Outputs: contexts list of contexts of this

session
Note: - a empty list is returned if no context is

attached, yet.
- contexts may get added to a session by default.
hence the returned list MAY be non empty even
if no add_context was ever called before.

+-------------------------------------------------------------+

Examples:
=========

// c++ example
saga::session s;
saga::context c (saga::context::X509);

s.add_context (c);

saga::directory d ("gsiftp://remote.net/tmp/", s);
saga::file f = dir.open ("data.txt");

// file has same session attached as dir

+-------------------------------------------------------------+

Notes:
======

Most libraries use session handles to distinguish scope
(security, settings, lifetime) of objects etc.

GAT used a context object, which is a session handle
with attached information (security context, preferences)
and some methods (get ’self’, init environment, current
state, ...).

SAGA-CORE-WG SAGA 1.0



20 GWD-R

Proposal: re-use what we have in GAT: falls back to the well
known paradigm of a session handle), plus give
potential for a few more features (see above).

+-------------------------------------------------------------+

SAGA 1.0 SAGA-CORE-WG



context 21

+-------------------------------------------------------------+

#####
# # #### # # ##### ###### # # #####
# # # ## # # # # # #
# # # # # # # ##### ## #
# # # # # # # # ## #
# # # # # ## # # # # #
##### #### # # # ###### # # #

+-------------------------------------------------------------+

Summary:
========

The context provides the functionality of a security
information container. A context is created, and attached
to a session handle. As such it is available to all objects
instanciated in that session. Multiple contexts can co-exist
on one handle. A single context can be shared between threads
and sessions. SAGA Objects created from other SAGA Objects
inherit its session and also its context(s).

A implementation CAN implement various types of Security
contexts. or just one type. The type of context to be
created is specified by a enum which is the only argument to
the context constructor. The default type is unknown. Other
methods than get_type MUST NOT be called on a context with
type Unknown.

Every context has a specific set of attributes which can be
set/get via the SAGA attribute interface. Exactly what
attributes a context offers depends on its type. A context
MUST issue an error if attributes not corresponding to its
type are set or requested.

For incoming interactions (streams, monitoring, steering),
read only contexts are used to inform the application about
the requestor idendity. To support that, a number of specific
getter methods are available.

+-------------------------------------------------------------+

Specification:
==============

package saga.context
{
enum context_type
{

SAGA-CORE-WG SAGA 1.0



22 GWD-R
Unknown = -1,
X509 = 1, // Globus
MyProxy = 2, // X509 extended
KeyStore = 3 // Unicore
SSH = 4, // SSH
Kerberos = 5, // Kerberos
UserPass = 6, // Unix default

}

class context : implements-all saga::object
implements-all saga::attribute
implements-all saga::monitorable

{
CONSTRUCTOR (in context_type type,

in session session);
out context context);

DESTRUCTOR (in context context);

get_type (out context_type type);
}

}

+-------------------------------------------------------------+

Details:
========

class context:
--------------

- CONSTRUCTOR:
Purpose: create a security context
Format: CONSTRUCTOR (in context_type type,

in session session,
out context context);

Inputs: type type of context
Outputs: context the newly created context
Throws: BadParameter
Notes: - if NO session handle is defined for at context

creation, the resulting context is NOT bound
to any session, any must be added to a session
in order to get used.

- BadParameter is thrown if a context type is
not supported (NOT NotImplemented).

- DESTRUCTOR:
Purpose: destroy a security context
Format: DESTRUCTOR (in context context);
Inputs: context the context to destroy
Outputs: none

SAGA 1.0 SAGA-CORE-WG



context 23

- get_type:
Purpose: query the context type
Format: get_type (out context_type type);
Inputs: none
Outputs: type type of context

+-------------------------------------------------------------+

Examples:
=========

// c++ example
saga::session s;
saga::context c (saga::context::X509);

s.add_context (c);

saga::directory d ("gsiftp://remote.net/tmp/", s);
saga::file f = dir.open ("data.txt");

// file has same session attached as dir

+-------------------------------------------------------------+

Notes:
======

- Following attributes MUST be supported by the
correponding context types:

Unknown:
No attributes supported

X509:
Set/Get:
X509_Proxy (/tmp/x509...)
X509_CertDir (/etc/grid-security/certificates/)

Get:
X509_RemoteDN
X509_RemoteHost
X509_RemotePort

MyProxy
Set/Get:
MyProxy_UserName (anonymous)
MyProxy_Password (anon)

Get:
MyProxy_RemoteUserName

SAGA-CORE-WG SAGA 1.0



24 GWD-R
MyProxy_RemoteHost
MyProxy_RemotePort

KeyStore
Set/Get:
KeyStore_Location ($HOME/.keystore)
KeyStore_Password (anon)

Get:
KeyStore_RemoteUserName
KeyStore_RemoteHost
KeyStore_RemotePort

SSH
Set/Get:
SSH_PrivKey ($HOME/.ssh/id_dsa)
SSH_PublKey ($HOME/.ssh/id_dsa.pub)

Get:
SSH_RemoteUserName
SSH_RemoteHost
SSH_RemotePort

Kerberos
Set/Get:
Kerberos_Ticket (/tmp/kticket...) ?

Get:
Kerberos_RemoteUserName
Kerberos_RemotePort
Kerberos_RemotePort

UserPass
Set/Get:
UserPass_UserName (anonymous)
UserPass_Password (anon)

Get:
UserPass_RemoteUserName
UserPass_RemoteHost
UserPass_RemotePort

- Other types MAY be specified by a SAGA
implementation.

- Default values can be specified by a SAGA
implementation.

- Should we also specify the default values? Mostly
simple I guess. But then the defaults may differ per
platform and installation, so leaving that to the
implementation gives more flexibility...

+-------------------------------------------------------------+

SAGA 1.0 SAGA-CORE-WG



context 25

Examples:
=========

// c++ example
saga::context c_1 (saga::context::SSH); // default attribs apply
saga::context c_2 (saga::context::FTP);

c_2.set_attribute ("UserName", "myself");
c_2.set_attribute ("Password", "secret");

saga::session s;
s.add_context (c_1);
s.add_context (c_2);

saga::file f ("any://remote.net/tmp/data.txt", s);

// file can be accessed now via ssh or ftp

+-------------------------------------------------------------+

Notes:
======

For encapsulating security information, a security context
is created and associated with a context (aka session
handle). The security context can hold information about
X509 certificates, private/public keys, username/password,
kerberos tickets etc., and provides these information to
the SAGA implementation as needed.

A SAGA implementation MAY be able to attach more than one
security context to one context.

Moved from Stream:
------------------

We need to do something with a SAGA context and security
contexts.

context: This is an opaque datastructure that is used
throughout the SAGA APIs. It hides key state
information such as the security context and
other shared data. It is passed in explicitly
in order to support thread safety.

interface security_info:

security_info encapsulates information about the host or

SAGA-CORE-WG SAGA 1.0



26 GWD-R
authenticated user on the other end of a stream/socket
connection.

The information encapsulated by this object can be used to
make authorization/access-control decisions based on the
identity of the remote user or host.

The security_info is an opaque structure that can be
interrogated (via a different api) to determine the identity
of the connected host. This information is essential for
supporting Authorization and access control mechanisms.
convenience functions that encode some of the most commonly
required information used to make authorization decisions.
Additional information that can be used to make authorization
decisions or provide other identifying features for the
remotely connected host or user can be interrogated using the
SAGA "parameters" API that the security_info object
implements. These parameters are always interrogated as
string-based Key-value pairs.

- get_remote_user_name
Purpose: Gets the username associated with the remotely

connected entity (if available).
Format: get_remote_user_name (out string username);
Inputs: none
Outputs: username: username assoc with remote

connection
Notes: - returns an empty string if UserName not

available.

- get_remote_dn
Purpose: Gets the distinguished name associated with the

remotely connected entity (if available).
Format: get_remote_dn (out string dn);
Inputs: none
Outputs: dn Distinguished Name assoc

with remote connection
Notes: - returns an empty string if that information

is not available.

- get_remote_host
Purpose: Gets the hostname of the other side of

connected stream (if available).
Format: get_remote_host (out string hostname);
Inputs: none
Outputs: hostname: hostname assoc with remote

connection
Notes: - returns an empty string if that information

is not available.

- get_remote_port

SAGA 1.0 SAGA-CORE-WG



context 27
Purpose: Gets the portnumber of the other side of

connected stream (if available).
Format: get_remote_port (out int port);
Inputs: none
Outputs: port: portnumber assoc with remote

connection
Notes: - returns ’0’ if that information is not

available.

+-------------------------------------------------------------+

SAGA-CORE-WG SAGA 1.0



28 GWD-R

+-------------------------------------------------------------+

#######
# ##### ##### #### #####
# # # # # # # # #
##### # # # # # # # #
# ##### ##### # # #####
# # # # # # # # #
####### # # # # #### # #

+-------------------------------------------------------------+

Summary:
========

Each SAGA API call has an associated list of exceptions it can
throw. These exceptions implement the saga::exception
interface.

All objects in SAGA implement error_handler, which allows a
user of the API to query for the latest error associated with
a saga object. In languages with exception facilities, such
as Java, C++ and Perl, the language binding may allow
exceptions to be thrown instead. Bindings for languages
without exception handling capabilities will provide a
mechanism to examine nested exceptions.

For asynchroneous operations, the error handler interface is
provided by the task instance performing the operation.

Some API methods return POSSIX errno codes for errors. That
holds in particular for read(), write() and seek().

The details of the error handling mechanisms will be defined
in the respective language bindings.

+-------------------------------------------------------------+

Specification:
==============

package saga.error
{
enum error
{
// add errno as defined in POSIX here

}

class exception
{

SAGA 1.0 SAGA-CORE-WG



error 29
CONSTRUCTOR (in Object object,

in string message);
DESTRUCTOR (void);

what (out string message);
get_message (out string message);
get_object (out Object object);

}

interface error_handler
{
get_error (out exception error);
get_error_message (out string message);
has_error_type (out boolean state);

}
}

+-------------------------------------------------------------+

Details:
========

SAGA provides a set of well defined error states (exceptions)
which MUST be supported by the implementations. If these
error states are non-critical, critical or fatal depend on (A)
the specific implementation (one implementation might be able
to recover from an error while another implementation might
not), (B) the specific application use case (if a ’file does
not exist’ error is fatal depends if the application really
needs information from that file).

Several SAGA methods do not raise exceptions on some error
conditions, but return an error code. An example for that
is file.read, which may return an error code indicating that
a on nonblocking I/O does not have any data available right
now. The error code used in SAGA are identical to the
definitions for errno as defined by POSIX, and SHOULD be
used in semantically identical manner.

The exceptions available in SAGA are listed below, with a
number of explicit examples on when that exception should be
thrown. These examples are not normative, but illustrative.
The spec defines the set of allowd exceptions for each method
explicitely - that set is normative.

The exceptions below are sorted, most specific ones first,
least specific ones last. On any error condition, the most
specific exception possible MUST be thrown.

The SAGA spec defines what exceptions can be thrown by what
method. However, depending on the implementation, other

SAGA-CORE-WG SAGA 1.0



30 GWD-R
exceptions can be thrown as well. For example, an
implementation might have authorization on specific attribute
settings, and could throw a AuthorizationFailed exception on
attempts to write that attribute, even if that is not specified
in the SAGA spec. New SAGA exception types SHOULD NOT be
defined by the implementation.

Depending on the language bindings, the listed exceptions are
derived from the base SAGA exception types, or are error codes
with that specific name etc. For details, see the language
bindings.

NotImplemented:
---------------

If a method is specified in the SAGA API, but cannot
be provided by a specific SAGA implementation, this
exception MUST be thrown. See also the notes about
compliant implementations in the instruction.

IncorrectSession:
-----------------

A method was invoked which effects two object instances
which belong to different SAGA sessions. Currently, the
SAGA API does not provide any method which could
potentially have colliding sessions - that exception is
defined for future SAGA extensions, e.g. work flows.

AuthentificationFailed:
-----------------------

A operation failed because none of the available contexts
of the used session could be used for successfull
Authenitification.

Example:
- a remote host did not accept a X509 certificate because
the respective CA is unknown there.

AuthorizationFailed:
--------------------

A operation failed because none of the available contexts
of the used session could be used for successfull
Authorization. Authentification did succeed.

SAGA 1.0 SAGA-CORE-WG



error 31
Example:
- although a certificate was valid on a remote GridFTP
server, the ID could not be mapped to a valid local
user ID.

PermissionDenied:
------------------

A operation failed because the idendity used for the
operation did not have sufficient permissions to perform
the operation successfully. Authentification and
authorization have been successfull.

Example:
- although a user coould login to a remote host via
GridFTP and could be mapped to a local user, the write
on /etc/passwd failed.

BadParameter:
-------------

This exception indicates that any of the method call
parameters is ill-formed, invalid, out of bound or
otherwise not usable. The error message MUST give
specific information on what parameter caused that
exception, and why.

Examples:
- a specified context type is not supported by the
implementation

- a file name specified is invalid, e.g. too long, or
contains characters which are not allowed

- an ivec for scattered read/write is invalid, e.g. has
offsets which are out of bound, or non-allocated
buffers

- a buffer to be written and the specified lengths are
incompatible

- an enum specified is not known
- flags specified are incompatible (ReadOnly | WriteOnly)

IncorrectState:
---------------

This exception indicates that the object a method was
called on is in a state where that method cannot possibly
succeed. A change of state might allow the method to
succeed with the same set of parameters.

SAGA-CORE-WG SAGA 1.0



32 GWD-R
Examples:
- calling read on a stream which is not connected
- calling write on a file which is opened read only
- calling run on a task which was cancelled
- calling resume on a job which is not suspended

AlreadyExists:
--------------

This exception indicates that an operation cannot succeed
because an entity to be created or registered does already
exist or is already registered, and cannot be overwritten.
Explicit flags on the method invocation may allow the
operaion to succeed, if they for example indicate that
overwrite is allowed.

Examples:
- a file to be created already exists
- a target for a file move already exists
- a name to be added to a logical file is already known
- a metric to be added to a object has the same name as
an existing metric on that object

- a context to be added to a session was added earlier

DoesNotExist:
-------------

This exception indicates that an operation cannot succeed
because a required entity is missing. Explicit flags on
the method invocation may allow the operaion to succeed,
if they for example indicate that create is allowed.

Examples:
- a file to be moved does not exist
- a directory to be listed does not exist
- a name to be replicated is not in a replica set
- a name to be deleted is not in a replica set
- a metric asked for is not known to the object
- a context asked for is not known to the session
- a task asked for is not in a task_container
- a attribute asked for is not supported
- a job asked for by id is not known by the backend

ReadOnly:
---------

A attribute or metric was attemted to be changed but is
read-only, e.g. is provided only for informational

SAGA 1.0 SAGA-CORE-WG



error 33
purposes. That exception does NOT apply for files or
streams which are in incorrect state (i.e. not readable or
writable) - that would cause a IncorrectState exception.

Examples:
- attempt to change an attribute which is read only
- attempt to change or update a metric which is read only

ReadError:
----------

This exception indicates that a read operation on a file,
directory or stream failed, although the object in
question has been in the correct state (i.e. readable).
On NonBlocking objects, reads might frequently fail but
might succeed in a later call (EAGAIN) - in such cases
this exception MUST NOT be thrown, as that situation does
not indicate an error.

Examples:
- a read on a file failed because the file was opened
read-only

- a read on a stream failed because no data are available

WriteError:
-----------

This exception indicates that a write operation on a file,
directory or stream failed, although the object in question
has been in the correct state (i.e. writable). On
NonBlocking objects, writes might frequently fail but might
succeed in a later call (EAGAIN) - in such cases this
exception MUST NOT be thrown, as that situation does not
indicate an error.

Timeout:
--------

This exception indicates that a remote operation did not
complete successfully because the network communication or
the remote service timed out. That exception MUST NOT be
thrown if a timed wait times out - that is indicated by
the waits return value, and does not pose an error
condition. The time waited before a Timout is indicated
depends on the implementation and on the backend, and
SHOULD be documented where it is implementation specific.

Examples:

SAGA-CORE-WG SAGA 1.0



34 GWD-R
- a remote file authorization request timed out
- a remote data base access timed out
- a host name resolution timed out
- a started file transfer stalled and timed out

NoSuccess:
----------

This exception indicates that an operation failed
semantically, e.g. the operation was not successfully
performed. This exception is the least specific
excedtion defined in SAGA, and CAN be used for all error
conditions which do not indicate a more specific
exception.

Examples:
- a once open file is not available right now
- a backend did not answer a request about job state
- a file copy was interrupted mid-stream

class exception:
----------------

This is the basic exception interface for all exceptions
thrown by a SAGA object implement.

Note that saga::excpetion does NOT implement the
saga::object interface.

- CONSTRUCTOR
Purpose: create the exception
Format: CONSTRUCTOR (in object object,

out exception e);
Inputs: object: the object associated with the

excepotion.
Outputs: e: the newly created exception

- DESTRUCTOR
Purpose: destroy the exception
Format: DESTRUCTOR (in exception e);
Inputs: e the exception to destroy
Outputs: none

- what
what is an alias for get_message.

SAGA 1.0 SAGA-CORE-WG



error 35

- get_message
Purpose: gets the message associated with an exception
Format: get_message (out string message);
Inputs: none
Outputs: message the error message

- get_object
Purpose: gets the SAGA object associated with exception
Format: get_message (out object o);
Inputs: none
Outputs: o: the object associated with the

exception

+-------------------------------------------------------------+

Examples:
=========

// c++ example
int main ()
{
try
{
saga::file f ("file://localhost/etc/passwd");
f.copy (/home/user/passwd.bak");

}
catch ( const saga::exception::PermissionDenied & e )
{
std::cerr << "SAGA error: No Permissions!" << std::endl;

}
catch ( const saga::exception & e )
{
std::cerr << "SAGA error: " << e.what () << std::endl;

}

return (0);
}

+-------------------------------------------------------------+

Notes:
======

There was discussion of using tagging interfaces, such as

class LibraryException extends exception {
}

class LibraryFatalException implements-all LibraryException {

SAGA-CORE-WG SAGA 1.0



36 GWD-R
}

class LibraryRecoverableException
implements-all LibraryException {

}

class BackEndException extends exception {
}

class BackEndFatalException implements-all BackendException {
}

class BackendRecoverableException
implements-all BackendException {

}

In languages which allow exceptions, to allow a user of the
API to additionally catch exceptions based upon the types,
however such a tagging interface approach does not enforce
that an exception falls into one of the types.

