
ar
X

iv
:c

s.
SE

/0
50

80
23

 v
1

 3
 A

ug
 2

00
5

Software Libraries and Their Reuse:
Entropy, Kolmogorov Complexity, and Zipf’s Law ∗

[Extended Abstract]

Todd L. Veldhuizen
Open Systems Laboratory

Indiana University Bloomington
Bloomington, IN, USA

tveldhui@acm.org

ABSTRACT
That software libraries are useful is something of a paradox.
Theory tells us almost no programs can be made shorter, and
hence reuse of code from libraries — which shortens pro-
grams — should not be happening on any appreciable scale;
yet it is. The paradox arises from two somewhat contradic-
tory notions of compressibility: that of Kolmogorov complex-
ity, and that of information theory. Their interplay leads to
some surprising results and a nice characterization of the role
libraries play in reducing program size. We identify a param-
eter H0 of a problem domain that measures the diversity of
its programs. This parameter yields upper bounds on code
reuse and the scale of components with which we may work.
This suggests a way to distinguish the (perhaps rare) prob-
lem domains in which the CBSE dream of “programming-by-
composing-components” may be realized. Along the way we
demonstrate a Zipf-style law for the frequencies with which
library components are reused, propose that library compo-
nents are the prime numbers of software, and prove bounds
on the amount of code that may be reused from libraries. As
a legacy to future generations of library authors, we prove an
incompleteness theorem for domain-specific libraries, guar-
anteeing them continual employment.

General Terms
Software Libraries, Reuse, Entropy, Information Theory, Kol-
mogorov Complexity, Zipf’s Law, Component-Based Software
Engineering

1. INTRODUCTION
Software reuse offers the hope that software construction can
be made easier by systematic reuse of well-engineered com-
ponents. In practice reuse has been found to improve pro-
ductivity and reduce defects [16, 9, 7, 15, 2]. But what of

∗In submission to LCSD 2005.

the limits of reuse — will large-scale reuse make software
construction easy? Thinking here is varied, but for the sake
of argument let me artificially divide the opinions into two
competing hypotheses. First the more enthusiastic end of the
spectrum, which I associate with the Component-Based Soft-
ware Engineering (CBSE) movement.

Strong reuse hypothesis: Large-scale reuse will
allow mass-production of software, with applica-
tions being assembled by composing pre-existing
components. The activity of programming will
consist primarily of choosing appropriate compo-
nents from libraries, adapting and connecting them.

Strong reuse is thought to be possible in problem domains in
which there is a great concentration of effort and similarity
of purpose, i.e., many people writing similar software whose
needs show only minor variation. However, the question
of whether strong reuse can succeed for software construc-
tion considered globally, across disciplines and organizations,
remains uncertain. A more cautious view of reuse is the fol-
lowing.

Weak reuse hypothesis: Large-scale reuse will
offer important reductions in the effort of imple-
menting software, but these savings will be a frac-
tion of the code required for large projects. Non-
trivial projects will always require the creation of
substantial quantities of new code that cannot be
found in existing component libraries.

Representative of weak reuse thinking is the following pre-
scription for code reuse in well-engineered software [16]: up
to 85% of code ought be reused from libraries, with a remain-
ing 15% custom code, written specifically for the application
and having little reuse potential.

A compression view of reuse. The view developed in this
paper is that the extent to which reuse can happen is an
intrinsic property of a problem domain, and that improving
the ability of programmers to find, adapt, and deploy com-
ponents will have only marginal impact on reuse rates if the

domain is inimical to reuse. We propose to associate with
problem domains a parameter H0 ∈ [0, 1] closely related to
information-theoretic entropy that measures how diverse soft-
ware is within the domain. When H0 = 1, software is ex-
tremely diverse and we should expect very little potential for
reuse; in fact, we show that the proportion of an application
we can draw from libraries approaches zero for large projects.
For problem domains with 0 < H0 < 1, software is somewhat
homogeneous, and with decreasing H0 comes increasing po-
tential for reuse. The theory we develop suggests that an ex-
pected proportion of at most (1−H0) of an application’s code
may be reused from domain-specific libraries, with a remain-
ing proportion H0 being custom code written specifically for
the application. As H0 → 0 we near the strong reuse utopia
of “programming by wiring together large components.” The
possibilities of reuse are strictly limited by the parameter H0,
which is an intrinsic property of the problem domain.

We develop this theory through examining our ability to com-
press or compactify software by the use of libraries. We shall
speak throughout this paper of compressed programs, by which
we mean programs written using libraries, and uncompressed
programs that are stand-alone and do not refer to libraries.
The principle tools we employ are information theory and
Kolmogorov complexity.

Library components and prime numbers. Integers factor
into a product of primes; software can be factored into an
assembly of components. Library components are the prime
numbers of software. This would be a terribly naive thing to
say were it not for the many wonderful parallels that turn up:

• There are infinitely many primes; in Section 5.3 we
prove there are infinitely many components for a prob-
lem domain that reduce expected program size (thus
guaranteeing employment for library writers.)

• The nth prime is a factor of ∼ 1
n ln n

of the integers. We

predict the nth most frequently used library component
has a reuse rate of about 1

n log n log+ n
(Section 4.2).

• The Erdös-Kac theorem states that the number of factors
of an integer tends to a normal distribution; we mea-
sure experimental data that suggests a similar theorem
might be provable for software components (Figure 5).

• The Prime Number Theorem states that the nth prime
is ∼ log(n ln n) bits long. We show that a likely con-
figuration for libraries is that the nth most frequently
used component is of size ∼ H−1

0 (1−H0) log+ n. (Sec-
tion 5.4).

1.1 Reuse and Zipf’s law
Useful software abstractions are provided in three basic ways:
in hardware, in programming languages, or in libraries. The
level at which abstractions are realized is strongly correlated
with how frequently they are needed. Integer and floating-
point arithmetic are provided in hardware, since almost ev-
ery computer user runs software requiring these. Some
common abstractions that don’t merit machine instructions
are provided by programming languages: for example, com-
plex numbers and string manipulation are often provided by

The Abstraction Iceberg

Hardware

Languages

Libraries

Figure 1: An illustration of where software abstractions
are provided. The few abstractions needed very fre-
quently are provided in hardware or by programming lan-
guages; the vast majority of abstractions are provided by
software libraries.

languages. Less frequently used abstractions are relegated to
software libraries, and these constitute the bulk of reusable
abstractions. We can think of abstractions as forming an ice-
berg, with the tip being those abstractions provided in hard-
ware and languages, and the vast majority lurking in libraries
(Figure 1). In our view, machine instructions are a special
case of “software components.”

It is known that hardware instruction frequencies follow an
iconic distribution described by George K. Zipf for word use
in natural languages [10, 19, 12]. Zipf noted that if you rank
words in a natural language according to use frequency, the
frequency of the nth word is about n−1. Such distributions are
called Zipf’s law in his honour [17], and they crop up in many
fields. Evidence suggests programming language constructs
also follow a Zipf-like law [3, 11].

It is natural then to wonder if this result might extend down
the iceberg to library components. Our results support this
conclusion. Figure 2 shows the reuse counts of subroutines
in shared objects on three Unix platforms, clearly showing
Zipf-like n−1 curves. These results are described in detail in
Section 6.

2. MODELLING LIBRARY REUSE
We propose an abstract model capturing some essential as-
pects of software reuse within a problem domain. The basic
scenario is this: we have a library, possibly many libraries
that we collectively consider as one, that contains a great
number of software components. These components may be
subroutines, architectural skeletons, design patterns, gener-
ics, component generators, or whatever form of abstraction
we may yet invent; their precise nature is unimportant for the
argument. In using a component from the library we achieve
some reduction in the size of the program, and perhaps conse-
quently, in the effort required to implement it. Program size
serves as a rough lower bound to effort, but it would be a
grave error to confuse the two.

2.1 Distribution of programs in a domain
We presume that the projects undertaken by programmers
can be modelled by a probability distribution on programs
particular to the problem domain. The probability distribu-

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

Subroutines ordered by use frequency (n)

N
um

be
r

of
 u

se
s

SunOS reuse data
Linux reuse data
Mac OS X reuse data

Figure 2: Data collected from shared objects on several
unix platforms, showing the number of references to li-
brary subroutines. The observed number of references
shows good agreement with a Zipf-law frequency laws of
the form c · n−1 (dotted diagonal lines). A detailed expla-
nation of this data is given in Section 6.

tion is defined on “uncompressed” programs that do not use
any library components.

We consider compiled programs modelled by binary strings
on the alphabet {0, 1}. We shall write ‖w‖ for the length of a
string w.1 To avoid probability distributions on infinite sets of
programs in which the probability of encountering individual
programs vanishes, we shall work with a family of conditional
distributions {ps0}s0∈N whose domains consist of programs
≤ s0 bits in size, that is,

ps0 :

⋃

i≤s0

{0, 1}i

 → R

and satisfying
∑

ps0 = 1 and ps0(w) ≥ 0 for all w and s0.
Then ps0(w) gives the probability that someone working in
the problem domain will set out to realize the particular (un-
compressed) program w, given ‖w‖ ≤ s0. For this family of
distributions to be compatible with one another we shall re-
quire that ps0(w) = ps0+k(w | ‖w‖ ≤ s0) for k ∈ N.

In the sequel we will use the usual notation for expectation,
with the implied assumption of s0 → ∞:

E [f(w)] ≡ lim
s0→∞

∑

w:‖w‖≤s0

f(w)ps0(w)

For example, a mean program size E[‖w‖] may exist for a
problem domain, but we do not require this.

We do not presume that such distributions can be effectively
defined for a specific problem domain.