+-------------------------------------------------------------+

SAGA 1.0 SAGA-CORE-WG



tasks 37

+-------------------------------------------------------------+

#######
# ## #### # #
# # # # # #
# # # #### ####
# ###### # # #
# # # # # # #
# # # #### # #

+-------------------------------------------------------------+

Summary:
========

Operations performed in widely distributed environments may take
a long time to complete, and thus it is desirable to have the
ability to perform operations in an asynchronous manner. There
are many possible ways in which an asynchronous API may be
developed --- the notes for this API contain several
possibilities.

The main requirements the SAGA design team faced were ease of
implementation in different languages, the ability to be
implemented in a single-threaded environment, generality and ease
of use.

This document defines an API and a pattern which associates a
’task’ with each outstanding asynchronous operation. Each task
represents an asynchronous version of one SAGA API method, and
may have no one-to-one correspondence with any external process,
such as a job.

+-------------------------------------------------------------+

Specification:
==============

package saga.task
{
enum state
{

Unknown = -1,
New = 1,
Running = 2,
Done = 3,
Failed = 4

}

SAGA-CORE-WG SAGA 1.0



38 GWD-R

class task : implements-all saga::object
implements-all saga::monitorable

{
// no contructor
DESCTRUCTOR (in Task obj);

run (void);
cancel (void);
wait (in double timeout,

out boolean finished);

get_state (out State state);
get_error (out Exception e);

rethrow (void);

// Metric:
// name: state
// desc: "fires if on task state change, and
// has the value of the task state enum."
// mode: Read
// Unit: 1
// Type: Enum
// Value: "Unknown"

}

class task_container : implements-all saga::object
implements-all saga::monitorable

{

CONSCTRUCTOR (out task_container obj);
DESCTRUCTOR (in task_container obj);

add (in Task task,
out int cookie);

remove (in int cookie);

run (void);
cancel (void);
wait (in double timeout,

int bool all,
out Task finished);

get_tasks (out array<Task,1> tasks);
get_states (out array<State,1> states);

// Metric:
// name: state
// desc: "fires if on changes of any task in container,

SAGA 1.0 SAGA-CORE-WG



tasks 39
// and has the value of that tasks cookie."
// mode: Read
// Unit: 1
// Type: int
// Value: "0"

}
}

+-------------------------------------------------------------+

Details:
========

// FIXME
Each object in the SAGA API defines a create_task_factory method,
which creates a corresponding factory object implementing the
same set of methods as the original object, but returning a
saga::task object.

E.g. the saga::file class has a corresponding
saga::directory_task_factory class, objects of which
are instantiated by invoking directory.create_task_factory. This
directory_task_factory object has the same methods as those of
the directory object; invoking any of these methods creates a
task object representing an asynchronous call.

Input and Output arguments of API calls MUST not be accessed
or changed until the asynchronous task has completed; i.e.
until ’wait’ has been invoked on the task object and returned
that the task state is Done or Failed. Output values are only
defined if the task is in Done state.

enum state:

A task can be in one of several possible states:

New
The task has been created but not yet started.
Tasks start in this state, it is initial

Running
The run() method has been invoked on the task.

Failed
The asynchronous operation has unsuccessfully finished,
or has been cancelled.
This state is final.

Done
The asynchronous operation has successfully finished.

SAGA-CORE-WG SAGA 1.0



40 GWD-R
This state is final.

class Task:

Objects of this class represent asynchronous API calls.
They are only created by invoking a method on a saga
object which returns a task object (with saga::ASync
or saga::Task).

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in Task obj)
Inputs: obj: the object to destroy
Outputs: none

- run
Purpose: Start the asynchronous operation.
Format: run ();
Inputs: none
Outputs: none
Throws: IncorrectState

- wait
Purpose: Wait for the task to finish.
Format: wait (in double timeout,

out boolean done);
Inputs: timeout: number of seconds to wait
Outputs: done: indicating if the task is

done running
Throws: IncorrectState
Notes: - timeout < 0.0 wait forever

- timeout = 0.0 return immediately
- timeout > 0.0 wait for this number of seconds
- a task must be in New, Running, Done or Failed
state for wait to succeed.
Otherwise an exception is thrown.

- if the task is Running or New, and on
timout of wait is still Running or New,
false is returned

- if the task is Running or New, and on
timout of wait is not Running or New
anymore, true is returned. True hence
indicates that the task reached a final state.

- cancel
Purpose: Cancel the asynchronous operation.
Format: cancel ();
Inputs: none
Outputs: none
Notes: - cancel can return immediately, even if the

SAGA 1.0 SAGA-CORE-WG



tasks 41
operation is neither done nor definitely
cancelled. The state remains ’Running’ until
the cancel operation succeeded - the state then
changes to ’Failed’.

- Information relying on the task state are
undefined after calling cancel.

- getState
Purpose: Get the state of the task.
Format: getState (out State state);
Inputs: none
Outputs: state: state of the task.

- getError
Purpose: Get the error of a failed task.
Format: getState (out exception e);
Inputs: none
Outputs: e: exception of task.

- rethrow
Purpose: re-throw any error a failed task catched.
Format: throw ();
Inputs: none
Outputs: none

class task_container:

When there are many asynchronous tasks it would be
inefficient to invoke the wait() method on each one
sequentially. The task_container class provides a mechanism
to wait and other operations for a set of tasks.

- add
Purpose: Add a Task to a task_container.
Format: add (in Task task);
Inputs: task: task to add to the

task_container
Outputs:

- remove
Purpose: Remove a Task from a task_container.
Format: remove (in Task task);
Inputs: task: task to remove from the

task_container
Outputs: none
Throws: DoesNotExist

- run
Purpose: Start all asynchronous operations in the

container.

SAGA-CORE-WG SAGA 1.0



42 GWD-R
Format: run ();
Inputs: none
Outputs: none
Throws: IncorrectState

- wait
Purpose: Wait for one or more of the tasks to finish.
Format: wait (in double timeout,

in bool all
out Task done);

Inputs: timeout: number of seconds to wait
all: if true wait for all tasks

Outputs: done: finished task
Throws: IncorrectState
Notes: - < 0.0 wait forever

- = 0.0 return immediately
- > 0.0 wait for this number of seconds
- for the exception condition, see the wait
description in the task class.

- if ’all’ is true, the wait call returns only
if all tasks in the container are finished,
or on timeout, whatever occurs first.
The output task is then any of the finished
tasks.

- cancel
Purpose: Cancel all the asynchronous operations in the

container.
Format: cancel ();
Inputs: none
Outputs: none
Notes: - see semantics of task cancel.

- get_states
Purpose: Get the states of all tasks in the task

task_container.
Format: getStates (out array<State,1> states);
Outputs: States: array of States for

tasks in task_container

- get_tasks
Purpose: Get the tasks in the task task_container.
Format: get_tasks (out array<Task,1> tasks);
Outputs: tasks: array of Tasks in

task_container

+--------------------------------------------------------------+

Examples:

SAGA 1.0 SAGA-CORE-WG



tasks 43
=========

// c++ example, partly pseudocode
saga::directory dir;
saga::job job;

...

/* Create Tasks */
saga::task t1 = dir.ls <saga::task> (result);
saga::task t2 = dir.copy <saga::task> (source,target);
saga::task t3 = dir.move <saga::task> (source,target);
saga::task t4 = job.checkpoint <saga::task> ();
saga::task t5 = job.signal <saga::task> (SIG_USR);

// Start Tasks
t1.run ();
t2.run ();
t3.run ();
t4.run ();
t5.run ();

// put all tasks into container
saga::task_container tc;

tc.add (t1);
tc.add (t2);
tc.add (t3);
tc.add (t4);
tc.add (t5);

// take one out again
tc.remove (t5);

// wait for all tasks in container to finish
tc.wait ();

// wait for the last task
t5.wait ();

+-------------------------------------------------------------+

Notes:
======

Error Handling:
===============
{
task.run ();
task.wait ();

SAGA-CORE-WG SAGA 1.0



44 GWD-R

if ( task.get_state = saga::task::Failed )
{
try {
task.rethrow ();

}
catch ( saga::exception e )
{
std::cout << "task failed: " << e.what () << std::endl;

}
}

}

Task models:
============

We had six different task models, as shown in example form
below. Model (E) has no compile-time sanity checking. Model
(F) allows only one asynchronous operation per object. Once
these models were eliminated, the choice between the remaining
four was a matter of aesthetics as they all have equivalent
functionality.

The task container could have more methods to ease retrievel
and manipulation of tasks. E.g. the ability to label tasks
and retrieve by label.

-----------------------------
Directory dir ("foo://bar/baz")
Job job = ...

-----------------------------
Model A)

In this model there is a Task class associated with each API
class, which is created by a create_task method. Once a Task
object has been created the asynchronous operation is invoked
on it to associate an operation with the Task.

/* Create Tasks */
dir_task dt1 = dir.create_task ();
dir_task dt2 = dir.create_task ();
dir_task dt3 = dir.create_task ();
job_task jt1 = job.create_task ();
job_task jt2 = job.create_task ();

/* Invoke operations on Task Objects */
dt1.ls ();
dt2.copy (source,target);
dt3.move (source,target);

SAGA 1.0 SAGA-CORE-WG



tasks 45
jt1.checkpoint ();
jt2.signal (USR);

/* Start Tasks */
dt1.run ();
dt2.run ();
dt3.run ();
jt1.run ();
jt2.run ();

-----------------------------
Model B)

In this model there is a task_factory class associated with each
API class, which is created by a create_task_factory method.
Once a task_factory object has been created the asynchronous
operation is invoked on it to create a Task object.

/* Create Task factories */
dir_task_factory dtf = dir.create_task_factory ();
job_task_factory jtf = job.create_task_factory ();

/* Create Tasks */
task t1 = dtf.ls ();
task t2 = dtf.copy (source,target);
task t3 = dtf.move (source,target);
task t4 = jtf.checkpoint ();
task t5 = jtf.signal (USR);

/* Start Tasks */
t1.run ();
t2.run ();
t3.run ();
t4.run ();
t5.run ();

saga::directory dir (url);
saga::directory::task_factory dft = dir.get_task_factory ();

std::list <std::string> listing;

dir.list (listing);
saga::task t = dtf.list (listing);

t.run ();

-----------------------------
Model C)

In this model there is an object as an attribute on each API
object. Invoking an operation on this object creates a Task.

SAGA-CORE-WG SAGA 1.0



46 GWD-R

/* Create Tasks */
task t1 = dir.task.ls ();
task t2 = dir.task.copy (source,target);
task t3 = dir.task.move (source,target);
task t4 = job.task.checkpoint ();
task t5 = job.task.signal (USR);

/* Start Tasks */
t1.run ();
t2.run ();
t3.run ();
t4.run ();
t5.run ();

-----------------------------
Model D)

In this model there is an equivalent for each API call which
creates an asynchronous task.

/* Create Tasks */
task t1 = dir.task_ls ();
task t2 = dir.task_copy (source,target);
task t3 = dir.task_move (source,target);
task t4 = job.task_checkpoint ();
task t5 = job.task_signal (USR);

/* Start Tasks */
t1.run ();
t2.run ();
t3.run ();
t4.run ();
t5.run ();

-----------------------------
Model E)

In this model, there is a get_task method associated with each
API object, which creates a Task given a string argument
defining the operation.

/* Create Tasks */
task t1 = dir.get_task ("ls");
task t2 = dir.get_task ("copy",source,target);
task t3 = dir.get_task ("move",source,target);
task t4 = job.get_task ("checkpoint");
task t5 = job.get_task ("signal",USR);

/* Start Tasks */
t1.run ();

SAGA 1.0 SAGA-CORE-WG



tasks 47
t2.run ();
t3.run ();
t4.run ();
t5.run ();

-----------------------------
Model F)

In this model, there is an asynchronous version of each API
call, and each API class has a ’wait’ method. As there is no
Task object, only one asynchronous operation may be outstanding
on any object.

dir.async_ls ();
job.async_checkpoint ();
job.wait ();
dir.wait ();
dir.async_copy (source,target);
dir.wait ();
dir.async_move (source,target);
job.async_signal (USR);
job.wait ();
dir.wait ();

+-------------------------------------------------------------+

SAGA-CORE-WG SAGA 1.0



48 GWD-R

+-------------------------------------------------------------+

# #
## ## ### # # # ##### ### #### # # # ###
# # # # # # ## # # # # # # # # ## # # #
# # # # # # # # # # # # # # # # # # #
# # # # # # # # # # # #### # # # # # ###
# # # # # ## # # # # # # # # ## # #
# # ### # # # # ### # # # # # ###

##
# #
##

###
# # #
# #
### #

#####
# # ##### ###### ###### ##### # # # ####
# # # # # # # ## # # #
##### # ##### ##### # # # # # # #

# # # # ##### # # # # # ###
# # # # # # # # # ## # #
##### # ###### ###### # # # # # ####

+-------------------------------------------------------------+

Summary:
========

The ability to query Grid entities about state is requested
in several SAGA use cases. Also, the SAGA Task model
incorporates a certain amount of task monitoring.

This package definition approaches the problem space of
monitoring to unify the various usage patterns (see details
and examples), and to transparently incorporate SAGA task
monitoring. The paradigm is realised by introducing
monitorable SAGA objects, which expose metrics to the
application, which represent values to be monitored.

A closely related topic is Computational Steering, which is
(for our purposes) not seen independently from Monitoring: in
the SAGA approach, the Steering mechanisms extend the
Monitoring mechanisms by the ability to push values back to
the monitored entity, i.e. to introduce writable
monitorables.

SAGA 1.0 SAGA-CORE-WG



monitoring 49
+-------------------------------------------------------------+

Specification:
==============

package saga.monotoring
{
// a metric represents an entity / value to be monitored.
class metric : implements-all saga::object

implements-all saga::attribute
{
CONSTRUCTOR (in string name,

in string desc,
in string mode,
in string unit,
in string type,
in string value,
out metric metric);

DESTRUCTOR (in metric metric);

// manage callbacks on the metric
// add a callback, which gets active whenever
// the metric changes (fires)
add_callback (in call_back * cb,

out int cookie);

// remove the callback
remove_callback (in int cookie,

out call_back * cb);

// push a new value to the consumers
fire (void);

// Attributes:
// name: name
// desc: name of metric
// mode: ReadOnly
// type: String
// value: naming conventions as described below apply
//
// name: description
// desc: description of metric
// mode: ReadOnly
// type: String
//
// name: mode
// desc: access mode of metric
// mode: ReadOnly

SAGA-CORE-WG SAGA 1.0



50 GWD-R
// type: String
// value: ’ReadOnly’ or ’ReadWrite’
//
// name: unit
// desc: unit of metric
// mode: ReadOnly
// type: String
//
// name: type
// desc: value type of metric
// mode: ReadOnly
// type: String
// value: ’Int’, ’Float’, ’Bool’ or ’String’
//
// name: value
// desc: value of metric
// mode: depending on the mode attribute above
// type: String
// value: formating restrictions described below apply
//

}

// callbacks are used for asynchroneous notification of
// metric changes (== events)
interface call_back
{
callback (in metric metric,

out bool keep);
}

// SAGA objects which provide metrics and steering via
// metrics, implement the monitorable interface
interface monitorable
{
// introspection
list_metrics (out array<string,1> names);

// get an availble metric for monitoring/steering
get_metric (in string name,

out metric metric);

// add an application hook for monitoring/steering
add_metric (in metric metric);

// removes an application hook for monitoring/steering
remove_metric (in string name);

// add a callback, which gets active whenever
// the respective metric changes (fires)
add_callback (in string name,

SAGA 1.0 SAGA-CORE-WG



monitoring 51
in call_back * cb,
out int cookie);

// remove the callback
remove_callback (in int cookie,

out call_back * cb);

// steering: push the updated metric value (fire)
// on a ReadWrite metric
fire_metric (in string name);

}
}

+-------------------------------------------------------------+

Details:
========

class metric:
-------------

The fundamental object introduced in this package is a
metric. A metric representas an observable, which can be
readable, writeable, or read/writable. The availability of
a readable observable corresponds to monitoring; of a writable
observable corresponds to steering. A metric is ’Final’
when its values cannot change anymore, ever (i.e. progress
is ’100%’, job state is ’Done’ etc).

The approach is severely limited by the use of saga
attributes for the description of a metric, as these are
only defined in terms of string typed keys and values. An
extension of the attribute definition by typed values will
greatly improve the usability of this package, but will also
challenge its semantic simplicity.

The metric MUST provide access to following attributes
(examples given):

name: short human readable name.
- ex: file.copy.progress

desc: extensive human readable description
- ex: "This metric gives the state of

an ongoing file transfer as
percent completed."

mode: "Read", "Write", "ReadWrite" or "Final"
- ex: "ReadWrite"

SAGA-CORE-WG SAGA 1.0



52 GWD-R
unit: Unit of values

- ex: "percent (%)"
- ex: "Unit"

type: "String", "Int", "Float" etc.
- ex: "Float"

value: value of the metric
- ex: "20.5"

The name of the metric must be unique, as it is used in most
methods to identify the metric of interest. The use of a
dot-delimited name space for metrics as in the example above
is encouraged, as it greatly benefits the interactive
handling of metrics. The first element of the name space
SHOULD be the SAGA class the metric belongs to, the second
element SHOULD describe the operation the metric descibes
(if applicable, otherwise leave out), the third element
SHOULD indicate the description of the metric (e.g. ’state’
or ’progress’ or ’temperature’). Illustrative examples for
metric names are:

- file.copy.progress
- file.move.progress
- file.progress // applies to any operation on file
- job.state
- job.temperature // a custom observable on a job

All attributes, apart from ’value’, are ReadOnly, and
are initialized in the metric constructor. If any other
attribute than ’value’ changes, a new metric needs to be
created.

The following attribute values MUST be interpreted case
insensitive: name, type, mode, unit.

Metric definitions in the SAGA specification
--------------------------------------------

The SAGA specification defines a number of metrics which
MUST or CAN be supported, for various SAGA objects. An
example such a definition is (from the SAGA stream object):

class stream ...
{
...