1The use of |w| for string length, while traditional in some
quarters, leads to confusing notations such as P (w | |w| < m)
for probability conditioned on string length. We use ‖ · ‖ to
avoid this.

2.2 The diversity parameter H0

We introduce a parameter H0 for problem domains measuring
how far their probability distribution departs from uniform.
This is largely the same as entropy rate from information the-
ory, slightly adapted for finite program sizes. When H0 = 1
the distribution is uniform, modelling extreme diversity of
software, with little opportunity for reuse. For H0 < 1 there
is some potential for reuse. In fact as we shall see shortly, we
may expect that up to a proportion 1 − H0 of programs may
be reused from libraries.

A key, perhaps defining, feature of a problem domain is that
there is similarity of purpose in the programs people write.
We would not expect the distribution of programs written in
a problem domain to be uniform, but rather concentrated
on programs that solve certain classes of problems that are
likely to crop up in that domain. We measure the departure
from uniformity by examining the entropy of the distributions
{ps0}. Define the entropy of the distribution ps0 in the stan-
dard way (see, e.g., [13, §1.11]):

Hs0 =
∑

w:‖w‖≤s0

−ps0(w) log2 ps0(w)

This is the expected number of bits required to represent a
program of size ≤ s0 in this domain.

We define H0 to be the least value such that

Hs0 ≤ H0s0

almost surely as s0 → ∞.2 This bounds the ‘entropy rate’ for
uncompressed programs in the problem domain.

We cannot hope to calculate H0 from first principles when
the problem domain is defined by the interests of a group of
people, but there is hope we might estimate it empirically. We
introduce H0 as a theoretical tool to model problem domains
in which people have great similarity of purpose (H0 → 0)
or diffuse interests (H0 → 1). The main impact of H0 is the
following.

Claim 2.1. In a problem domain with diversity parameter H0,
the expected proportion of code that may be reused from a li-
brary is at most 1 − H0.

This is a consequence of the Noiseless Coding Theorem of in-
formation theory (e.g., [1, §2.5]), which states that coding
random data with entropy H requires (on average) at least
H bits. In our situation, the data we wish to represent are
the (uncompressed) programs that programmers set out to
realize, and the ‘codes’ are the (compressed) programs writ-
ten with use of a library. Suppose an uncompressed program

2We do not assume the limit lims0→∞
Hs0
s0

exists; there might

be unbounded oscillations in Hs0 . That a least H0 exists
follows from all such H0 being bounded below by 0, since
Hs0 ≥ 0; and there is at least one such bound, namely
Hs0 ≤ (1)s0; therefore a least upper bound exists. This def-
inition of H0 differs slightly from the usual definition of en-
tropy rate from information theory, in which the entropy rate
of infinite streams or random processes are considered. But
the two can be considered equivalent for most purposes as
s0 → ∞.

%%
%

+

s bits

...

n

Library

6
5
4
3
2
1

Uncompressed program (without library)

Compressed program (with library)

≥ H0s bits

ComponentIdentifier

Figure 3: The basic scenario: programmers in a problem
domain set out to realize a program that can be repre-
sented in s bits when compiled without the use of a li-
brary. By using library components, they are able to re-
duce the size of the compiled program, down to an ex-
pected size of ≥ H0s bits.

has size s ≤ s0. We defined H0 so that Hs0 ≤ sH0 almost
surely, so we can compress programs to an expected size of
at best sH0 by the Noiseless Coding Theorem. Therefore the
expected amount of code saved by use of the library is at most
(1−H0)s, and it is reasonable to equate this with the amount
of code reused from the library. An immediate implication is
that blanket reuse prescriptions such as “effective organiza-
tions reuse 70% of their code from libraries” are unrealistic;
reuse goals need to be tailored to domain’s value of H0.

Figure 3 illustrates the basic scenario we consider in this pa-
per: we are given an uncompressed program of length s writ-
ten without use of a library, drawn from the distribution for
the problem domain. A programmer implements the program
making use of the library, effectively “compressing” it. The ex-
pected size of the compressed program is at least H0s bits, by
the previous arguments. The library consists of a set of com-
ponents, each with an identifier or code by which they are
referred to. We always take programs to be compiled, so as
not to care about the high compressibility of source represen-
tations.

2.3 Libraries maximize entropy
A truly great computer programmer is lazy, im-
patient and full of hubris. Laziness drives one to
work very hard to avoid future work for a future
self. — Larry Wall

Programmers, so we read, are lazy— they write libraries to
capture commonly occurring abstractions so they do not have
to write them over and over again. The social processes that
drive programmers to develop libraries have an interesting
mathematical effect. We can view programmers contributing
to domain-specific libraries as collectively defining a system
for compressing programs in that domain. If there is a common
pattern, eventually someone will identify it and put it in a
library. Since the absence of “factorable patterns” in code is
indicated by high entropy, we propose the following principle.

Principle 1 (Entropy maximization). Programmers develop
domain-specific libraries that minimize the amount of fre-
quently rewritten code for the problem domain. This tends
to maximize the entropy of compiled programs that use li-
braries.

As evidence for this principle, we show in Section 6 that the
rate at which library components are reused is empirically
observed to approach a maximum entropy configuration.3

In practice, of course, programmers have to strike a balance
between the succinctness of their programs and their read-
ability; see, e.g., [6] for an elegant dissection of such trade-
offs. However, we maintain that the drive toward terseness
of programs is a defining pressure on library development:
programmers edge as close to maximum entropy as they can
while maintaining source-code understandability.4

2.4 The Platonic library
In the early days of computing libraries held a hundred sub-
routines at most; these days it is common for computers to
have a hundred thousand subroutines available for reuse (cf.
Section 6). Let us suppose that as time goes on we shall con-
tinue to add components to our libraries, as we discover more
abstractions and algorithms. Our current libraries might be
viewed as a truncated version of some infinite (but countable)
library toward which we are slowly converging. It is conve-
nient to pretend that this limit already exists as some infinite
“Platonic library” for the problem domain, and that we are
discovering ever-larger fragments of it, recalling Erdös’ book
of divine mathematical proofs. Were we granted access to the
entire library, we might write software in a very efficient way.
We use the Platonic library as a device — a convenient fiction
— to reason about how useful finite libraries might be.

Infinite objects need to be treated with care. We shall not
assume that some “optimal infinite library” exists that is the
best possible such library. Nor shall we assume there is some
finite description or computable enumeration of its contents.
We merely assume that fragments of the Platonic library give
us snapshots of what shall be in our software libraries over
time.

2.5 Existence of reuse rates
Numerous metrics have been proposed for measuring reuse.
We focus on the reuse rate of a component, which we write
λ(n) and define as the expected rate at which references are
made to the nth library component in a compressed program.
The units of λ(n) are expected references per bit of compiled
code. We assume mean reuse rates exist in a problem domain,
in the following sense.

Assumption 1. Let Refsn(w) count the number of references
to the nth component in a compressed program w of size ≤ s0.
We assume that

E[Refsn(w)] ∼ λ(n)‖w‖ + o(‖w‖) (1)

3Note that Principle 1 is not intended to appeal to the max-
imum entropy principle as advocated by Jaynes, which deals
with uncertainty in inference.
4We re-emphasize that we are speaking of the entropy rate
of compiled programs; source representations remain highly
compressible to support readability.

where o(‖w‖) denotes some error term growing asymptotically
slower than ‖w‖.

We unfortunately do not have a good sense of how to go from
the problem domain’s distributions ps0 on uncompressed pro-
grams to rates of components in compressed programs; with
humans involved it is tricky to pin down. Hence the need
to assume that the mean rates λ(n) exist. Thankfully this is
not a demanding assumption; many sensible random process
models would imply Assumption 1, for example modelling
component uses as a renewal process (see, e.g., [18, §3]).5

2.6 Ordering of library components
For convenience we shall suppose the library components are
arranged in decreasing order of expected reuse rate in the
problem domain: that is,

λ(n) ≥ λ(n + 1)

There are two reasons for this. The first is tidiness, so that
when we plot λ(n) vs n we see a monotone function and not
noise. The asymptotic bounds we derive on λ(n) do not rely
on this ordering. The second reason is that to compress pro-
grams well, we need to assign shorter identifiers to more fre-
quently used components. This is easiest to reason about if
the Platonic library is sorted by use frequency.6

3. BACKGROUND
3.1 Kolmogorov Complexity
Kolmogorov complexity, also known as Algorithmic Informa-
tion Theory, was founded in the 1960s by R. Solomonoff, G.
Chaitin, and A.N. Kolmogorov. We shall only make use of
some basic facts; for a more thorough introduction the survey
article [14] or the book [13] are recommended. The central
idea is simple: measure the ‘complexity’ of an object by the
length of the least program that generates it. This generalizes
to the study of description systems, that is, systems by which
we define or describe objects, of which programming lan-
guages and logics are prominent examples. The source code
of a program, for example, describes a program behaviour; a
set of axioms describes a class of mathematical structures. In
the general case we have some objects we wish to describe,
and a description system φ that maps from a description w

(for us, a program) to objects. The usual situation is to de-
scribe an object by exhibiting a program that generates it; in
this case we may also provide some inputs to the program,
which we shall call parameters. The Kolmogorov complexity
of an object x in the description system φ, relative to a param-
eter y is defined by:

Cφ(x | y) = min
w

{‖w‖ : φw(y) = x} (2)

5For readers familiar with coding theory we forestall confu-
sion by mentioning that the rates λ(n) are not the same as the
usual notion of probabilities over countable alphabets. The
rates λ(n) are drawn from compressed programs and so al-
ready incorporate code lengths.
6Jeremiah Willcock made the useful suggestion that we may
regard the Platonic library as containing already every possi-
ble component, and the only question is the order in which
they are placed.