// Metrics:
// name: read
// desc: fires if a stream gets readable

SAGA 1.0 SAGA-CORE-WG



monitoring 53
// mode: Read
// unit: 1
// type: Bool
// value: True

}

These specifications are NORMMATIVE, even if described as
comments in the SIDL specification! The specified metrics
MUST be supported by an implementation, unless noted
otherwise, e.g.:

// note: MAY be supported

Implementations MAY add custom metrics, which SHOULD be
documented if possible. However, metrics CAN also be added
at runtime - that is, for example, required for
computational steering of custom applications.

A metric can ’appear’ and ’go away’ during the lifetime of
an object (again, computational steering provides the
obvious use case for this). Any operation on a metric which
got removed (’dead metric’) MUST throw an DoesNotExist
exception. However, existing class instances of a dead
metric MUST stay valid, and expose the same life time as any
other ’life metric’. Attributes of a dead metric MUST be
readable for the lifetime of the object. The Mode attribute
of such an instance MUST be changed to Final by the
implementation, and no other changes are allowed after that
change.

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in string name

in string desc,
in string mode,
in string unit,
in string type,
in string value,
out metric obj);

Inputs: name: name of metric
desc: description of metric
mode: mode of metric
unit: unit of metric value
type: type of metric
value: initial value of metric

Outputs: obj: the newly created object
Notes: - a metric is NOT attached to a session, but

can be used for monitoring objects from
different sessions.

- the string arguments given are used to

SAGA-CORE-WG SAGA 1.0



54 GWD-R
initialise the attributes of the metric, which
are subsequently ReadOnly (see description
above).

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in metric obj)
Inputs: obj: the object to destroy
Outputs: none

// manage callbacks on the metric
- add_callback
Purpose: add asynchron notifier callback to watch metric

changes
Format: add_callback (in call_back * cb,

out int cookie);
Inputs: cb: callback class instance
Outputs: cookie: handle for this callback,

to be used for removal
Throws: IncorrectState
Notes: - IncorrectState is thrown if the metric is Final

- the ’callback’ method on cb will be invoked on
any change of the metric value

- if the ’callback’ method returns true, the
callback is kept registered; if it returns
false, the callback is called only once, and
is un-registered after completion. Note that,
due to threading, multiple cb instances can be
active at the same time, so returning false can
lead to race conditions.

- the cb is passed by reference, not by value, so
that no copy of private cb data is implied.
The user has to ensure data consistency if a cb
instance is used multiple times.

- remove_callback
Purpose: remove a callback from a metric

changes
Format: remove_callback (in int cookie,

out call_back * cb);
Inputs: cookie: handle identifying the cb to

be removed
Outputs: cb: the removed cb reference
Notes: - if the callback was removed earlier, or

was unregistered by returning false, no
exception is thrown. However, the returned cb
reference is NULL.

- the removal only affects the cb reference
identified by ’cookie’, even if the same
reference was registered multiple times.

- no assumption is made about threading: a

SAGA 1.0 SAGA-CORE-WG



monitoring 55
returned cb can very well be active at the time
of removal, e.g. can in a nother thread execute
the callback method. The user has to ensure
the correct shutdown.

- fire
Purpose: push a new metric value to the backend
Format: fire (void);
Throws: IncorrectState
Notes: - IncorrectState is thrown if the metric is not

Writable - so also if the metric was Writable,
but is meanwhile flagged Final! To catch
race condition triggered exceptions, each file
should be try’ed/catched.

- it is not necessary to change the value of a
metric in order to fire it.

- ’set_attribute ("value", "...") on a metric
does NOT imply a fire. Hence the value can be
changed multiple times, but unless fire() is
explicitely called, no consumer will notice.

- any callback registered on the metric in the
firing application is invoked on fire().

-

interface callback:
-------------------

- callback
Purpose: asynchroneous handler for metric changes
Format: callback (in metric metric,

out bool keep);
Inputs: metric: the metric causing the

callback invocation
Outputs: keep: indocates if cb stays

registered
Notes: - see notes to the metric class above

- if ’keep’ is returned as true, the callback
stays registered, and will be invoked again on
the next metric update.

- if ’keep’ is returned as false, the callback
gets unregistered, and will not be invoked
again on metric updates, unless it gets
re-added by the user.

- if ’keep’ is returned as false, all active
callback are finished normally, even if they
run longer than the instance returning ’false’.
However, it is guaranteed that no new
activation accurs after one instance returns
’false’.

SAGA-CORE-WG SAGA 1.0



56 GWD-R
- ’metric’ is the metric the callback is invoked
on - that means that this metric recently
changed its value. Note that this change is
semantically defined by the metric: the string
of the ’value’ attribute of the metric might
have the same value in two subsequent
invocations of the callback.

- a callback can be added to a metric multiple
times.

- a callback can be added to multiple metrics at
the same time.

interface monitorable:
----------------------

The monitorable interface is implemented by those SAGA
objects which can be monitored, i.e. which have one or more
associated metrics. The interface allows introspection of
these metrics, and allows to add notification callbacks to
these metrics.

Several methods on this interface reflect similar methods on
the metric class - the additional string argument ’name’
identifies the metric these methods act upon. The semantics
of these calls are identical to the specification above.

The method add_metric() allows to implement steerable
applications. Metrics added with this method SHOULD be
available on the saga job object representing the
application.

// introspection
- list_metrics
Purpose: list all metrics associated with the object
Format: list_metrics (out array<string,1> names);
Outputs: names: array of names identifying

the metrics associated with
the object instance

Notes: - several SAGA objects are required to expose
certain metrics (e.g. ’task.state’). However,
in general that assumption cannot be made, as
implementations might be unable to provide
metrics.

- no order is implied on the returned array
- the returned array is guaranteed to have no
double entries

- get_metric
Purpose: returns a metric instance, identified by name

SAGA 1.0 SAGA-CORE-WG



monitoring 57
Format: get_metric (in string name,

out metric metric);
Inputs: name: name of metric to be returned
Outputs: metric: metric instance identified by

name
Throws: DoesNotExist
Notes: - multiple calls of this method return multiple

identical instances of the metric.

- add_metric
Purpose: add a metric instance to the application instance
Format: add_metric (in metric metric);
Inputs: metric: metric to be added
Throws: DoesAlreadyExist
Notes: - a metric is uniquely identified by its name

attribute - no two metrics with the same name
can be added.

- any callbacks already registered on the metric
stay registered (state of metric is not
changed)

- remove_metric
Purpose: remove a metric instance
Format: remove_metric (in string name);
Inputs: name: identifies metric to be

removed
Throws: BadParameter
Notes: - only previously added metrics can be removed;

default (saga defined or implementation
specific) metrics cannot be removed, attempts
to do so raise a BadParameter exception.

- add_callback
Purpose: add a callback to the specified metric
Format: add_callback (in string name,

in call_back * cb,
out int cookie);

Inputs: name: identifies metric to which cb
is to be added

cb: reference of callback class
instance to be registered

Outputs: cookie: handle to be used for removal
of the callback

Throws: DoesNotExist - metric is unknown
Notes: - notes to the add_callback method of the metric

class apply

- remove_callback
Purpose: remove a callback from the specified metric
Format: remove_callback (in string name,

SAGA-CORE-WG SAGA 1.0



58 GWD-R
in int cookie);

Inputs: name: identifies metric for which cb
is to be removed

cookie: identifies the cb to be
removed

Throws: DoesNotExist - metric is unknown
Notes: - notes to the remove_callback method of the metric

class apply

- fire_metric
Purpose: push a new metric value to the backend
Format: fire_metric (int string name);
Inputs: name: identifies metric to be fired
Throws: DoesNotExist

IncorrectState
Notes: - notes to the fire method of the metric

class apply

+-------------------------------------------------------------+

Examples:
=========

callback example: trace all metric changes:
-------------------------------------------

// callback definition
class trace_cb : public saga::callback
{
public:
bool callback (saga::metric m)
{
std::cout << "metric " << m.get_attribute ("name")

<< " fired." << std::endl;
return true; // stay registered

}
}

// the application
int main ()
{
...

// if the callback defined above is added to all known
// metrics of all saga objects, a continous trace of state
// changes of these saga objects will be written to stdout
trace_cb cb;

saga::job j = [...]; // details see description of saga::job

SAGA 1.0 SAGA-CORE-WG



monitoring 59

j.add_metric ("task.state", &cb);

...
}

monitoring example: monitor a write task
----------------------------------------

// c++ example for task state monitoring
class write_metric_cb : public saga::callback
{
private:
saga::task t_;

public:
write_metric_cb (const saga::task & t) { t_ = t; }

bool callback (saga::metric & m)
{
std::cout << "bytes written: "

<< m.get_attribute ("value")
<< std::endl;

std::cout << "task state: "
<< t_.t_state ()
<< std::endl;

return (false); // keep calback registered
}

};

int main (int argc, char** argv)
{
ssize_t len = 0;
std::string str ("Hello SAGA\n");
std::string url (argv[1]);

saga::file f (url);
saga::task t = f.write <saga::task> (str, &len);

// assume that file has a ’progress’ metric indicating
// the number of bytes already written. In general,
// the list of metric names has to be searched for an
// interesting metric, unless it is a default metric as
// specified in the SAGA spec.

// add the callback
write_metric_callback cb (t);
f.add_callback ("progress", &cb);

SAGA-CORE-WG SAGA 1.0



60 GWD-R

// wait until task is done, and give cb chance to get
// called a couple of times
t.wait ();

}

steering example: steer a remote job
------------------------------------

// example for computaional steering (metric is writable).
class observer_cb : public saga::metric::callback
{
private:
saga::task t;

public:
bool callback (saga::metric & m)
{

int val = atoi ( m.get_attribute ("value") );

std::cout << val << " is the new value." << std::endl;

return (false); // keep callback registered
}

};

// the steering appliciation
int main (int argc, char** argv)
{
saga::job_service js;

saga::job j = js.run ("remote.host.net",
"my_remote_application");

// Assume that job has a ’param_1’ metric representing
// a integer parameter for the remote application.
// First add observer metric - that causes the
// asynchroneous printout of any changes to the value
// of the ’param_1’ metric
observer_cb cb;
j.add_callback ("param_1", &cb);

// then get metric for active steering
saga::metric m = j.get_metric ("param_1");

for ( int i = 0; i < 10; i++ )
{
// if param_1 is ReadOnly, set_value would throw
// ’IncorrectState’
m.set_attribute ("value", std::string (i));

SAGA 1.0 SAGA-CORE-WG



monitoring 61

// push the pending change out to the receiver
m.fire ();

// callback should get called NOW + 2*latency
// That means fire REQUESTS the value change, but only
// the remote job can CHANGE the value - that change
// needs then reporting back to us.

// give steered application some time to react
sleep (1);

}
}

steering example: BE a steerable job
------------------------------------

the example shows a job which
- creates a metric to expose a Float steerable parameter
- on each change of that parameter computes a new isosurface

// callback - on any change of the metric value, e.g. due to
// steering from a remote GUI application, a new iso surface
// is computed
class my_cb : public saga::callback
{
public:
// the callback gets called on any
bool callback (saga::metric m)
{
// get the new iso-value
float iso = atof (m.get_attribute ("value"));

// compute an isosurface with that iso-value
compute_iso (iso);

// keep this callback alive, and get called again on
// the next metric event.
return (false);

}
}

int main ()
{
// create a metric for the iso-value of an isosurfacer
saga::metric m ("application.isosurfacer.isovalue",

"iso-value of the isosurfacer",
"ReadWrite",
"",

SAGA-CORE-WG SAGA 1.0



62 GWD-R
"Float",
"1.0");

// add the callback which reacts on changes of the
// metric’s value (cookie is ignored)
my_cb cb;
m.add_callback (&cb);

// get job handle for myself
saga::job_server js;
saga::job self = js.get_self ();

// add metric to job
self.add_metric (m);

// now others can ’see’ the metric, e.g. via
// job.list_metrics ();

// now, the callback could also have been added with:
// self.add_metric ("application.isosurfacer.isovalue", cb);

// compute isosurfaces for the next 10 minutes -
// the real work is done in the callback
sleep (600);

// on object (self) destruction, metrics and callback
// objects are destroyed as well
return (0);

}

monitoring example: callback for stream connects
------------------------------------------------

// my callback container class
class my_cb : public saga::callback
{
privat:
// we keep a stream server and a single client stream
saga::stream_server ss_;
saga::stream s_;

public:
// constructor initialises these (note that the
// client stream should be not connected at this
// point
my_cb (saga::stream_server ss,

saga::stream s )
{
ss_ = ss;

SAGA 1.0 SAGA-CORE-WG



monitoring 63
s_ = s;

}

~my_cb (void) { }

// the callback gets called on any
bool callback (saga::metric m)
{
// the stream server got an event triggered, and
// should be able to create a client socket now.
s_ = ss_.wait ();

if ( s_.state == saga::stream::open )
{
// have a client stream, we are done
// don’t call this cb again!
return (true);

}

// no valid client stream obtained: keep this
// callback alive, and get called again on the
// next metric event.
return (false);

}
}

int main ()
{
// create a stream server, and an not connected
// stream
saga::stream_server ss;
saga::stream s;

// give both to our callback class, and register that
// callback with the ’client_connect’ metric of the
// server. That causes the callback to be invoked on
// every change of that metric, i.e. on every event
// that changes that metric, i.e. on every client
// connect attempt.
my_cb cb (ss, s);
ss.add_callback ("client_connect", &cb);

// now we serve incoming clients forever
while ( true )
{
// check if a new client is connected
// the stream state would then be Open
if ( s.state == saga::stream::Open )
{
// a client got conncted!
// handle open socket

SAGA-CORE-WG SAGA 1.0



64 GWD-R
s.write ("You say hello, I say good bye!\r\n", 32);

// and close stream
s.close ();

// the stream is not Open anymore. We re-add the
// callback, and hence wait for the next client
// to connect.
ss.add_callback ("client_connect", &cb);

}
else
{
// no client yet, idle, or do something useful
sleep (1);

}
}

// we should never get here
return (-1);

}

+---------------------------------------------------------------+

Notes:
======

- possible deviation: allow only one CB per metric:
no add/remove, but set/reset CB

- other useful attributes might be:

- update-mode (discreet, cont, static)
This attribute would describe how often an attached
callback gets activated.
discreet: on changes of the metric value

example: job state (value is always defined, but
changes infrequently)

cont: as fast as possible
example: time (value always defined, and changes
continously)

static: once
example: complete (value changes once)

- value-range (1-10, [1,2,3], ...)

That attribute obviously depends on type and unit of
the metric, and is therefore not useful unless types
attribute values or typed metric values are introduced in
SAGA.

SAGA 1.0 SAGA-CORE-WG



monitoring 65
In particular computational steering would benefit from
value ranges, as that allows client side range checks, and
the creation of sensible client side user interfaces.

+-------------------------------------------------------------+

SAGA-CORE-WG SAGA 1.0



66 GWD-R

+-------------------------------------------------------------+

#
# # ##### ##### ##### # ##### # # ##### ######

# # # # # # # # # # # # #
# # # # # # # ##### # # # #####
####### # # ##### # # # # # # #
# # # # # # # # # # # # #
# # # # # # # ##### #### # ######

+-------------------------------------------------------------+

Summary:
========

There are various places in the SAGA API where attributes
need to be associated with objects, for instance for job
descriptions and metrics. The ’Attribute’ interface
provides a common interface for storing and retrieving
attributes.

Objects implementing this interface maintain a set of
attributes. These attributes can be considered as a set of
key-value pairs attached to the object. The key-value pairs
are string based for now, but might cover other value types in
later versions of this API specification.

The interface naming ’Attribute’ is somewhat misleading: it
seems to imply that an object implementing this interface IS_A
attribute. What we actually mean is that an object
implementing ths interface HAS attributes. In the want of a
better name, we left it ’Attribute’, but implementers and
users should be aware of the actual meaning (The correct
interface naming would probably be ’describable’ or
’attributable’, which both sound awkward.)

The SAGA spec defines attributes which MUST be supported by
the various SAGA objects, and their default values, and also
defines those which CAN be supported. An implementation
SHOULD issue a warning if a specified attribute cannot be
supported, but is explicitely (i.e. not as implied default)
used in the application.

Implementations are strongly discouraged to include other,
implementation specific attributes in SAGA, as that would bind
applications to that specific implementation, and limit
portability, which is a declared goal of the SAGA approach.

+-------------------------------------------------------------+

SAGA 1.0 SAGA-CORE-WG



attributes 67

Specification:
==============

package saga.attribute
{
interface attribute
{
// setter / getters
set_attribute (in string key,

in string value);
get_attribute (in string key,

out string value);
set_vector_attribute (in string key,

in array<string,1> values);
get_vector_attribute (in string key,

out array<string,1> values);
remove_attribute (in string key);

// inspection methods
list_attributes (out array<string,1> keys);
equals (in string key,

in string val,
out bool test);

has_attribute (in string key,
out bool test);

is_readonly (in string key,
out bool test);

is_writable (in string key,
out bool test);

is_vector (in string key,
out bool test);

}
}

+-------------------------------------------------------------+

Details:
========

The attribute interface in SAGA provides a uniform paradigm to
set and query parameters and properties of SAGA objects.
Although the attribute interface is generic by design (i.e. it
allows arbitrary keys and values to be used), its use in SAGA
is limited to a finite and well defined set of keys, unless
otherwise specified.

In several languages, attributes can much more elegantly
expressed by native means - e.g. by using hash tables in Perl.

SAGA-CORE-WG SAGA 1.0



68 GWD-R
Bindings for such languages MAY allow to use a native
interface _additionally_ to the one described here.

Several SAGA objects have very frequently used attributes. To
simplify usage of these objects, setter and getter methods MAY
be defined by the various language bindings, _additionally_ to
the interface described below. For attributes of native non
string types, these setter/getters MAY be typed.