In Eqn. (2), w ranges over all possible programs. In the
case where the description system φ is a programming lan-
guage, we may read Eqn. (2) as finding the shortest pro-
gram that, given input parameter y, outputs x. The parame-
ter y does not contribute to the measured description length
Cφ(x | y). Without a parameter we have the simpler case
Cφ(x) = Cφ(x | ǫ) where ǫ is the empty string.

For example, we might choose the programming language
Java as our description system; then for some string x, its
Kolmogorov complexity CJava(x) is the length of the shortest
program that outputs x. To determine whether use of a library
L offers a reduction in program size, we can consider the com-
bination of Java and the library L as a description system it-
self which we might call Java + L, and compare CJava+L(x) to
CJava(x).

Fact 3.1 (Invariance [13, §2.1]). There exists a universal ma-
chine U such that if φ is some effective description system (e.g.,
a programming language) then there is a constant c such that
CU (x) < Cφ(x) + c for any x.

That is, the machine U is optimal up to a constant factor. For
this reason the subscript U can be dropped and one can write
C(x) for the Kolmogorov complexity of x, knowing it is only
defined up to some constant factor.7

This is a suitable time to break the news that we shall be
juggling two somewhat contradictory notions of compressibil-
ity. The information theory notion deals with compressing ob-
jects by assigning short descriptions to objects that appear fre-
quently. The Kolmogorov notion of compressibility describes
our ability to find a short description of a single object in iso-
lation, without appealing to any notion of frequency. Some
strings have very short descriptions: a string of a trillion zeros
may be produced by a short program. Others require descrip-
tions as long as the strings themselves, for instance a million
digit binary string obtained from a physical random bit gen-
eration device.8 A recurrent theme in Kolmogorov complexity
is that there are never enough descriptions to go around so as
to give short descriptions to most objects. In the case where
both the objects and their descriptions are binary strings, we
have the following well-known result that the probability we
can save more than a constant number of bits in compressing
randomly selected strings is zero.

Fact 3.2 (Incompressibility [13, §2.2]). Suppose g is a posi-
tive integer function with g ∈ ω(1), that is, limn→∞ g(n) = ∞.
Let x be a string chosen uniformly at random. Then almost
surely:

Cφ(x) ≥ ‖x‖ − g(‖x‖) (3)

Theorem 3.2 implies, for example, that one cannot devise a
coding system that compresses strings by even log log n or
α−1(n, n) (inverse Ackermann) bits with nonzero probability.
The proof of Theorem 3.2 uses counting arguments only, with

7There is an easy way to see why this is true: if φ is a pro-
gramming language, then we can write a φ-interpreter for
the universal machine U . We can then take any program for
φ, prepend the interpreter, and it becomes a U -program. The
constant mentioned reflects the size of such an interpreter.
8Unless you are lucky.

no appeal to effective computability of the description sys-
tem.9 Therefore the inequality (3) applies to any description
system φ, even description systems that are not computable.
For example, Fact 3.2 even applies if we permit ourselves to
use an infinite, not computably enumerable library as we de-
scribed in Section 2.4.10

In the remainder of this paper we shall assume compiled pro-
grams are almost surely Kolmogorov incompressible. To con-
nect this assumption with reality, we make the following claim.

Claim 3.1. Compiled C programs on most extant architectures
are almost surely Kolmogorov incompressible.

To bolster Claim 3.1, we show that the number of distinct
behaviours described by compiled programs of s bits grows
as ∼ 2s on current machines, which implies compiled pro-
grams are almost surely (Kolmogorov) incompressible. The
C language has the useful ability to incorporate chunks of
binary data in a program. For example, the binary string
z = 0110100111011010 may be encoded by the C declaration

unsigned char z[2] = {0x69, 0xda};

Moreover, such arrays are laid out as contiguous binary data
in the compiled program, so that a binary string of length
m bytes requires exactly m bytes in the compiled program.
Now we can combine such arrays with a short program of
constant size that that reads the binary string from memory
and outputs it to the console. Every binary string of m bytes
may be encoded by such a compiled program of size at most
c + m bytes, where c is a constant representing the overhead
of a read-print loop. Every such program yields a unique be-
haviour, so the number of distinct behaviours of compiled pro-
grams of s bits is ∼ 2s. We can then adapt the argument used
to prove Fact 3.2, replacing strings by compiled programs,
which shows compiled C programs are almost surely incom-
pressible. 11

Note that uncompiled programs are highly compressible. For
example, C language source code may not contain certain
bytes (e.g., control characters) such as the null character 0x00.
This means they can be compressed by a factor of (at least)
1

256
∼ 0.39%. Restricting our attention to compiled programs

is crucial.

4. A BOUND ON REUSE RATES
In this section we derive a bound on the reuse rate λ(n) at
which the nth library component may be of use.

9There are 2n−g(n)+1 − 1 descriptions of length at most n −
g(n), and 2n+1 − 1 strings of length at most n. Therefore
the fraction of strings compressible by g(n) bits is at most
2n−g(n)+1−1

2n+1−1
, which behaves in the limit as 2−g(n). If g ∈ w(1)

this value vanishes as n → ∞, so Cφ(x) ≥ ‖x‖ − g(‖x‖)
almost surely.

10This would be terrible news for software reuse were it the
final word. However, there is more to this story yet to come.

11Note that “almost surely incompressible” does not imply any-
thing about the compressibility of typical compiled programs
one finds on a real computer. Rather, it means that if one
chooses a valid compiled program uniformly at random, with
probability 1 it cannot be replaced by a shorter program with
the same behaviour. In subsequent sections we investigate
problem domains where there is a nonuniform distribution
on programs, i.e., H0 < 1, where the situation is rosier.

4.1 Coding of references
We need some rudimentary accounting of what we gain and
lose by use of the library: we save some by using a library
component, at the cost of having to refer to it. Let us first
consider the cost of referring to components.

We presume that codes (i.e., identifiers) are assigned to li-
brary components so that every component has a unique code.
Let c(n) be the binary code for the nth library component,
and ‖c(n)‖ its length. Optimal strategies such as Shannon-
Fano or Huffman codes assign shortest codes to the most fre-
quently needed components. Since our library is sorted in
order of use frequency (Section 2.6), we may presume that
‖c(n)‖ ≤ ‖c(n + 1)‖, i.e., code lengths are nondecreasing as
we go down the list of components.

Now in what follows we want to make asymptotic arguments,
and fixing an identifier size (e.g., 64 bits) would lead to wildly
wrong conclusions.12 Instead we require that the identifier
size grows with the number of components, albeit slowly. It
is easy to prove that ‖c(n)‖ ≥ log2 n. Having identifiers of
length only log2 n leads to difficulties, because they are not
uniquely decodable. That is, if I am presented with a string
of such identifiers I have no way to tell where one identifier
stops and the next starts. (This does not arise in current ar-
chitectures because of fixed word size, but as we said, care is
needed in asymptotic arguments). A more accurate require-
ment is the following, which draws on Kraft’s inequality that
uniquely decodable codes must satisfy

∑∞
n=1 2−‖c(n)‖ ≤ 1.

Proposition 4.1. For identifiers to be uniquely decodable,

‖c(n)‖ ≥ log+
n

where log+ n = log n + log log n + log log log n + · · · and the
sum is taken only over the positive real terms.

We omit the proof; see e.g., [13, §1.11.2] (in particular prob-
lem 1.11.13).

4.2 Derivation of reuse rate bound
We now derive an asymptotic upper bound on the rates λ(n)
at which library components may be reused. We do this under
the assumption that each time a library component is used in
a program, the same identifier is used to refer to it, i.e., there
is no recoding of identifiers.13 Our argument follows standard
lines [17] but adapted to coding of library references under
the model laid out in Section 2.

12For instance, the time required to search a linked list of n
elements is O(n). But if we fix memory addresses to be rep-
resentable in 64 bits, then the time is O(1) since there are at

most 264 steps the algorithm must go through.
13There are two reasons for this assumption. (1) On the ar-
chitectures from which we collect empirical data, there is
no recoding of identifiers in programs. (2) The reason one
might want to recode identifiers is to save space by introduc-
ing shorter aliases for components for use within the program,
after the initial reference. However, this only saves space if a
component is more likely to be used again given it is used
once. While this is intuitively true of real programs, it is false
under a maximum entropy assumption (Section 2.3): in an
encoding that maximizes entropy, the sequence of identifiers
in a program behaves statistically as if independent and iden-
tically distributed.

Theorem 4.1. Without recoding of identifiers, the asymptotic
reuse rates λ(n) must satisfy λ(n) ≺ (n log n log+ n)−1.

Proof. We count the size of the references to library compo-
nents within compressed programs (i.e., those written with
use of a library). Consider programs of length at most s. As
s → ∞, the expected number of occurrences of the nth com-
ponent tends to λ(n)s + o(s) under Assumption 1. Referring
to the nth component requires at least log+ n bits (Proposi-
tion 4.1). We need only consider components whose identifier
length is less than s, since identifiers longer than the program
would not fit. Therefore we consider only up to component
number 2s since log+ 2s ≥ s.