For example, instead of

saga::stream->set_attribute ("BufferSize", "1024");

a language binding might allow

saga::stream->set_buffer_size (1024); // int type

Further, in order to limit semantic and syntactic ambiguities
(e.g. due to spelling deviations), language bindings SHOULD
define known attribute keys as constants, such as (in C):

#define SAGA_BUFFERSIZE "BufferSize"
...
stream.set_attribute (SAGA_BUFFERSIZE, "1024");

The distinction between scalar and vector attributes is
somewhat artificial, and is supposed to help those languages
where that nature of attributes cannot be handled
transparently, e.g. by overloading. Bindings for languages
such as Python, Perl and C++ CAN hide that distinction as long
as both access types are supported.

To simplify handling of scalar/vector attributes, vector
attributes can be specified as comma delimited strings
(leading space after comma is ignored, unless escaped):

val 1: "home, sweet home"
val 2: "Global GF"
val 3: " SAGA"
string: "home\, sweet home, Global GF, \ SAGA"

That format is returned if scalar getters are used for vector
attributes, and can be used for scalar setters for vector
attributes. Vector setters/getters handle scalar attributes
as vectors of length one.

The order of the elements of vector attributes is ignored, and
CAN be changed by the SAGA implementation. The equals method
does also not rely on ordering (i.e. ’"one" "two"’ equals
’"two" "one"’).

SAGA 1.0 SAGA-CORE-WG



attributes 69

Values of boolean type attributes MUST be expressed as one of
the following: ’0’, ’1’, ’true’, ’false’, ’TRUE’, ’FALSE’.

Values of floating point type attributes are expressed as they
would result in a printf of the format "%lld", as defined by
POSIX.

Values of integer type attributes are expressed as they would
result in a printf of the format "%Lf", as defined by POSIX.

Values of string type attributes are expressed as-is, however,
comma, backslashes and leading spaces are escaped by a
backslash, as described above.

Some of the means above are aimed at the prevention of abuse
of the attribute interface for implementation specific
extensions and semantic overloading. However, we think that
the attribute interface is flexible enough to accommodate
small changes to the SAGA API in future versions of this
specification with minor or no code changes, as long as the
attribute interface as described below is used - both SAGA
implementors and users are hence couraged to prefer the
interface to the convenience declarations described above.

interface attribute:
--------------------

- set_attribute
Purpose: set an attribute to a value
Format: set_attribute (in string key,

in string value);
Inputs: key: attribute key

value: value to set the
attribute to

Outputs: none
Throws: ReadOnly

DoesNotExist
Notes: - a empty string means to set an empty value

(the attribute is not removed).
- the attribute is created, if it does not exist
- only some SAGA objects allow to create new
attributes - others allow only access to
predefined attributes. If a non-existing
attribute is queried on such objects, a
DoesNotExist exception is raised

- on the handling of vector attributes, see above

- remove_attribute

SAGA-CORE-WG SAGA 1.0



70 GWD-R
Purpose: removes an attribute to a value.
Format: remove_attribute (in string key);
Inputs: key: attribute to be removed
Outputs: none
Throws: ReadOnly

DoesNotExist
Notes: - only some SAGA objects allow to remove

attributes - others allow only access to
predefined attributes. If a non-existing
attribute is removed on such objects, a
DoesNorExist exception is raised

- a vector attribute can also be removed with
this method

- get_attribute
Purpose: get an attributes value
Format: get_attribute (in string key,

out string value);
Inputs: key: attribute key
Outputs: value: value of the attribute
Throws: DoesNotExist
Notes: - on the handling of vector attributes, see above

- set_vector_attribute
Purpose: set an attribute to an array of values.
Format: set_vector_attribute (in string key,

in array<string,1> values);
Inputs: key: attribute key

values: array of values for the
attribute

Outputs: none
Throws: ReadOnly
Notes: - on the handling of scalar attributes, see above

- remove_vector_attribute
Purpose: remove an attribute to an array of values.
Format: remove_vector_attribute (in string key);
Inputs: key: attribute to be removed
Outputs: none
Throws: ReadOnly

DoesNotExist
BadParameter

Notes: - only some SAGA objects allow to remove
attributes - others allow only access to
predefined attributes. If a non-existing
attribute is removed on such objects, a
BadParameter exception is raised

- a scalar attribute can also be removed with
this method

SAGA 1.0 SAGA-CORE-WG



attributes 71

- get_vector_attribute
Purpose: get the array of values associated with an

attribute
Format: get_vector_attribute (in string key,

out array<string,1> values);
Inputs: key: attribute key
Outputs: values: array of values of the

attribute.
Throws: DoesNotExist

- list_attributes
Purpose: Get the list of attribute keys.
Format: list_attributes (out array<string,1> keys);
Inputs: none
Outputs: keys: existing attribute keys

- equals
Purpose:
Format: equals (in string key,

in string val,
out bool test);

Inputs: key: attribute key
val: val to compare against

Outputs: test bool indicating success
Throws: DoesNotExist
Notes: - This method returns TRUE if the attribute

identified by key has the value identified
by val.

- For vector attributes, the value has to be
specified as comma delimited concatenated
string of the vector elements (order of the
elements is ignored).

- has_attribute
Purpose:
Format: has_atttribute (in string key,

out bool test);
Inputs: key: attribute key
Outputs: test bool indicating success
Notes: - This method returns TRUE if the attribute

identified by key exists and is a scalar
attribute.

- It does NOT throw a DoesNotExist exception.

- is_readonly

SAGA-CORE-WG SAGA 1.0



72 GWD-R
Purpose:
Format: is_readonly (in string key,

out bool test);
Inputs: key: attribute key
Outputs: test bool indicating success
Throws: DoesNotExist
Notes: - This method returns TRUE if the attribute

identified by the key exists, and can be read
by get_attribute or get_vector attribute, but
cannot be changed by set_attribute or
set_vector_attribute.

- is_writable
Purpose:
Format: is_writable (in string key,

out bool test);
Inputs: key: attribute key
Outputs: test bool indicating success
Throws: DoesNotExist
Notes: - This method returns TRUE if the attribute

identified by the key exists, and can be
changed by set_attribute or
set_vector_attribute.

- is_vector
Purpose:
Format: is_vector (in string key,

out bool test);
Inputs: key: attribute key
Outputs: test bool indicating if

attribute is scalar
(false) or vector (true)

Throws: DoesNotExist
Notes: - This method returns TRUE if the attribute

identified by key is a vector attribute.

+-------------------------------------------------------------+

Examples:
=========

// c++ example:
job_definition d;

std::list <char*> env;
env.push_back ("a = b");
env.push_back ("c = d");

d.set_attribute ("JobCmd", "/bin/ls");

SAGA 1.0 SAGA-CORE-WG



attributes 73
d.set_vector_attribute ("JobEnv", env);

+-------------------------------------------------------------+

Notes:
======

A find on attributes (both keys and values) should be
considered, as that is needed and defined on other classes
(saga::locical_file, saga::advert_service) anyway.

+-------------------------------------------------------------+

SAGA-CORE-WG SAGA 1.0



74 GWD-R

+-------------------------------------------------------------+

# #
## # ## # # ######
# # # # # ## ## #
# # # # # # ## # #####
# # # ###### # # #
# ## # # # # #
# # # # # # ######

#####
# # ##### ## #### ######
# # # # # # # #
##### # # # # # #####

# ##### ###### # #
# # # # # # # #
##### # # # #### ######

+-------------------------------------------------------------+

Summary:
========

This file describes interfaces which operate on arbitrary
hierarchical namespaces, such as those used in physical,
virtual and logical file systems, and information systems.

Several SAGA packages share the notion of namespaces and
operations on these namespaces. In order to increase
consistency in the API, those packages should share the
same API paradigm.

The API is inspired by the POSIX standard, which defines
tools and calls to handle the name space of physical files
(directories). The methods listed for the interfaces have
POSIX like syntax and semantics.

While POSIX has an iterative interface to directory listing
(i.e.., opendir, telldir, seekdir, readdir), the interface
included here deviates significantly from the POSIX version;
this interface has fewer calls, with a different syntax, but
identical semantics.

Please note that ’stat’ like API calls are _not_ covered here -
they are rather meaningless on a namespace per se, but belong
to the specific implementations, e.g. physical files, which
implement the namespace interfaces.

+-------------------------------------------------------------+

SAGA 1.0 SAGA-CORE-WG



namespaces 75

Specification:
==============

package saga.name_space
{
enum flags
{
Unknown = -1,
None = 0,
Overwrite = 1,
Recursive = 2,
FollowSymbolic = 4,
Create = 8,
Excl = 16,
Lock = 32,
CreateParents = 64,
DeReference = 128

}

enum acl
{
Unknown = -1,
None = 0,
ACL_Read = 1,
ACL_Exec = 2,
ACL_List = 4,
ACL_Write = 8,
ACL_Admin = 16

}

class ns_entry : implements_all saga::object
implements-all saga::monitorable

{
CONSTRUCTOR (in string url,

in array<flags,1> flags,
in session session );
out ns_entry obj );

DESTRUCTOR (in ns_entry obj );

// basic properties
get_url (out string url );
get_name (out string name );
get_cwd (out string cwd );

// navigation/query methods
read_link (out string link );
is_dir (in int flags = None,

out boolean test );
is_entry (in int flags = None,

SAGA-CORE-WG SAGA 1.0



76 GWD-R
out boolean test );

is_link in int flags = None,
out boolean test );

// security
set_acl (in string dn,

in int acl,
in int flags = None);

get_acl (out int acl);

// management methods
copy (in string target,

in array<flags,1> flags );
link (in string target,

in array<flags,1> flags );
move (in string target,

in array<flags,1> flags );
remove (void );
close (void );

// helper methods
convert (in string template,

out string new_url);
}

class ns_directory : implements-all saga::object
implements-all saga::monitorable
extends saga::ns_entry

{
CONSTRUCTOR (in string url,

in array<flags,1> flags,
in session session );
out ns_directory obj );

DESTRUCTOR (in ns_directory obj );

// navigation/query methods
change_dir (in string dir );
list (in string name,

out array<string,1> names );
find (in string pattern,

in array<flags,1> flags,
out array<string,1> names );

read_link (in string name,
out string link );

exists (in string name,
out boolean exists );

is_dir (in string name,
in int flags = None,
out boolean test );

is_entry (in string name,

SAGA 1.0 SAGA-CORE-WG



namespaces 77
in int flags = None,
out boolean test );

is_link (in string name,
in int flags = None,
out boolean test );

// manage entries by number
get_num_entries (out int num );
get_entry (in int entry,

out string name );

// security
set_acl (in string target,

in string dn,
in int acl,
in int flags = None);

get_acl (in string name,
out int acl);

// management methods
copy (in string source,

in string target,
in array<flags,1> flags );

link (in string source,
in string target,
in array<flags,1> flags );

move (in string source,
in string target,
in array<flags,1> flags );

remove (in string target,
in array<flags,1> flags );

touch (in string target );
make_dir (in string target,

in array<flags,1> flags );

// factory methods
open (in string name,

in array<flags,1> flags,
out ns_entry entry );

open_dir (in string name,
in array<flags,1> flags,
out ns_directory dir );

}
}

+-------------------------------------------------------------+

Details:
========

SAGA-CORE-WG SAGA 1.0



78 GWD-R
Definitions:

pathname:

A ’Pathname’ as accepted by this specification MUST follow
the specification of pathnames as described in section
1.1.3 "Pathnames" of the Document "Namespace Service" of
the Grid File System Working Group (GFS-WG) in GGF [1].

directory:

A ’Directory’ represent what [1] defines as ’Virtual
Directories’.

directory_entry:

A ’directory_entry’ or ’Entry’ represent what [1] defines
as ’Junction’. Note that any type of junction defined
there could be used.

Wildcards:

The API supports wildcards where appropriate. Available
wildcard patterns are:

- * : matches any string
- ? : matches a single character
- [abc] : matches any of a set of characters
- [a-z] : matches any of a range of characters
- [!abc] : matches none of a range of characters
- [!a-z] : matches none of a range of characters
- {a,bc} : matches any of a set of strings

See the POSIX standard for more details. In the API,
wildcards are allowed in all strings where they can be used
in the respective shell commands, such as:

copy *.txt dir
move *.txt dir
link *.txt dir
ls *.txt
remove *.txt

Users are rarely aware that wildcards can be used in
unorthodox places, such as:

move *.txt dir*
move *

SAGA 1.0 SAGA-CORE-WG



namespaces 79

The result of such operations is dependend on the order the
wildcard expansion is performed, e.g. if ’dir*’ expands to
’dir_1 dir_2’, all txt files and dir_1 will end up in dir_2.

SAGA implementation MUST support wildcards for all strings
where that ambiguity cannot arise, (source for move etc),
and MAY support wildcards at all respective string
parameters which would accepts wildcards in the respective
POSIX shell calls.

For the method calls on ns_entry, NO wildcards are allowed.
The methods read_link, exists, is_dir, is_entry, is_link,
open and open_dir MUST NOT support wild cards. Flags MUST
be applied to all elements of a wildcard expansion, even if
that raises an exception for any reasons.

Note that wildcards, to a very limited extend, also apply
for distinguished names used in ACL settings: a ’*’ there
represents an arbitrary substring. See example section for
an example.

interface ns_directory

ns_directory defines two sets of methods: one set to
navigate in the namespace hierarchy (e.g. cd, ls, find,
...), and one set to handle entities in the namespace (e.g.
copy(), move(), open(), ...)

Methods for creating / destroying the ns_directory object

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in string url,

in array<flags,1> flags,
in Session session,
out ns_directory obj)

Inputs: url: initial working dir
flags: open mode
session: session handle for

object creation
Outputs: obj: the newly created object
Notes: - the session handle defaults to the SAGA

default session handle if not explicitely
specified

- the default flag set is (None)

- DESTRUCTOR
Purpose: destroy the object

SAGA-CORE-WG SAGA 1.0



80 GWD-R
Format: DESTRUCTOR (in ns_directory obj)
Inputs: obj: the object to destroy
Outputs: none

Methods for navigation in the namespace hierarchy:

- change_dir
Purpose: change the working directory
Format: change_dir (in string dir);
Inputs: dir: directory to change to
Outputs: none
Throws: BadParameter

DoesNotExist
IncorrectState

Notes: - dir can be relative to pwd
- similar to the ’cd’ command in Unix shells,
as defined by POSIX

- list
Purpose: list entries in this directory
Format: list (in string name,

out array<string,1> names);
Inputs: name: name to list
Outputs: names: array of names existing in

the directory
Throws: BadParameter

DoesNotExist
IncorrectState

Notes: - similar to ’ls’ in Unix shells, as defined
by POSIX

- name can be relative to pwd
- if name is not specified, the current directory
contents is listed.

- find
Purpose: find entries in this directory and below
Format: find (in string pattern,

in array<flags,1> flags,
out array<string,1> names);

Inputs: pattern: pattern for names of
entries to be found

flags: flags defining the operation
modus

Outputs: names: array of names matching the
pattern

Throws: BadParameter
IncorrectState

Notes: - similar to ’find’ in Unix shells, as defined
by POSIX, but limited to the -name option.

SAGA 1.0 SAGA-CORE-WG



namespaces 81
- pattern MUST not include a path element
- the find operates recursively below the current
working directory if the Recursive flag is
specified (default)

- find does not follow symbolically linked
directories, unless the FollowSymbolic flag
is specified

- find does list symbolically linkes entries
with matching name

- the pattern follows the standard unix shell
wildcard specification, as defined by POSIX

- the matching entries returned are complete
relative (to cwd) path names.

- default flags set is ’Recursive’ (1)

- read_link
Purpose: returns the name of the link target
Format: read_link (in string name,

out string link);
Inputs: name: name to be resolved
Outputs: link: resolved name
Throws: BadParameter

DoesNotExist
IncorrectState

Notes: - link may be relative or absolute depending on
underlying implementation. However, the
returned name MUST be sufficient to access
the target entry

- resolves one link level only
- name can be relative to pwd
- inspired by ’ls -L’ command in Unix shells, as
defined by POSIX

- exists
Purpose: returns true if entry exists, false otherwise
Format: exists (in string name,

out boolean exists );
Inputs: name: name to be tested for

existence
Outputs: exists: boolean indicating existence

of name
Throws: BadParameter

IncorrectState
Notes: - name can be relative to pwd

- as in ’test -e’ in Unix shells, as defined
by POSIX

- is_dir
Purpose: tests name for beeing a directory
Format: is_dir (in string name,

in int flags,

SAGA-CORE-WG SAGA 1.0



82 GWD-R
out boolean test);

Inputs: name: name to be tested
flags: flags for operation

Outputs: test: boolean indicating if name
is a directory

Throws: BadParameter
DoesNotExist
IncorrectState

Notes: - returns true if entry is a directory, false
otherwise

- name can be relative to pwd
- flag can be set to DeReference, default is
None

- as in ’test -d’ in Unix shells, as defined
by POSIX

- is_entry
Purpose: tests name for beeing a ns_entry
Format: is_entry (in string name,

in int flags,
out boolean test);

Inputs: name: name to be tested
flags: flags for operation

Outputs: test: boolean indicating if name
is a ns_entry

Throws: BadParameter
DoesNotExist
IncorrectState

Notes: - returns true if the entry is a entry, false
otherwise (although a ns_dir IS_A ns_entry,
false is returned on a test on a ns_dir)

- name can be relative to pwd
- flag can be set to DeReference, default is
None

- as in ’test -f’ in Unix shells, as defined
by POSIX

- is_link
Purpose: tests name for beeing a link
Format: is_link (in string name,

in int flags,
out boolean test);

Inputs: name: name to be tested
flags: flags for operation

Outputs: test: boolean indicating if name
is a link

Throws: BadParameter
DoesNotExist
IncorrectState

Notes: - returns true if the entry is a link, false
otherwise

SAGA 1.0 SAGA-CORE-WG



namespaces 83
- name can be relative to pwd
- flag can be set to DeReference, default is
None

- as in ’test -l’ Unix shells, as defined
by POSIX

- get_num_entries
Purpose: gives the number of entries in the directory
Format: get_num_entries (out int num);
Inputs: none
Outputs: num: number of entries in the

directory
Throws: IncorrectState
Notes: - can be used for iteration through large

directories (see get_entry)
- at the time of using the result of this call,
the actual number of entries may already have
changed (no locking is implied)

- get_entry
Purpose: gives the name of an entry in the directory

based upon the enumeration defined by
get_num_entries

Format: get_entry (in int entry,
out string name);

Inputs: entry: index of entry to get
Outputs: name: name of entry at index
Notes: - ’0’ is the first entry

- there is no sort order implied by the
enumeration, however an underlying
implementation MAY choose to sort the entries

- subsequent calls to get_entry and/or
get_num_entries may return inconsistent data
if there is no locking or state tracking in
the underlying implementation

- can be used for iteration through large
directories

Methods for operation on namespace entities:
- copy
Purpose: copy the entry to another part of the namespace
Format: copy (in string source,

in string target,
in array<flags,1> flags);

Inputs: source: name to copy
target: name to copy to
flags: flags defining the operation

modus
Outputs: none
Throws: BadParameter

SAGA-CORE-WG SAGA 1.0



84 GWD-R
DoesNotExist
IncorrectState

Notes: - if the target is a directory the source entry
is copied into the directory

- it is an error if the source is a directory
and the ’Recursive’ flag is not set.