The expected total size of all the references to components is
then at least:

2s
∑

n=1

(λ(n)s + o(s))
︸ ︷︷ ︸

refs

log+
n

︸ ︷︷ ︸

ref size

The references to components are contained within the pro-
gram, and therefore their total size must be less than s, the
size of the program. Therefore we have an inequality:14

2s
∑

n=1

(λ(n)s + o(s)) log+
n ≤ s (4)

Dividing through by s and taking the limit as s → ∞,

lim
s→∞

2s
∑

n=1

1

s
(λ(n)s + o(s)) log+

n ≤ 1 (5)

Since lims→∞
1
s
o(s) = 0 by definition,15

∞∑

n=1

λ(n) log+
n ≤ 1 (6)

We now consider conditions under which this sum converges.
(Section A.1 summarizes the asymptotic notations used here.)
We argue using Proposition A.1, using a diverging series to
bound the terms of Eqn. (6). The simple argument is to note
that the harmonic series diverges, and therefore the terms of
Eqn. (6) must grow slower than this, so λ(n) log+ n ≺ 1

n
, or

λ(n) ≺ 1
n log+ n

. However, this bound is quite loose. A more

slowly diverging series is
∑

n
1

n log n
. Using this,

λ(n) log+
n ≺

1

n log n

or,

λ(n) ≺
1

n log n log+ n
(7)

14Inequality (4) becomes an equation if we consider programs
to consist solely of a sequence of component references, with
no control flow or other distractions. This is possible by build-
ing components and programs from combinators, which can
be made self-delimiting [13, §3.2]. This provides a theoreti-
cally elegant framework, if not entirely intuitive. The Invari-
ance Theorem of Kolmogorov complexity ensures that trans-
lating programs and libraries into combinatory form is not
costly in program size (Fact 3.1).

15Recall that f ∈ o(g) means limx→∞
f(x)
g(x)

= 0.

This completes the proof.

The bound of Theorem 4.1 is not tight. No tightest bound
is possible since there is no slowest diverging sequence with
which to bound a convergent sequence, a classical result due
to Niels Abel. However, the bound is tight to within a factor
nǫ for any ǫ > 0.

This provides an upper bound on λ(n), but it could well be
the case that λ(n) ∼ 1

n3 , for example. Why do the curves we
see in practice hug the bound of Theorem 4.1?

Entropy maximization. The answer to why we see λ(n) ≈ 1
n

in practice appears to be due to the tendency of libraries
to evolve so that programmers can write as little code as
possible, which in turn implies evolution toward maximum
entropy in compiled code (Principle 1). It turns out that
the entropy of the component references is maximized when
λ(n) ≈ 1

n
(see, e.g., [8]).

A maximum-entropy explanation for Zipf’s law in natural lan-
guages has been advocated by Harremoës and Topsøe [8].
They suggest that vocabulary learning be modelled by con-
vergence to a Zipf-like distribution and gradually increasing
communication bit rate, a possibly interesting model both for
library development within a problem domain, and for library
learning progressions.

5. REUSE POTENTIAL
In the following sections we consider the possibilities of code
reuse in two cases: (1) when H0 = 1 and we have a uniform
distribution on programs; (2) when 0 < H0 < 1 and we have
some degree of compressibility in the problem domain. We
do not look at the case H0 = 0 due to space limitations.

5.1 The uniform case: H0 = 1
The uniform case of H0 = 1, in which every program is
equally likely to be implemented, reduces our scenario to the
classical situation of Kolmogorov complexity. It has some sur-
prising properties that suggest H0 = 1 to be an unlikely sce-
nario for real problem domains.

Our first result concerns the number of library components
we might expect to use in a program. Let N (s) be a random
variable indicating for a program of uncompressed size s the
number of components whose use reduces program size. Sur-
prisingly, as program size increases the expected number of
components that reduce program size is bounded above by a
constant.

Theorem 5.1. If H0 = 1 there exists a constant ncrit indepen-
dent of program size s such that N(s) ≤ ncrit almost surely.

Proof. Suppose each component used saved at least 1 bit. If
lims→∞ E[N(s)] were unbounded, use of the library could
compress random programs by an unbounded amount, con-
tradicting incompressibility (Fact 3.2).

This has a simple corollary concerning the potential for code
reuse.

Corollary 5.1. When H0 = 1 the expected proportion of a pro-
gram that can be reused from libraries tends to zero as program
size increases.

These results smack of paradox: a primary purpose of soft-
ware libraries is to save code, i.e., compress programs, but
Kolmogorov complexity tells us almost every program is in-
compressible. Is reuse a pipe-dream? No. In the next sections
we show that if H0 < 1 then we can compress programs, even
ones that are (Kolmogorov) incompressible, by use of a li-
brary. Resolving this paradox requires distinguishing between
the Kolmogorov notion of a single program being incompress-
ible, versus the information theory notion of compressibility
that involves a probability distribution over an ensemble of
programs.

5.2 Libraries compress the incompressible
Much more interesting than the uniform case is the situation
when 0 < H0 < 1. This models problem domains that have
some potential for code reuse, and libraries are of central im-
portance. In such problem domains libraries let us compress16

the incompressible.17 Recall from Section 2.2 that we can
expect to compress programs in such domains from uncom-
pressed size s to at best H0s by use of a library. A standard
result from information theory can be adapted to show this
bound is achievable, at least in a theoretical sense.