- if the target already exists, it will be
overwritten if the ’Overwrite’ flag is set,
otherwise it is an error

- default flags set is empty (0)
- both source and target can be relative to pwd
- similar to the ’cp’ command in Unix shells,
as defined by POSIX

- link
Purpose: create a symbolic link from the source entry to

the target entry so that any reference to the
target refers to the source entry

Format: link (in string source,
in string target,
in array<flags,1> flags);

Inputs: source: name to link
target: name to link to
flags: flags defining the operation

modus
Outputs: none
Throws: BadParameter

DoesNotExist
IncorrectState

Notes: - if the target is a directory the source entry
is linked into the directory.

- if the target already exists, it will be
overwritten if the ’Overwrite’ flag is set,
otherwise it is an error

- default flag set is empty (0)
- both source and target can be relative to pwd
- similar to the ’ln -s’ command in Unix shells,
as defined by POSIX

- move
Purpose: rename source to target, or move source to

target if target is an directory.
Format: move (in string source,

in string target,
in array<flags,1> flags);

Inputs: source: name to move
target: name to move to
flags: flags defining the operation

modus
Outputs: none
Throws: BadParameter

SAGA 1.0 SAGA-CORE-WG



namespaces 85
DoesNotExist
IncorrectState

Notes: - if the target already exists, it will be
overwritten if the ’Overwrite’ flag is set,
otherwise it is an error

- moving ’.’ is not allowed, and throws
a BadParameter exception

- default flag set is empty (0)
- both source and target can be relative to pwd
- similar to the ’mv’ command in Unix shells, as
defined by POSIX

- remove
Purpose: removes the entry
Format: remove (in string target,

in array<flags,1> flags);
Inputs: target: entry to be removed
Outputs: none
Throws: BadParameter

DoesNotExist
IncorrectState

Notes: - if the entry is a directory the ’Recursive’
flag MUST be set or an exception will be
raised

- default flag set is empty (0)
- removing ’.’ is not allowed, and throws
a BadParameter exception

- target can be relative to pwd
- similar to the ’rm’ command in unix shells,
as defined by POSIX

- close
Purpose: closes the object
Format: close (void);
Inputs: none
Outputs: none
Throws: IncorrectState
Notes: - IncorrectState is thrown if the object was

closed before
- any subsequent method call on the object
MUST also raise IncorrectState (apart from
DESTRUCTOR)

- touch
Purpose: creates a new entry, or updates access time
Format: touch (in string target);
Inputs: target: target to create
Ouputs: none
Throws: BadParameter

IncorrectState
Notes: - target can be relative to pwd

SAGA-CORE-WG SAGA 1.0



86 GWD-R
- similar to the ’touch’ (1) call, as defined
by POSIX

- the target is created as ns_entry if it does
not exist

- the last access time of the target MUST be
updated if the target exists

- if the target string is not specified, the
cwd is touched

- make_dir
Purpose: creates a new directory
Format: make_dir (in string target,

in array<flags,1> flags);
Inputs: target: directory to create
Ouputs: none
Throws: BadParameter

AlreadyExists
IncorrectState

Notes: - if the parent directory or directories do not
exist, ’CreateParents’ flag MUST be set or an
exception will be raised. If set, the parrent
directories are created as well

- an exception MUST be raised if the directory
already exists

- default flag set is empty (0)
- target can be relative to pwd
- similar to the ’mkdir’ (2) call, as defined by
POSIX

- open_dir
Purpose: creates a new ns_directory instance
Format: open_dir (in string name,

in array<flags,1> flags,
out ns_directory dir);

Inputs: name: directory to open
flags: flags defining the operation

modus
Outputs: dir: opened directory instance
Throws: BadParameter

DoesNotExist
IncorrectState

Notes: - the cwd of the new dir object instance is set
to <name>

- target can be relative to pwd
- similar to the ’opendir’ (3) call in Unix, as
defined by POSIX

- open
Purpose: creates a new ns_entry instance
Format: open (in string name,

SAGA 1.0 SAGA-CORE-WG



namespaces 87
in array<flags,1> flags,
out ns_entry entry);

Inputs: name: entry
flags: flags defining the operation

modus
Outputs: entry: opened entry instance
Throws: BadParameter

DoesNotExist
IncorrectState

Notes: - target can be relative to pwd
- similar to the ’open’ (2) call in Unix, as
defined by POSIX

- convert
Purpose: converts url into a different name space
Format: convert (in string template,

out string new_url);
Inputs: template: template for new url
Outputs: new_url: translated url
Notes: - the method translates a url into a different

URL which MUST point at the same endpoint
- the form of the new URL is determined by
the given template

- the template gives the part of the new url
which is known.

- the template has to present a complete URL
_beginning_, e.g. "http://" or
"http://host.net:123/", but not "host.net".

- if convert cannot determine a url in the name
space given by the template which points to the
same endpoint, an empty string is returned.

+-------------------------------------------------------------+

Examples:
=========

The interfaces are not implemented directly - for more
examples, check out the physical and logical file
specifications.

Example: provide recursive directory listing for a given
directory

Note: - check for ’.’ and ’..’ resursion are left as an
exercise to the reader...

- string operations and printf statements are
obviously simplified...

--------------------------------------------------------------

SAGA-CORE-WG SAGA 1.0



88 GWD-R
// c++ example
std::string indent (int indent)
{
std::string s = " ";

for (int i = 0; i < indent; i++, s += " ");

return (s);
}

void list_dir (std::string & url,
int indent = 0)

{
try
{
// create directory and iterate over entries
saga::ns_dir dir (url);

printf ("\n%s ---> %s\n", indent (indent), url);

for ( int i = 0; i < dir.get_num_entries (); i++ )
{
char type = ’?’;
string info = "";

// get name of next entry
string name = dir.get_entry (i);

// get type and other infos
if ( dir.is_link (name) )
{
if (dir.exists(dir.read_link (name))){info="---> ";}
else {info="-|-> ";}
info += dir.read_link (name);
type = ’l’;

}
else if (dir.is_entry(name)){ type = ’f’; }
else if (dir.is_dir (name)){ type = ’d’; info = "/";}

printf ("%s > %3d - %s - %s%s\n", indent (indent), i+1,
type, name, info);

// recursion on directories
if ( dir.is_dir (name) )
{
list_dir (name, indent++);

}
}

printf ("\n%s <--- %s\n", indent (indent), url);
}

SAGA 1.0 SAGA-CORE-WG



namespaces 89

// catch all errors - see elsewhere for better examples
// of error handling in SAGA
catch ( const saga::exception & e )
{
std::cerr << "Oops! SAGA error: "

<< e.what () << std::endl;
}

return;
}
-------------------------------------------------------------

{
std::string dn_user = "O=dutchgrid, O=vu, CN=Andre Merzky";
std::string dn_group = "O=dutchgrid, O=vu, CN=*";

// open file (default: Read only)
saga::file f (url);

// set ACL restrictions for file. The ACL set is
// performed with the permissions of the session context
f.set_acl (dn_user, saga::ACL_Read | saga::ACL_Write);
f.set_acl (dn_group, saga::ACL_Read);

// check if acl allow write with our current session
// contexts
if ( f.get_acl () & saga::ACL_Write )
{
saga::file f_2 (url, saga::ReadWrite);

f_2.write ("data");
}

}

+-------------------------------------------------------------+

References:
===========

[1] http://forge.gridforum.org/projects/gfs-wg/document/ \
RNS-Proposed_Final_Draft-v1.10/en/10

+-------------------------------------------------------------+

Notes, Issues and Known Limitations:
====================================

SAGA-CORE-WG SAGA 1.0



90 GWD-R

A useful extension to the presented interface is a find like
method. However, the flags and options to find (1), are
manyfold, and it currently it is unclear how a good mapping to
an _simple_ SAGA API call might look like.

An Directory can be seen as a container of directory_entries,
which can be Files, Links, Directories etc. That notion is not
reflected in this version of the interface, since no call is
taking such entities as arguemt, or is returning such entities.
However, a later version of this interface may introduce this
distinction if necessary - it needs then to be reflected in all
classes implementing this interface.

In the current version, it is not possible to (e.g.) copy Files
w/o creating a directory first. That seems in particular
cumbersome if the source and target namespace of the file copy
are different. However, we think that the presented approach
is more coherent than the alternatives.

Similarily, ’stat’ like calls seem (semantically) to specific
to the specific namespace incarnation to get included in this
rather generic specification.

The notion of security, permissions, ACLs, ownership etc. is
missing from this version of the spec, but is crucial to it’s
usability ans acception. It will get added as soon as there is
an agreement on security in the SAGA API in general.

The URL Problem (see intro):
----------------------------

In order to settle the issue for the SAGA-CORE-API (NOT
forever), we propose the following solution:

- A URL utility class seems useful, but would increase
the syntactic load on the current set of methods (either
allow all methods with strings _and_ urls, or require
transformation from strings to urls _always_ - both
seems suboptimal).

- hence NO URL utility class is mandated.

- a NSEntry utility call is introduced:

convert (in string target,
out string new_url);

Usage examples:

saga::file f ("ftp://ftp.net.org/pub/data/file.txt");

SAGA 1.0 SAGA-CORE-WG



namespaces 91
std::string n1 = f.convert ("ftp://ftp.net.org:123/");
std::string n2 = f.convert ("ftp://alias.net.org/data/");
std::string n3 = f.convert ("http://www.net.org");

- that call tries to translate URLs, and if unsuccessfull
returns an empty string.

I know that is ’somewhat’ of a compromise. A full fledged
URL class certainly would be useful, and Java for example
already has it. I would expect that most SAGA
implementations will provide one anyway. But as we could
not reach consensus on that, the topic seems to need more
discussion, and more time which I wthink we don’t have for
stabilizing the API.

+-------------------------------------------------------------+

SAGA-CORE-WG SAGA 1.0



92 GWD-R

+-------------------------------------------------------------+

#######
# # # ######
# # # #
##### # # #####
# # # #
# # # #
# # ###### ######

+-------------------------------------------------------------+

Summary:
========

The ability to access files regardless of their location is
central to many of the SAGA use cases (see below). This
interface addresses the most common operations detailed in the
use cases.

The interfaces are syntacically and semantically POSIX
oriented, but also borrow some ideas from the GridFTP
specification, which is nowadays widely used for remote data
access.

Please note that the interactions with files as opaque
entities (as entries in file name spaces) are covered by the
name_space package. The interfaces presented here supplement
the namespace package with operations for the reading and
writing of files.

+-------------------------------------------------------------+

Specification:
==============

package saga.file
{
enum flags
{
Unknown = -1, // same as in name_space::flags
None = 0, // same as in name_space::flags
Overwrite = 1, // same as in name_space::flags
Recursive = 2, // same as in name_space::flags
FollowSymbolic = 4, // same as in name_space::flags
Create = 8, // same as in name_space::flags
Excl = 16, // same as in name_space::flags

SAGA 1.0 SAGA-CORE-WG



files 93
Lock = 32, // same as in name_space::flags
CreateParents = 64, // same as in name_space::flags
DeReference = 128, // same as in name_space::flags
Truncate = 256,
Append = 512,
Read = 1024,
Write = 2048,
ReadWrite = 4096,
Binary = 8192

}

enum seek_mode
{
Unknown = -1,
Start = 1,
Current = 2,
End = 3

}

struct ivec
{
long offset; // position of data to be r/w
long leng_in; // number of bytes to be r/w
array<byte,1> buffer; // data to be r/w
long leng_out; // number of bytes r/w

}

class directory : implements-all saga::object
implements-all saga::monitorable
extends saga::ns_directory

{

CONSTRUCTOR (in string url,
in session session,
in int flags = None,
out directory dir );

DESTRUCTOR (in directory dir );

get_size (in string name,
out long size );

is_file (in string name,
in int flags = None,
out boolean test );

open_dir (in string name,
in int flags = None,
out directory dir );

open (in string name,
in int flags = Read,

SAGA-CORE-WG SAGA 1.0



94 GWD-R
out file file );

}

class file : implements-all saga::object
implements-all saga::monitorable
extends saga::ns_entry

{

CONSTRUCTOR (in string url,
in session session,
in int flags = Read,
out file file );

DESTRUCTOR (in file file );

read (in long len_in,
inout array<byte,1> buffer,
out long len_out );

write (in long len_in,
in array<byte,1> buffer,
out long len_out );

seek (in long offset,
in seek_mode whence,
out long position );

read_v (inout array<ivec> ivec );
write_v (inout array<ivec> ivec );

read_p (in string pattern,
inout array<byte,1> buffer,
out long len_out );

write_p (in string pattern,
in array<byte,1> buffer,
out long len_out );

modes_e (out array<string,1> emodes );
read_e (in string emode,

in string spec,
inout array<byte,1> buffer,
out long len_out );

write_e (in string emode,
in string spec,
in array<byte,1> buffer,
out long len_out );

// Metric:
// name: read
// desc: fires if a file gets readable
// mode: Read
// unit: 1
// type: Bool

SAGA 1.0 SAGA-CORE-WG



files 95
// value: True
//
// name: write
// desc: fires if a file gets writable
// mode: Read
// unit: 1
// type: Bool
// value: "True"
//
// name: error
// desc: fires if a file gets writable
// mode: Read
// unit: 1
// type: Bool
// value: "True"

}
}

+-------------------------------------------------------------+

Details:
========

The current description covers the ubiquitous
open/close/read/write/seek pattern, which is present
in the vast majority of remote file access providers.

class directory

This class represents a directory containing physical
files.

- CONSTRUCTOR
Purpose: open the directory
Format: CONSTRUCTOR (in string url,

in int flags,
in session session,
out directory dir)

Inputs: url: location of directory
flags: mode for opening
session: session to associate the

object with
Outputs: dir: the newly created object
Throws: BadParameter

DoesNotExist
Notes: - the session handle defaults to the SAGA

default session handle if not explicitely
specified

- the default flag set is (None)

SAGA-CORE-WG SAGA 1.0



96 GWD-R
- DESTRUCTOR
Purpose: destroy the directory object
Format: DESTRUCTOR (in directory dir)
Inputs: dir: the object to destroy
Outputs: none

Methods giving information about files:
---------------------------------------

- get_size
Purpose: returns the number of bytes in the file
Format: get_size (in string name,

in int flags,
out long size);

Inputs: name: name of file to inspect
Outputs: size: number of bytes in the file
Throws: BadParameter

DoesNotExist
Notes: - as ’st_size’ field in the Unix call ’stat’,

as defined by POSIX

- is_file
Purpose: alias for is_entry in ns_directory

Factory like methods for creating objects:
------------------------------------------

- open_dir
Purpose: creates a directory object
Format: open_dir (in string name,

in int flags,
out directory dir)

Inputs: name: name of directory to open
flags: flags definition operation

modus
Outputs: dir: opened directory instance
Throws: BadParameter

DoesNotExist
Notes: - creates a new directory instance

- currently there are no supported flags (FIXME)
- default flag set is empty (None)
- similar to opendir (3), as defined by POSIX

- open
Purpose: creates a new file instance
Format: open (in string name,

in int flags = Read,
out file file);

SAGA 1.0 SAGA-CORE-WG



files 97
Inputs: name: file to be opened

flags: flags definition operation
modus

Outputs: file: opened file instance
Throws: BadParameter

DoesNotExist
Notes: - if the file does not exist, it is created if

the ’Create’ flag is given, otherwise it is
an error

- it is an error if the file exists and both the
’Create’ and the ’Excl’ flag are given.
Otherwise the ’Excl’ flag is ignored

- the file is truncated to length 0 on the open
operation if the ’Trunc’ flag is given

- the file is in opened in append mode if the
’Append’ flag is given (a seek (0, End) is
performed after the open)

- the file is locked on open if the ’Lock’ flag
is given. If the file is already in a locked
state, the open will fail and a descriptive
error will be issued. If a file is opened in
locked mode, any other open on that file MUST
fail, with no respect to the given flags.
Note that a file can be opened in normal mode,
and then in locked mode, w/o an error getting
raised. The lock will get removed on
destruction of the file object (that is on
close). If an implementation does not
support locking, an descriptive error MUST
get issued if the ’Lock’ flag is given.

- default flag set is (Read).
- similar to the open (2) call in Unix, as
specified by POSIX

class file:
-----------

This class represents an open file descriptor for
read/write operations on a physical file. It concept is
similar to the file descriptor returned by the open (2)
call in Unix.

Several methods c an return error codes indicatinf failure,
instead of always raising an exception. These error codes
are, as described in the saga error section, defined as
POSIX errno. These code SHOULD be used in identical
situations as described in POSIX. The calls which can
return error codes are docuemented.

SAGA-CORE-WG SAGA 1.0



98 GWD-R
- CONSTRUCTOR
Purpose: create the obj
Format: CONSTRUCTOR (in string url,

in int flags,
in session session,
out file obj)

Inputs: url: location of file
flags: mode for opening
session: session to associate the

object with
Outputs: obj: the newly created object
Throws: BadParameter

DoesNotExist
Notes: - the session handle defaults to the SAGA

default session handle if not explicitely
specified

- the default flag set is (Read)

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in file obj)
Inputs: obj: the object to destroy
Outputs: none

- read
Purpose: reads data from an open file
Format: read (in long len_in,

in string buffer,
out long len_out);

Inputs: len_in: length of data section to
be read

buffer: buffer to read into
Outputs: len_out: length of data read into

buffer
Throws: BadParameter
Notes: - reads up to len_in bytes from the file into

the buffer.
- the actually number of bytes read into buffer
is returned in len_out. It is not an error
to read less bytes than requested, or in fact
zero bytes, eg. at the end of the file.

- errors are indicated by returning negative
values for len_out, which correspond to
negatives of the respective errno error code

- the file pointer is positioned at the end of
the byte area read during this call.

- the given buffer must be large enough to
store up to len_in bytes

- similar to the read (2) call in Unix, as

SAGA 1.0 SAGA-CORE-WG



files 99
specified by POSIX

- write
Purpose: write data into an open file
Format: write (in long len_in,

in string buffer,
out long len_out);

Inputs: len_in: number of bytes to be
written

buffer: bytes to be written
Outputs: len_out: number of bytes written
Throws: BadParameter
Notes: - writes up to len_in bytes from buffer into

the file at the current file position.
- errors are indicated by returning negative
values for len_out, which correspond to
negatives of the respective errno error code

- the file pointer is positioned at the end
of the byte area written during this call.

- similar to the write (2) call in Unix, as
specified by POSIX

- seek
Purpose: reposition the file pointer
Format: seek (in long offset,

in seek_mode whence,
out long position);

Inputs: offset: offset in bytes to move
pointer

whence: offset is relative to
’whence’

Outputs: position: position of pointer after
seek

Throws: BadParameter
Notes: - seek repositions the file pointer for

subsequent read, write and seek calls.
- initially (after open), the file pointer is
positioned at the beginning of the file,
unless the ’Append’ flag was given - then
the initial position is the end of the file.

- the repositioning is done relative to the
position given in ’Whence’, so relative to
the Begin or End of the file, or to the
current position.

- errors are indicated by returning negative
values for len_out, which correspond to
negatives of the respective errno error code

- the file pointer can be positioned after the
end of the file w/o extending it. Reads
behind EOF return Zeros.

SAGA-CORE-WG SAGA 1.0



100 GWD-R
- similar to the lseek (2) call in Unix, as
specified by POSIX.

- read_v
Purpose: gather/scatter read
Format: read_v (inout array<ivec> ivec);
Inputs/
Outputs: ivec: array of ivec structs

defining start (offset) and
length (length) of each
individual read, and buffer
to read into, and integer to
store result into.

Throws: BadParameter
Notes: - the behaviour of each individual read is as

in the normal read method.
- the lengths returned also correspond to those
of the normal read method.

- an exception is thrown if any of the
individual reads detects a condition which
would raise an exception for the normal
read method.

- errors are indicated by setting negative
values for len_out, which correspond to
negatives of the respective errno error code

- similar to the readv (2) call in Unix, as
specified by POSIX

- write_v
Purpose: gather/scatter write
Format: write_v (inout array<ivec> ivec);
Inputs/
Outputs: ivec: array of ivec structs

defining start (offset) and
length (length) of each
individual write, and
buffers containing the data
to write

Throws: BadParameter
WriteError

Notes: - the behaviour of each individual write is as
in the normal write method.

- the lengths returned also correspond to those
of the normal write method.

- an exception is thrown if any of the
individual writes detects a condition which
would raise an exception for the normal write
method.

- errors are indicated by setting negative
values for len_out, which correspond to
negatives of the respective errno error code

SAGA 1.0 SAGA-CORE-WG



files 101
- similar to the writev (2) call in Unix, as
specified by POSIX

+-------------------------------------------------------------+

Examples:
=========

Example: open a file. if its size is > 10, then read the
first 10 bytes into a string, and print it.

--------------------------------------------------------------
// c++ example
void head (const char* url)
{
try {
// get type and other infos
saga::file my_file (url);

off_t size = my_file.get_size ();

if ( size > 10 )
{
char buffer[11];
long bufflen;

my_file.read (10, buffer, &bufflen);

if ( bufflen == 10 )
{
printf ("head: ’%s’\n", buffer);

}
}

}

// catch any possible error - see elsewhere for better
// examples of error handling in SAGA
catch ( const saga::exception & e )
{
std::cerr << "Oops! SAGA error: " + e.what () + std::endl;

}

return;
}
--------------------------------------------------------------

+---------------------------------------------------------------+

SAGA-CORE-WG SAGA 1.0



102 GWD-R

Notes:
======

A ’stat’ like method is not yet specified; the form of such an
interface needs further consideration. However, the ’get_size’
method provides the most frequent and well defined file size
for now (the call may be deprecated when a stat specification
is available).

future API version may have something like:
stat (in string name,

out struct statinfo );

+-------------------------------------------------------------+

SAGA 1.0 SAGA-CORE-WG



logicalfiles 103

+-------------------------------------------------------------+

#
# #### #### # #### ## #
# # # # # # # # # # #
# # # # # # # # #
# # # # ### # # ###### #
# # # # # # # # # # #
####### #### #### # #### # # ######

#######
# # # ######
# # # #
##### # # #####
# # # #
# # # #
# # ###### ######

+-------------------------------------------------------------+

Summary:
========

There are a number of replica catalogue systems implemented or
in development. This API is the intersection of features
common to these implementations. (TODO: enumerate these
systems.)

Please note that the interactions with logical files as opaque
entities (as entries in logical file name spaces) are covered
by the name_space package. The interfaces presented here
supplement the namespace package with operations for operating
on entries in replica catalogues.

+-------------------------------------------------------------+

Specification:
==============

package saga.logical_file
{
enum open_dir_flags
{
/* Placeholder */

}

enum open_flags
{

SAGA-CORE-WG SAGA 1.0



104 GWD-R
Unknown = -1,
None = 0,
Create = 1,
Excl = 2,
Lock = 4,
Truncate = 8,
Append = 16,
Read = 32,
Write = 64,
ReadWrite = 128

}

class logical_directory : implements-all saga::object
implements-all saga::attribute
implements-all saga::monitorable
extends saga::ns_directory

{

CONSTRUCTOR (in string url,
in array<open_dir_flags,1> flags,
in session session,
out logical_directory dir);

DESTRUCTOR (in logical_directory dir);

// add for inspection
is_file (in string name,

out boolean test);

// open methods
open_dir (in string name,

in array<open_dir_flags,1> flags,
out logical_directory dir);

open (in string name,
in array<open_flags,1> flags,
out logical_file file);

}

class logical_file : implements-all saga::object
implements-all saga::attribute
implements-all saga::monitorable
extends saga::ns_entry

{
CONSTRUCTOR (in string url,

in array<open_flags,1> flags,
in session session,
out logical_file file);

DESTRUCTOR (in logical_file file);

SAGA 1.0 SAGA-CORE-WG



logicalfiles 105

add_location (in string name);
remove_location (in string name);
update_location (in string name_old,

in string name_new);
list_locations (out array<string,1> names);
replicate (in string name);

}
}

+-------------------------------------------------------------+

Details:
========

class logical_directory

This class represents a container for logical files in a
logical file catalog. It allows traversal of the catalogs
name space, and the manipulation and creation (open) of
logical files in that name space.

Factory like methods for creating objects (see note in
saga::name_space specification)

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in string url,

in array<open_dir_flags,1>
flags,

in session session,
out logical_directory

obj)
Inputs: url: location of directory

flags: mode for opening
session: session to associate with

the object
Outputs: obj: the newly created object
Throws: BadParameter

DoesNotExist
Notes: - the session handle defaults to the SAGA

default session handle if not explicitely
specified

- currently there are no supported flags
- the default flag set is (None)
- similar to opendir (3), as defined by POSIX

- DESTRUCTOR
Purpose: destroy the object

SAGA-CORE-WG SAGA 1.0



106 GWD-R
Format: DESTRUCTOR (in logical_directory obj)
Inputs: obj: the object to destroy
Outputs: none

- is_file
Purpose: alias for is_entry in ns_directory

- open_dir
Purpose: creates a new logical_directory instance
Format: open_dir (in string name,

in array<open_dir_flags,1>
flags,

out logical_directory dir);
Inputs: name: name of directory to open

flags: flags definition operation
modus

Outputs: dir: opened directory instance
Throws: BadParameter

DoesNotExist
Notes: - notes to logical_directory constructor apply

- open
Purpose: creates a new logical_file instance
Format: open (in string name,

in array<open_flags,1>
flags,

out logical_file file);
Inputs: name: file to be opened

flags: flags definition operation
modus

Outputs: file: opened file instance
Throws: BadParameter

DoesNotExist
Notes: - notes to logical_file constructor apply

class logical_file:

This class provides means to handle the contents of Logical
Files.

That contents consists of strings representing locations
of physical files associated with the logical file. In
general, these locations could be logical files as well.
In fact, they are usually handled as opaque strings, and
no assumption about validity or the nature of the target
of the location is made. Exception: see the replicate
and add_location method description.

SAGA 1.0 SAGA-CORE-WG



logicalfiles 107

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in string url,

in array<open_dir_flags,1>
flags,

in session session,
out logical_file obj)

Inputs: url: location of directory
flags: mode for opening
session: session to associate with

the object
Outputs: obj: the newly created object
Throws: BadParameter

DoesNotExist
Notes: - the session handle defaults to the SAGA

default session handle if not explicitely
specified

- if the file does not exist, it is created if
the ’Create’ flag is given, otherwise it is
an error

- it is an error if the file exists and both the
’Create’ and the ’Excl’ flag are given.
Otherwise the ’Excl’ flag is ignored

- the file is truncated to length 0 on the open
operation if the ’Trunc’ flag is given. For
logical files that means: no physical file
location is associated with the logical file.

- the file is in opened in append mode if the
’Append’ flag is given. For logical files
that means: newly added physical file
locations are appended to the set of known
locations.

- the file is locked on open if the ’Lock’ flag
is given. If the file is already in a locked
state, the open will fail and a descriptive
error will be issued. If a file is opened in
locked mode, any other open on that file MUST
fail, with no respect to the given flags.
Note that a file can be opened in normal mode,
and then in locked mode, w/o an error getting
raised. The lock will get removed on
destruction of the file object (that is on
close). If an implementation does not support
locking, an descriptive error MUST get issued
if the ’Lock’ flag is given.

- default flag set is (Append)
Note that the default is different to the
class saga::file.

- similar to the open (2) call in Unix, as
specified by POSIX

SAGA-CORE-WG SAGA 1.0



108 GWD-R

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in logical_file obj)
Inputs: obj: the object to destroy
Outputs: none

- add_location
Purpose: add a name to the location set
Format: add_location (in string name);
Inputs: name: location to add to set
Outputs: none
Throws: BadParameter

AlreadyExists
Notes: - this methods adds a given string to the set

of locations associated with the logical file.
- if the location is already in the set, no
error is issued.

- the implementation may choose to interpret the
locations associated with the logical file
instance. It may return an error indicating
an invalid location if it is unable or
unwilling to handle that specific location.

- the documentation MUST specify how valid
location are contructed.

- remove_location
Purpose: remove a name from location set
Format: remove_location (in string name);
Inputs: name: location to remove from set
Outputs: none
Throws: BadParameter

DoesNotExist
Notes: - this method removes a given string from the

set of locations associated with the logical
file.

- if the location is not in the set of
locations, an error is issued.

- if the set of locations is empty after that
operation, the logical file object is still a
valid object (see replicate methods
description).

- update_location
Purpose: change a name in location set
Format: update_location (in string name_old,

SAGA 1.0 SAGA-CORE-WG



logicalfiles 109
in string name_new);

Inputs: name_old location to be updated
name_new update for location

Outputs: none
Throws: BadParameter

DoesNotExist
Notes: - this method removes a given string from the

set of locations associated with the logical
file, and adds a new string.

- if the old location is not in the set of
locations, an error is issued.

- list_locations
Purpose: list the locations in the location set
Format: list_locations (out array<string,1> names);
Inputs: none
Outputs: names: array of locations in set
Notes: - this method returns an array of strings

containing the complete set of locations
associated with the logical file.

- an empty array returned is not an error - see
description to the remove_location method.

- replicate
Purpose: replicate a file from any of the known

locations to a new location, and add the new
location to the location set on success.

Format: replicate (in string name);
Inputs: name: location to replicate to
Outputs: none
Throws: BadParameter
Notes: - the method requests a two step operation:

1) copy an entity at any of the locations
associated with the logical file to the
given string, which represents a new
location.

2) perform an add_location for the given
string.

- the method is not required to be atomic, but:
- the method is required to be either
successfull in both steps, or to issue an
error indicating if both methods failed, or if
only one of the methods succeeded (leaving the
system in an inconsistent state).

- a replicate call on an instance with empty
location set results in an error.

- this methods requires the implementation of
the class to interpret the locations
associated with the logical file instance. If
that is impossible, an error indicating an

SAGA-CORE-WG SAGA 1.0



110 GWD-R
invalid location must be issued.

+-------------------------------------------------------------+

Examples:
=========

// c++ example
int main ()
{
saga::logical_file lf ("lfn://remote.catalog.net/tmp/file1");

lf.replicate ("gsiftp://localhost.net/tmp/file.rep");

saga::file f ("gsiftp://localhost.net/tmp/file.rep");
std::cout << "sice of local replica: "

<< f.get_size ()
<< std::endl;

}

+-------------------------------------------------------------+

Notes:
======

It is recommended to interpret the locations associated with
logical files with valid locations for saga::file, and to have
the implementation using saga::file. That helps to program
coherently with the saga::name_space, saga::file and
saga::logical_file packages.

logical_file and logical_directory should implement the
saga::attribute interface.

logical_directory should implement a find method searching on
saga::attribute.

+-------------------------------------------------------------+

SAGA 1.0 SAGA-CORE-WG



job 111

+-------------------------------------------------------------+

#####
# #### #####
# # # # #
# # # #####

# # # # # #
# # # # # #
##### #### #####

+-------------------------------------------------------------+

Summary:
========

Many of the use cases provided to the SAGA-RG had either
explicit or implied requirements for submitting jobs to grid
resources, and for monitoring and controlling these submitted
jobs.

This API provides an interface for submitting jobs to a grid
resource, either in batch mode, or in an interactive mode. It
also provides APIs for controlling these submitted jobs (e.g.
to terminate, suspend, or signal a running job), and APIs for
retrieving status information for both running and completed
jobs.

The goals of this API are to provide enough functionality to
satisfy the requirements of grid developers according to the
"80-20" rule. This API is also intended to incorporate the
work of the DRMAA-WG, and to extend the API based on the
experience of implementing DRMAA. Much of this specification
was taken directly from DRMAA, with many of the differences
arising from an attempt to make the job API consistent with the
overall SAGA API model. Note [1].

+-------------------------------------------------------------+

Specification:
==============

package saga.resource
{
// enum job_state = saga::state (from task package)

class job_definition : implements-all saga::object
implements-all saga::attribute

{
CONSTRUCTOR (out job_definition obj);
DESTRUCTOR (in job_definition obj);

SAGA-CORE-WG SAGA 1.0



112 GWD-R
}

class job : implements-all saga::object
implements-all saga::attribute
implements-all saga::monitorable
extends saga::task

{
/* no CONSTRUCTOR */
DESTRUCTOR (in job job);

// job inspection
get_job_id (out string job_id);
get_state (out state state);
get_state_detail (out string detail);
get_job_definition (out job_definition job_def);
get_stdin (out opaque stdin);
get_stdout (out opaque stdout);
get_stderr (out opaque stderr);

// job management
suspend (void);
resume (void);
checkpoint (void);
migrate (in job_definition job_def);
signal (in int signum);
terminate (void);

}

class job_service : implements-all saga::object
implements-all saga::monitorable

{
CONSTRUCTOR (in session session,

out job_service service);
DESTRUCTOR (in job_service service);

create_job (in string rm,
in job_definition job_def,
out job job);

run_job (in string rm,
in string commandline,
out opaque stdin,
out opaque stdout,
out opaque stderr,
out job job);

list (out array<string,1> job_ids);
get_job (in string job_id,

out job job);
get_self (out job job);

}
}

SAGA 1.0 SAGA-CORE-WG



job 113
+-------------------------------------------------------------+

Details:
========

class job_definition:
---------------------

This object encapsulates all the attributes which define a
job to be run. It has no methods of its own, but implements
the ’Attribute’ interface in order to provide access to
the job properties. The only required attribute in order to
perform a valid job submission is the ’JobCmd’. Given the
’JobCmd’, a job can be instantiated in many existing back
end systems without any further specification.

There should be much overlap between the attributes defined
within SAGA and within the JSDL specification. This list,
however, will not be complete in cases where the JSDL was
deemed more complicated than was required for a simple API
(e.g. the notion of JSDL Profiles), or where an attribute was
needed to interact with a scheduler, which was not within the
stated scope of the JSDL working group (e.g. ’Queue’,
which is considered a "site" attribute, and thus not relevant
to the pure description of a job).

At the end of the description of an attribute there is a bit
in parentheses that indicates whether a particular attribute
is supported within a particular system. Tokens include
DRMAA, JSDL, LSF, OpenPBS, PBSPro, SGE and Condor, and are
intended to be extended by members of the working group.

The attributes encapsulated within this class are:

’JobCmd’
- The command to execute. This is the only required
attribute. Can be a full pathname, or a pathname
relative to the ’JobCwd’ as evaluated on the execution
host. String. (DRMAA, JSDL, LSF)

’JobArgs’
- Positional parameters for the command. Vector of strings.
(DRMAA, JSDL, LSF)

’JobState’
- The job state at submission. jobs can be submitted into a
suspend or hold state such that they need manual resume
before being considered for scheduling. Valid values are
"Hold", "Suspend". If not specified, the job will enter the
default "Pending" state. Type String. (DRMAA, LSF)

SAGA-CORE-WG SAGA 1.0



114 GWD-R
’JobEnv’
- The set of environment variables which will be exported
to the environment of the started job. The string format
is "name=value". Vector of strings. (DRMAA, JSDL)

’JobCwd’
- The working directory for the job. If this is a relative
path, it will be treated as relative to the users home
directory on the system where the job runs. String.
(DRMAA, JSDL)

’JobInteractive’
- Run the job in interactive mode. This means that stdio
streams will stay connected to the submitter after job
submission, and during job execution. The stdio streams
are retrieved by calling the getXStream methods of the
jobs class. Boolean. (LSF)

’JobStdin’
- The pathname of the standard input file. If this is a
relative pathname, it will be treated as relative to the
users home directory on the system where the job runs.
String. (DRMAA, JSDL, LSF)

’JobStdout’
- The pathname of the standard output file. If this is a
relative pathname, it will be treated as relative to the
users home directory on the system where the job runs.
String. (DRMAA, JSDL, LSF)

’JobStderr’
- The pathname of the standard error file. If this is a
relative pathname, it will be treated as relative to the
users home directory on the system where the job runs.
String. (DRMAA, JSDL, LSF)

’JobContact’
- A set of endpoints describing where to report job
completion status, as well as other resource manager
defined state transitions. The format of the string will
be that of a URI (e.g. fax:+123456789, sms:+123456789,
mailto:csmith@platform.com). Vector of strings. (DRMAA
(email addresses), LSF (email addresses))

’JobNotification’
- A flag which indicates whether to send notifications to
endpoints listed in ’JobContact’. Mostly used to shut
off notifications if they are on by default. Boolean.
(DRMAA, LSF)

’JobName’

SAGA 1.0 SAGA-CORE-WG



job 115
- The job name to be attached to the job submission.
String. (DRMAA, LSF)

’JobNative’
- The native specification as described in the DRMAA
specification. Note [3]. This value is passed as is to
the backend without any meaning or semantics within the
SAGA API. String. (DRMAA)

’FileTransfer’
- A list of file transfer directives which can be used to
transfer files to the execution host of the job before
the job is run, and to transfer files from the execution
host of the job when the job completes. Vector of
strings. (DRMAA (limited), JSDL (much enhanced), LSF)

The syntax of a file transfer directive is modeled on the
LSF syntax, and has the general syntax:

"local_file operator remote_file"

Both the local_file and the remote_file can be URLs. If
they are not URLs, but full or relative pathnames, then
the local_file is relative to the host where the
submission is executed, and the remote_file is evaluated
on the execution host of the job.

The operator is one of the following four:

- ’>’ - copies the local file to the remote file before
the job starts. Overwrites the remote file if it
exists.

- ’>>’ - copies the local file to the remote file before
the job starts. Appends to the remote file if it
exists.

- ’<’ - copies the remote file to the local file after
the job finishes. Overwrites the local file if it
exists.

- ’<<’ - copies the remote file to the local file after
the job finishes. Appends to the local file if it
exists.

’JobStartTime’
- The time after which a job is considered for scheduling.
Could be viewed as a desired job start time, but that is
up to the resource manager. Date/time. (DRMAA, LSF)

’Deadline’
- Specifies a hard deadline after which the resource
manager should terminate the job. Date/time. (DRMAA, LSF)

SAGA-CORE-WG SAGA 1.0



116 GWD-R
’WallclockHardLimit’
- Specifies a hard limit on the amount of wall clock time
in seconds that a job may consume, after which the
resource manager should terminate the job. Integer.
(DRMAA, JSDL, LSF)

’WallclockSoftLimit’
- Provides an estimate of the amount of wall clock time in
seconds which a job will require. This attribute is
intended to provide hints to the scheduler. If this time
limit is reached, the action taken is specific to the
resource manager and its scheduling policies. Integer.
(DRMAA, LSF)

’Cputime’
- Estimated job runtime in CPU seconds. The CPU time is
aggregated across all processes/threads of the job.
Integer. (LSF)

’NumCpus’
- The total number of cpus requested for this job. How the
cpus are allocated is determined by the policy of the
resource manager, and can possibly be affected by the
’Native’ attribute if the resource manager supports
it. Integer. (JSDL, LSF)

’Memory’
- Estimated maximum amount of memory that the job requires
in Megabytes. The memory usage of the job is aggregated
across all processes of the job. Float. (JSDL, LSF)

’ProcessorType’
- Select compatible processor for job submission. The list
of allowed values is taken from the JSDL specification
jsdl:ProcessorArchitectureEnumeration. Note [4]. String.
(JSDL)

’OperatingSystem’
- Select compatible operating system for job submission.
The list of allowed values is taken from the JSDL
specifications jsdl:OperatingSystemTypeEnumeration. Note
[4]. String. (JSDL)

’HostList’
- A list of host names, or host group names, which can be
considered by the resource manager as candidate hosts for
the job. Whether or not the job actually ends up running
on one of the hosts in the list, is solely at the
discretion of the resource manager. Vector of strings.
(JSDL, LSF)

SAGA 1.0 SAGA-CORE-WG



job 117
’Queue’
- The name of a queue to place the job into. While SAGA
itself does not define the semantics of "queue", many
back end systems can make use of this attribute. String.
(LSF)

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (out job_definition obj)
Inputs: none
Outputs: obj: the newly created object
Notes: - a job_definition is NOT associated to a

session, but can be used for job services
from different sessions.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in job_definition obj)
Inputs: obj: the object to destroy
Outputs: none

class job:
----------

The job provides the manageability interface to a job
submitted to a resource manager. There are two general types
of methods: those for retrieving job state and information,
and those for manipulating the submitted job. The methods
intended to manipulate jobs cannot make any guarantees about
how the resource manager will effect an action to be taken.
Please see note [5].

job implements the ’Attribute’ interface, and understands
the following attribute names. If not noted otherwise, none
of these attributes is available before the job is running,
and none is guaranteed to have a value if the job is running
or after the job finishes. Also, the attributes can change
their values during the lifetime of the job.

’ExecutionHosts’
- The list of host names or IP addresses which were
allocated to run this job. Vector of strings.

’Created’
- The time stamp of the job creation in the resource
manager (i.e. the submission time). Date/time.

’Started’

SAGA-CORE-WG SAGA 1.0



118 GWD-R
- The time stamp indicating when the job started running.
Date/time.

’Finished’
- The time stamp indicating when the job completed.
Date/time.

’Cputime’
- The number of cpu seconds consumed by the job. The value
is aggregated across all processes/threads of the job.
Integer.

’MemoryUse’
- The current aggregate memory usage in megabytes of the
processes of this job, or the memory high water mark when
the job is complete. Integer.

’VmemoryUse’
- The current aggregate virtual memory usage in megabytes
of the processes of this job, or the virtual memory high
water mark when the job is complete. Integer.

’JobCwd’
- The current working directory of the job on the execution
host(s). This can be used to determine the location of
files that are staged using relative file paths. String.

’ExitCode’
- The process exit code as collected by the wait(2) series
of system calls. The exit code is collected from the
process which was started from the ’JobCmd’ attribute
of the jobDefinition object. Is only available in final
states, but not guaranteed. Integer.

’Signaled’
- Indicates whether the job exited due to receipt of a
signal. Is only available in final states, but not
guaranteed. Boolean.

’Termsig’
- The signal number which caused the job to exit. Is only
available in final states, but not guaranteed. Integer.

- CONSTRUCTOR
This class has no constructor, and can only be obtained by
calling job_server.create_job() or job_server.run_job().

- DESTRUCTOR
Purpose: destroy the object

SAGA 1.0 SAGA-CORE-WG



job 119
Format: DESTRUCTOR (in job obj)
Inputs: obj: the object to destroy
Outputs: none

- get_job_id
Purpose: Get the resource managers representation of

the job identifier.
Format: get_job_id (out string job_id);
Inputs: none
Outputs: job_id: job identifier string

- get_state_detail
Purpose: Retrieve details of the current job state.
Format: get_state_detail (out string detail);
Inputs: none:
Outputs: deatail: details about the current

job state
Notes: - The SAGA job state model is a very simplified

model. The job state details obtained with
this calls returns information from any more
explicit state model of the back end.

- BES compliant states SHOULD be returned
- the format of the state details SHOULD be:
"<model>:<state>", with valid models being:
"BES", "DRMAA", "GRAM", or implementation
specified. The state should be spelled
like "UpperCase" (example: "BES:StagingIn").

- get_job_definition
Purpose: Retrieve the job_definition which was used to

submit this job instance.
Format: get_job_definition (out job_definition job_def);
Inputs: none
Outputs: job_def: a job_definition object
Notes: - There are cases when the job_definition is not

available, and thus this object will be empty
(i.e. has no attributes attached).
These include cases when the job might not have
been submitted through SAGA, and get_job() was
used to retrieve a job, or this state
information has been lost (e.g. the client
application restarts and the particular SAGA
implementation did not persist the information).

- get_stdin
Purpose: retrieve input stream for a job.
Format: get_stdin (out opaque stdin)

SAGA-CORE-WG SAGA 1.0



120 GWD-R
Inputs: none
Outputs: stdin: standard input stream for

the job
Notes: - If the job was submitted as interactive (the

’JobInteractive’ attribute was set at job
submission), this method retrieves the standard
input stream for the job. The type of the
stream is indicated in SIDL as opaque, since
this type will be rendered differently based
on the language bindings, and will be made
concrete in another specification document
which describes language bindings.

- get_stdout
Purpose: retrieve output stream of job
Format: get_stdout (out opaque stdout)
Inputs: none
Outputs: stdout: standard output stream for

the job
Notes: - If the job was submitted as interactive (the

’JobInteractive’ attribute was set at job
submission), this method retrieves the
standard output stream for the job.

- get_stderr
Purpose: retrieve error stream of job
Format: get_stderr (out opaque stderr)
Inputs: none
Outputs: stderr: standard error stream for

the job
Notes: - If the job was submitted as interactive (the

’JobInteractive’ attribute was set at job
submission), this method retrieves the
standard error stream for the job.

- suspend
Purpose: Ask the resource manager to perform a suspend

operation on the running job.
Format: suspend ();
Inputs: none
Outputs: none
Notes: - The semantics of suspend, and the action taken

to suspend a job is resource manager specific.

- resume
Purpose: Ask the resource manager to perform a resume

operation on the running job.

SAGA 1.0 SAGA-CORE-WG



job 121
Format: resume ();
Inputs: none
Outputs: none
Notes: - The semantics of resume, and the action taken

to resume a job is resource manager specific.

- checkpoint
Purpose: Ask th resource manager to initiate a checkpoint

operation on a running job.
Format: checkpoint ();
Inputs: none
Outputs: none
Notes: - The semantics of checkpoint, and the actions

taken to initiate a checkpoint, are resource
manager specific.

- migrate
Purpose: Ask the resource manager to migrate a running

job to another host.
Format: migrate (in job_definition job_def);
Inputs: job_def: new job parameters to apply

when the job is migrated
Outputs: none
Notes: - The call may also be used to change some

parameters of a non-finished job (e.g. change
runtime limit estimates, etc). The action of
migration might change the job identifier within
the resource manager.

- job_def might indicate new resource requirements,
for example.

- terminate
Purpose: Ask th resource manager to terminate a dispatched

job
Format: terminate ();
Inputs: none
Outputs: none
Notes: - the job can be in in Running or Suspended state

- the semantics of terminate, or the action taken,
is specific to the resource manager.

- signal
Purpose: Ask th resource manager to deliver an arbitrary

signal to a dispatched job.
Format: signal (in int signum);
Inputs: signum: signal number to be

delivered

SAGA-CORE-WG SAGA 1.0



122 GWD-R
Outputs: none
Notes: - The semantics of signal, or the action taken,

is specific to the resource manager. There is no
guarantee that the signal number specified is
valid for the operating system on the execution
host where the job is running.

class job_service:
------------------

The job_service provides an class for job creation and
discovery.

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in session session,

out job_service obj)
Inputs: session: session to associate with

the object
Outputs: obj: the newly created object
Notes: - the session handle defaults to the SAGA

default session handle if not explicitely
specified

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in job_service obj)
Inputs: obj: the object to destroy
Outputs: none

- create_job
Purpose: create a job instance
Format: create_job (in string rm,

in job_definition job_def,
out job job);

Inputs: rm: rm name or IP address of
the resource manager which
will accept and run the job

job_def: description of job to be
submitted

Outputs: job: a job object representing
the submitted job instance

Throws: IncorrectParameter
Notes: - the returned job is in the New state

- calling run() on the job will submit it to
the resource, and advance its State.

SAGA 1.0 SAGA-CORE-WG



job 123

- run_job
Purpose: Run a command synchronously.
Format: run_job (in string rm,

in string commandline,
out opaque stdin,
out opaque stdout,
out opaque stderr,
out job job);

Inputs: rm: rm name or IP address of
the resource manager which
will accept and run the job

commandline: the command and arguments
to be run

Outputs: stdin: IO handle for the running
jobs standard input stream

stdout: IO handle for the running
jobs standard output

stderr: IO handle for the running
jobs standard error

job: a job object representing
the submitted job instance

Notes: - This is a convenience routine built on the
create_job method, and is intended to simplify
the steps of creating a job_definition,
creating and running the job, and then
querying the stdio streams.

- list
Purpose: Get a list o jobs which are currently known by

the resource manager.
Format: list (out array<string,1> job_ids);
Inputs: none
Outputs: job_ids: an array of job identifiers
Notes: - The semantics of which jobs are viewable by the

calling user context, or how long a resource
manager keeps job information are implementation
dependent.

- get_job
Purpose: Given a job identifier, this method returns a

job object representing this job.
Format: get_job (in string job_id,

out job job)
Inputs: job_id: job identifier as returned

by the resource manager
Outputs: job: a job object representing

the job identified by
job_id

SAGA-CORE-WG SAGA 1.0



124 GWD-R

- get_self
Purpose: This method returns a job object representing

_this_ job, i.e. the calling application.
Format: get_self (out job job)
Inputs: none
Outputs: job: a job object representing

_this_ job.

job_id:
-------

The job ID is treaded as opaque string in the SAGA API.
However, for reasons of compatibility and potential extended
use of the job id information, the job id SHOULD be
implemented as:

"[backend url]-[native id]"

For example, a job submitted via ssh, and having the unix pid
1234, should get the job id:

"[ssh://remote.host.net:22/]-[1234]"

+-------------------------------------------------------------+

Examples:
=========

Example : simple job submission and polling for finish.

// -----------------------------------------------
// c++ example
std::list <char*> transfers;
saga::job_definition jobdef;

transfers.push_back ("infile > infile");
transfers.push_back ("ftp://host.net/path/out << outfile");

jobdef.set_attribute ("’JobCmd’", "myjob.sh");
jobdef.set_attribute ("’NumCpus’", "16");
jobdef.set_vector_attribute ("’FileTransfer’", transfers);

saga::job_service myjs;
saga::job myjob = myjs.create_job ("remote.host.net", jobdef);

myjob.run ();

while ( 1 )

SAGA 1.0 SAGA-CORE-WG



job 125
{
saga::state state = myjob.get_state ();

if ( saga::job::Running == state.saga () )
{
std::list <char*> hostlist = myjob.get_attribute

("’ExecutionHosts’");
// print hostlist

}
else if ( saga::job::Done == state.saga () )
{
print "Job completed successfully.";
exit;

}
else
{
// saga state can be Unknown or Failed

char* exitcode = myjob.get_attribute ("’ExitCode’");

std::cout << "Job failed with " << exitcode << std::endl;
exit (exitcode);

}

sleep (1); // idle
}
// -----------------------------------------------

+-------------------------------------------------------------+

Notes:
======

References:
-----------

[1] We expect that SAGA-API implementations may be implemented
using DRMAA or may produce JSDL documents to be passed to
underlying scheduling systems.

[2] The job_state enumerated type encapsulates the possible
states of a job. They are copied from the BES WG as of
February 2006.
https://forge.gridforum.org/projects/ogsa-bes-wg/document/ogsa-bes-draft-v16/en/1

[3] http://www.ggf.org/documents/GWD-R/GFD-R.022.pdf

[4] https://forge.gridforum.org/projects/jsdl-wg

[5] The API implementation is designed to be agnostic of the

SAGA-CORE-WG SAGA 1.0



126 GWD-R
back end implementation, such that any back end could be
implemented to perform an action. For example, the
checkpoint routine might cause an application level
checkpoint, or might use the services of GridCPR.

[6] In attributes that take paths and pathnames, there was
some discussion as to whether we should require the
implementation of placeholders which could represent things
like ’home directory’, and that are not known until the job
is bound to an execution host.

[7] There is discussion as to which interfaces might be
missing. One possibility was a job history retrieval
interface could be necessary. This could be used to map
state transitions of a job throughout its lifetime.

[8] The DRMAA ’job category’ attribute was left out of the
strawman API. During the discussions of this attribute
within the design team meetings, it was deemed to simplify
the API at the expense of the implementor of the back end
system. Thus, it was left out pending discussion.

+-------------------------------------------------------------+

SAGA 1.0 SAGA-CORE-WG



stream 127

+-------------------------------------------------------------+

#####
# # ##### ##### ###### ## # #
# # # # # # # ## ##
##### # # # ##### # # # ## #

# # ##### # ###### # #
# # # # # # # # # #
##### # # # ###### # # # #

+-------------------------------------------------------------+

Summary:
========

A number of use cases involved launching of remotely located
components in order to create distributed applications. The
use cases require simple remote socket connections to be
established between these components and their control
interfaces.

The target of this streams API is to establish the simplest
possible authenticated socket connections with hooks to
support authorization and encryption schemes. The API is

1) Not performance oriented: If you need performance, then
it is better to program directly to the APIs of existing
performance oriented protocols like GridFTP or XIO.

2) Focused on TCP/IP socket connections. There has been no
attempt to generalize this to arbitrary streaming
interfaces (although it does not prevent such things from
being supported).

3) Does not attempt to create a programming paradigm that
diverges very far from baseline BSD sockets, Winsock, or
Java Sockets interfaces.

This API greatly reduces the complexity of establishing
authenticated socket connections in order to communicate with
remotely located components. It, however, provides very
limited functionality suitable for applications that do not
have too sophisticated requirements (as per 80-20 rule). As
applications become more sophisticated, they can graduate to
more sophisticated native APIs in order to support those
needs.

+-------------------------------------------------------------+

SAGA-CORE-WG SAGA 1.0



128 GWD-R

Specification:
==============

package saga.stream
{
enum stream_state
{
Unknown = -1,
Error = 1,
Open = 2,
Dropped = 3,
NotConnected = 4

}

enum activity_type
{
Unknown = -1,
Read = 1,
Write = 2,
Exception = 4,
Any = 7,

}

class stream : implements-all saga::object
implements-all saga::attribute
implements-all saga::monitorable

{
CONSTRUCTOR (in string url,

in session session,
out stream obj);

DESTRUCTOR (in stream obj);

get_url (out string url);
get_context (out context info);

connect (void);
state (out stream_state state);
wait (in activity_type what,

in double timeout,
out array<activity_type,1>

activity);

read (inout array<byte,1> buffer,
in long buffer_size,
out long bytes_read);

write (in array<byte,1> buffer,
in long size,
out long bytes_written);

close (void);

SAGA 1.0 SAGA-CORE-WG



stream 129
// Attributes:
// name: bufsize
// desc: determines the size of the send buffer, in bytes
// mode: ReadWrite
// type: Int
// value: <system dependend>
//
// name: timeout
// desc: determines the amount of idle time
// before dropping the line, in seconds
// mode: ReadWrite
// type: Int
// value: <system dependend>
//
// name: blocking
// desc: determines if read/writes are blocking
// or not
// mode: ReadWrite
// type: Bool
// value: True
//
// name: compression
// desc: determines if data are compressed
// before/after transfer
// mode: ReadWrite
// type: Bool
// value: <system dependend>
//
// name: nodelay
// desc: determines if packets are sent
// immediatley, i.e. w/o delay
// mode: ReadWrite
// type: Bool
// value: True
//
// name: reliable
// desc: determines if all sent data MUST arrive
// mode: ReadWrite
// type: Bool
// value: True

// Metrics:
// name: read
// desc: fires if a stream gets readable
// mode: Read
// unit: 1
// type: Bool
// value: True
//
// name: write

SAGA-CORE-WG SAGA 1.0



130 GWD-R
// desc: fires if a stream gets writable
// mode: Read
// unit: 1
// type: Bool
// value: True
//
// name: exception
// desc: fires if a stream has an error condition
// mode: Read
// unit: 1
// type: Bool
// value: True
//
// name: any_event
// desc: fires if the stream gets readable,
// writable, or has an error condition
// mode: Read
// unit: 1
// type: Bool
// value: True
//
// name: dropped
// desc: fires if the stream gets dropped by the
// remote party
// mode: Read
// unit: 1
// type: Bool
// value: True
//
// name: state
// desc: fires if the state of the stream changes,
// and and has the value of the stream state
// enum
// mode: Read
// unit: 1
// type: enum
// value: Unknown

}

class stream_server : implements-all saga::object
implements-all saga::attributes
implements-all saga::monitorable

{
CONSTRUCTOR (in string url,

in session session,
out stream_server obj);

DESTRUCTOR (in stream_server obj);

get_url (out string url);

SAGA 1.0 SAGA-CORE-WG



stream 131
wait (in double timeout,

out stream stream);

// Metrics:
// name: client_connect
// desc: fires if a client connects
// mode: Read
// unit: 1
// type: Bool
// value: True

}
}

+-------------------------------------------------------------+

Details:
========

class stream:

This is the object that encapsulates all client stream
objects.

- CONSTRUCTOR
Purpose: Constructor, initializes a client client stream,

for later connection to an server.
Format: CONSTRUCTOR (in string url,

in session session,
out stream stream);

Inputs: url: server location in URL
syntax

ctx: SAGA context used for
stream setup

Outputs: stream: new, unconnected stream
instance

Throws: BadParameter
Notes: - the session handle defaults to the SAGA

default session handle if not explicitely
specified

- server location and possibly protocol is
described by the input URL.

- a saga::context is necessary to authenticate
the socket.

- The socket is only connected after the connect
method is called in order to support two-phase
connections that appear in some authentication
schemes. The state of the socket upon
construction is therefore NotConnected. Once
the connect() method is sucessfully called, the
state will change to Open.

SAGA-CORE-WG SAGA 1.0



132 GWD-R

- DESTRUCTOR
Purpose: Destructor, closes any active connection and

deallocates any memory consumed by the stream
data structures.

Format: DESTRUCTOR (in stream stream)
Inputs: stream: stream data structure that

needs to be closed and
deallocated.

Outputs: none
Notes: - Because the data structures might consume some

memory space internally, even closed, dropped,
or failed sockets must be deallocated using
the destroystream method.

- close
Purpose: closes an active connection
Format: close (void)
Inputs: none
Outputs: none
Throws: IncorrectState
Notes: - IncorrectState is thrown when the stream was

closed previously

- connect
Purpose: Establishes a connection to the target defined

during the construction of the stream.
Format: connect ();
Inputs: none
Outputs: none
Throws: IncorrectState
Notes: - on success, the streams state is changed to

Open

- read
Purpose: Read a raw buffer from socket.
Format: read (inout string buffer,

in long size,
out long nbytes);

Inputs: buffer: Empty buffer passed in to
get filled

size: Maximum number of bytes
that can be copied in to
the buffer.

Outputs: nbytes: number of bytes read, if
successful. (0 is also
valid)

Throws: IncorrectState
Notes: - This call is blocking. Use wait or poll

methods to implement non-blocking reads.

SAGA 1.0 SAGA-CORE-WG



stream 133

- write
Purpose: Write a raw buffer to socket.
Format: write (in string buffer,

in long size,
out long nbytes);

Inputs: buffer: raw array containing data
that will be sent out via
socket

size: number of bytes of data in
the buffer

Outputs: nbytes: bytes written if successful
Throws: IncorrectState
Notes: - This call is blocking. Use wait method to

implement polling for non-blocking writes.

- state
Purpose: Check on the state of an active connection.
Format: state (out stream_state state);
Inputs: none
Outputs: state: state of stream
Notes: - the only valid states for a stream are:

Error:
The socket has entered a non-fatal error
state. If the state is fatal, then the
state will be Dropped. The reason for
the error must be queried through a separate
interface (not yet defined).

NotConnected:
This the state for a newly created socket
where the connect method has not been
invoked.

Open:
This is the state for an active/connected
socket.

Dropped:
This is the state for a socket where the
remote side of the socket connection has been
lost or some other error has broken the
connection. A socket will enter the dropped
state if authentication fails for example.
The actual reason for the drop must be
queried through the error handling interface.

- this method is only returning the *state* of the
stream and not the reason it entered that state.

- more states can be added as required

- wait
Purpose: Allows the stream to be interrogated to find out

if it is ready for reading/writing, or if it has
entered an error state.

SAGA-CORE-WG SAGA 1.0



134 GWD-R
Format: wait (in activity_type what,

in double timeout,
out <array,1>activity_type

cause);
Inputs: what: parameter list of activity

types to wait for
timeout: number of seconds to wait

Outputs: cause: activity type causing the
call to return

Throws: IncorrectState
Notes: - wait will only check on the conditions specified

in the ’what’ parameter list (a bitmask in some
language bindings). The options are
Read:
The socket has pending data available for
reading.

Write:
The socket is available for writing.

Exception:
If the socket has entered an error state or
the remote host has dropped the connection.

Any:
This is shorthand for any of the above

- the call returns enum describing the
availability of the socket (eg. readable,
writable, or exception) masked against the
input ’what’ enum list.

- the call is blocking if the timeout is any
positive value. It blocks forever (no timeout)
if the timeout value is < 0.0. The wait method
can be used for polling if the timeout is set to
zero. The wait method will only check for the
activity_type that is specified in the call (and
ignore all other issues).

- get_context
Purpose: Gets a security context object from an OPEN

(connected)
Format: get_context (out context context);
Inputs: none
Outputs: context: a context object.
Throws: IncorrectState
Notes: - throws IncorrectState exception if the security

info is inapplicable (non-authenticated sockets)
- the context returned contains the security
information from the REMOTE party, and can be used
for authorization.

- It is assumed that the context is authenticated.

SAGA 1.0 SAGA-CORE-WG



stream 135
- get_url
Purpose: get URL used for creating the string
Format: get_url (out string url);
Inputs: none
Outputs: url: string containing the URL

of the connection.
Thorws: nothing
Notes: - this is the URL which can be passed to

stream constructor to create another
connection to the same stream_server.

class stream_server:

The stream_server object establishes a listening/server object
that waits for client connections. It can *only* be used as
a factory for Server sockets. It doesnt do any read/write
I/O.

- CONSTRUCTOR
Purpose: Constructor, to create a new stream_server object
Format: CONSTRUCTOR (in string url,

in session session,
out stream_server stream);

Inputs: url: channel name or url,
defines the source side
binding for the stream
(eg. the port number for
the service)

session: session to be used for
object creation

Outputs: stream: new stream_server object
Throws: BadParameter
Notes: - the session handle defaults to the SAGA

default session handle if not explicitely
specified

- the context is primarily used to hide the
security information necessary to establish
authenticated connections.

- DESTRUCTOR
Purpose: Destructor for stream_server object.
Format: DESTRUCTOR (in stream_server stream)
Inputs: stream: stream_server object to be

destroyed
Outputs: none
Notes: - the call cleans up any memory used by the

stream_server object in addition to closing the
service port.

SAGA-CORE-WG SAGA 1.0



136 GWD-R

- wait
Purpose: wait for incoming client connections
Format: wait (in double timeout,

out stream client);
Inputs: timeout: number of seconds to wait

for client
Outputs: client: new Connected stream object
Throws: IncorrectState
Notes: - supports either blocking or polling for new

client connections.
- if successful, it returns a new stream object
that is connected to the client.

- unlike new client streams, the new connection is
return in the Connected state.

- returns NULL or equivalent if it times out.
- returns NULL or equivalent if connection setup
failed (does not throw in that event)

- timeout < 0.0 wait forever
- timeout > 0.0 wait this number of seconds
- timeout = 0.0 poll and return immediately.

- get_url
Purpose: get URL to be used to connect to serverstream
Format: get_url (out string url);
Inputs: none
Outputs: url: string containing the URL

of the connection.
Thorws: nothing
Notes: - this is the URL which can be passed to

stream constructor to create a connection to
this stream_server.

+-------------------------------------------------------------+

Examples:
=========

Sample SSL/Secure Client:
-------------------------

Opens a stream connection using native security: context is
passed in implicitly via a global SAGA context
(GSI or SSL security)

// C++/JAVA Style
int recvlen;
saga::stream s ("localhost:5000");

SAGA 1.0 SAGA-CORE-WG



stream 137
s.connect ();
s.write ("Hello World!", 12);

// blocking read, read up to 128 bytes
recvlen = s.read (buffer, 128);

/* C Style */
int recvlen;

SAGA_stream = SAGA_Stream_open ("localhost:5000");

SAGA_Stream_connect (s);
SAGA_Stream_write (s, "Hello World!", 12);

/* blocking read, read up to 128 bytes */
recvlen = SAGA_Stream_read (s, buffer, 128);

c Fortran Style */
INTEGER err,SAGAStrRead,SAGAStrWrite,err
INTEGER*8 SAGAStrOpen,streamhandle
CHARACTER buffer(128)
SAGAStrOpen("localhost:5000",streamhandle)
call SAGAStrConnect(streamhandle)
err = SAGAStrWrite(streamhandle,"localhost:5000",12)
err = SAGAStrRead(streamhandle,buffer,128)

Sample Secure Server:
---------------------

Once a connection is made, the server can use information
about the authenticated client to make an authorization
decision

// C++/JAVA Style
saga::stream_server server ("tcp://localhost/5000");
saga::stream client;
int done = 0;

// now wait for a connection (normally in a loop)
do {
string value;
// wait forever for connection
client = server.wait ();

// get the distinguished name (DN)
saga::context = client.get_context ();

// check if context type is X509, and if DN is the

SAGA-CORE-WG SAGA 1.0



138 GWD-R
// authorized one
if ( saga::context::X509 == context.type () &&

! strcmp (context.get_attribute ("DN"), auth_dn) )
{
done = 1; // allowed

}
else
{
SAGA::stream_close (client); // not allowed

}
} while ( ! done );

// start activity on client socket...

Example for async stream server
-------------------------------

// c++ example
class my_cb : public saga::callback
{
privat:
saga::stream_server ss;
saga::stream s;

public:

my_cb (saga::stream_server ss_,
saga::stream s)

{
ss = ss_;
s = s_;

}

~my_cb (void) { }

void callback (saga::monitorable mt,
saga::metric m,
int c)

{
s = ss_.wait ();
mt.remove_callback (c); // want to be called only once

}
}

int main ()
{
saga::stream_server ss;
saga::stream s;
my_cb cb (ss, s);

SAGA 1.0 SAGA-CORE-WG



stream 139
ss.add_callback ("client_connect", cb);

while ( true )
{
if ( s.state != saga::stream::Open )
{
// no client, yet
sleep (1);

}
else
{
// handle open socket
s.write ("Hello Client\r\n", 14);
s.close ();

// restart listening
ss.add_callback ("client_connect", cb);

}
}

return (-1); // unreachable
}

+-------------------------------------------------------------+

Notes:
======

+-------------------------------------------------------------+

SAGA-CORE-WG SAGA 1.0



140 GWD-R

+-------------------------------------------------------------+

# #
# # #### #### ##### # # #### # # # # #
# # # # # # # ## # # # # # # # #

# # # # # # #### # # # # # # ## # #
####### #### #### # # # # # # # ## #######
# # # # # # ## # # # # # # #
# # # # ##### # # #### # # # # #

+-------------------------------------------------------------+

######
# # # ## # # ##### # ##### ####
# # # # # ## ## # # # # #
#### ## # # # ## # # # # #### ####
# ## ###### # # ##### # # #
# # # # # # # # # # # #
###### # # # # # # # ##### ##### ####

+-------------------------------------------------------------+

Introduction
============

This appendix shows a couple of API examples in different
languages. As stated in the global introduction, these
examples are not supposed to be normative -- language
bindings are outside the scope of this document. This
appendix is rather supposed to illustrate how the authors
imagine the use of the API in various languages.

We hope that the examples illustrate, that the API stays
SIMPLE in various language incarnations, as was the major
design intent for the _S_AGA API.

+-------------------------------------------------------------+

Example 1: Files:
=================

open a file. if its size is > 10, then read the first 10
bytes into a string, print it, end return it.

--------------------------------------------------------------
Example 1a: C++
--------------------------------------------------------------
// c++ example
void head (const char* url)

SAGA 1.0 SAGA-CORE-WG



examples 141
{
try {
// get type and other infos
saga::file my_file (url);

off_t size = my_file.get_size ();

if ( size > 10 )
{
char buffer[11];
long bufflen;

my_file.read (10, buffer, &bufflen);

if ( bufflen == 10 )
{
printf ("head: ’%s’\n", buffer);

}
}

}

// catch any possible error - see elsewhere for better
// examples of error handling in SAGA
catch ( const saga::exception & e )
{
std::cerr << "Oops! SAGA error: " + e.what () + std::endl;

}

return;
}
--------------------------------------------------------------
--------------------------------------------------------------
Example 1b: C
-------------
char* head (const char* url)
{
SAGA_File my_file = SAGA_File_create (url);

if ( NULL == my_file )
{
fprintf (stderr, "Could not create SAGA_File for %s: %s\n",

url, SAGA_Session_get_error (theSession));
return (NULL);

}

off_t size = SAGA_File_get_size (my_file);

if ( size < 0 )
{
fprintf (stderr, "Could not determine file size for %s: %s\n",

url, SAGA_Session_get_error (theSession));

SAGA-CORE-WG SAGA 1.0



142 GWD-R
return (NULL);

}
else if ( size > 10 )
{
char buffer[11];
size_t bufflen;

ssize_t ret = SAGA_File_read (my_file, 10, buffer, &bufflen);

if ( ret < 0 )
{
fprintf (stderr, "Could not read file %s: %s\n",

url, SAGA_Session_get_error (theSession));
return (NULL);

}

if ( bufflen == 10 )
{
buffer [11] = ’\0’;
printf ("head: ’%s’\n", buffer);
return (buffer);

}
else
{
fprintf (stderr, "head: read is short! %d\n", bufflen);
return (NULL);

}
}

fprintf (stdout, "head: file is too small! %d\n", size);

return (NULL);
}

--------------------------------------------------------------
Example 1c: Java
----------------

import saga*;

class MyClass
{
// open a file. if its size is > 10, then read the first
// 10 bytes into a string, print it, end return it.
string head (URI uri)
{
try
{
saga::file f (uri);

if ( 10 <= f.get_size () )

SAGA 1.0 SAGA-CORE-WG



examples 143
{
FileInputStream in (uri);
byte[] buffer = new buffer[10];
int res = in.read (buffer);

if ( 10 == res )
{
System.out.println ("head: " + buffer);

}
else
{
System.err.println ("head: read is short! " + res);

}

return new string (buffer);
}
else
{
System.out.println ("file is too small: " + size);

}
}

// catch any possible error - see elsewhere for better
// examples of error handling in SAGA
catch (...)
{
System.out.println ("Oops!");

}

return null;
}

}

--------------------------------------------------------------
Example 1d: Perl (’normal’ error handling)
------------------------------------------

sub head ($)
{
my $url = shift;
my $my_file = new saga::file (url)

or die ("can’t create file for $url: $!\n");

my $size = my_file->get_size ();

if ( size > 10 )
{
my $buffer = my_file->read (10)

or die ("can’t read from file $url: $!\n");

SAGA-CORE-WG SAGA 1.0



144 GWD-R
if ( length ($buffer == 10 ) )
{
print "head: ’$buffer’\n";
return ($buffer);

}
else
{
printf "head: short read! %s\n", saga::get_error ();

}
}
else
{
print "file $url is too short: $size\n";

}

return (undef);
}

--------------------------------------------------------------
Example 1e: Perl (exceptions)
-----------------------------

sub head ($$)
{
my $session = shift;
my $url = shift;

eval {
my $my_file = new saga::file (session, url);

my $size = my_file->get_size ();

if ( size > 10 )
{
my $buffer = my_file->read (10);

if ( length ($buffer == 10 ) )
{
print "head: ’$buffer’\n";
return ($buffer);

}
else
{
printf "head: short read! %s\n", saga::get_error ();

}
}
else
{
print "file $url is too short: $size\n";

}
}

SAGA 1.0 SAGA-CORE-WG



examples 145

if ( $@ =~ /saga/i )
{
print "catched saga error: $@\n" if $@;

}

return (undef);
}

--------------------------------------------------------------
Example 1f: Fortran
-------------------

TBD

--------------------------------------------------------------
Example 1f: Python
------------------

TBD

+-------------------------------------------------------------+

SAGA-CORE-WG SAGA 1.0