Claim 5.1. There exists a library with which uncompressed pro-
grams of size s can be compressed to expected size ∼ H0s.

The proof of this is not particularly illustrative and we banish
it to a footnote.18 The gist is to stuff every possible program
into the library, but order them so that the most likely pro-
grams for the problem domain come soonest in the library or-
der and thus are assigned the shortest codes. This is a wildly
impractical construction but demonstrates the claim. In prac-
tice we decompose software into reusable chunks that we put
in libraries.

16In the information theory sense.
17In the Kolmogorov complexity sense.
18

Proof. We first describe an encoding that compresses pro-
grams to achieve an expected size H0s, and then explain how
to construct the library. Recall the Shannon-Fano code [13,
§1.11] allows a finite distribution with entropy H to be coded
so that the expected code length is ≤ H + 1. We adapt this
as follows. For each s0 ∈ N, we produce a Shannon-Fano
codebook for all programs of length ≤ s0 achieving average
code size ≤ Hs0 + 1 for the distribution ps0 (Section 2.2). By
definition Hs0 ≤ H0s almost surely, so this achieves a com-
pression ratio of H0 almost surely for each s0 as s0 → ∞. To
combine all the codebooks into one, we preface a compressed
program with an encoding of its uncompressed length, which
we use to select the appropriate codebook. This can be done
by adding to each code c + 2 log s bits for some constant c,
which is negligible with respect to H0s when H0 > 0. There-
fore this encoding achieves expected program size ∼ H0s. We
use the codebook as the library: each component identifier is
a Shannon-Fano code, each component is a program. Note
that the reuse rates vanish for this construction, i.e., λ(n) → 0
as s0 → ∞, and so the bound of Theorem 4.1 is trivially sat-
isfied.

Unlike the situation of H0 = 1 where the number of com-
ponents useful for a program was at most a constant, when
0 < H0 < 1 we have a much more pleasing situation where
the number of useful components increases steadily as we in-
crease program size. In the next few sections we explore some
further interesting properties.

5.3 The incompleteness of libraries
Under reasonable assumptions we prove that no finite library
can be complete: there are always more components we can
add to the library that will allow us increase reuse and make
programs shorter. To make this work we need to settle a sub-
tle interplay between the Kolmogorov complexity notion of
compressibility (there is a shorter program doing the same
thing) and the information theoretic notion of compressibility
(low entropy over an ensemble of programs). Now because
we defined probability distributions on programs (rather than
behaviours), we run into the possibility that the probabil-
ity distribution might weight heavily programs that are Kol-
mogorov compressible, i.e., the distribution might prefer pro-
grams w with ‖w‖ >> C(w). For example, a problem domain
might have programs that are usually compressible to half
their size not because the probability distribution focuses on
a particular class of problems, but because we artificially de-
fined ps0 to select only those programs that are twice as large
as they might be (for example, we might pad every likely pro-
gram with lots of nop instructions.) To avoid this difficulty we
require the distributions be honest in the following sense.

Definition 1 (Honesty). We say the distributions ps0 for a
problem domain are honest if the programs are Kolmogorov
incompressible. Specifically,

E

[
C(w)

‖w‖

]

→ 1 as s0 → ∞ (8)

where the expectation is taken over the distributions ps0 . This
requires that the probability distribution does not artificially
prefer verbose programs with ‖w‖ >> C(w).

If the distribution for a problem domain is honest and has
H0 < 1, the programs are expected to be information-theoretically
compressible by use of a library, but not Kolmogorov compress-
ible. In other words, our ability to compress programs is due
to a “focus” on a class of problems of interest to the domain,
not just an artificial selection of overly-verbose programs.

Euclid proved there are infinitely many primes; with the hon-
esty assumption we can prove there are infinitely many reusable
software components that make programs shorter.

First we need two smaller pieces of the puzzle.

Lemma 5.1. If H0 > 0 then for any finite k, Pr(‖w‖ ≤ k) →
0 as s0 → ∞.

Proof. We know from definition of H0 that Hs0 = H0s0 in-
finitely often as s0 → ∞ (Section 2.2). Consider how proba-
bility must be distributed among programs of different lengths
to account for this much entropy. We try to account for as
much entropy as we can by short programs, setting a uniform
distribution p(w) = 1

2H0s0
on the first 2H0s0 programs— this

is the fewest number of programs that would produce this
much entropy. To programs of length ≤ k we can account for

k∑

i=0

2i ·

(

−
1

2H0s0
log

1

2H0s0

)

∼ 2k+1−H0s0H0s0

bits of entropy. But as s0 → ∞, 2k+1−H0s0H0s0 → 0 so we
can account for none of the entropy by programs of length
≤ k. Therefore Pr(‖w‖ ≤ k) → 0 as s0 → ∞.

Lemma 5.2. If H0 > 0 then E
[

1
‖w‖

]

→ 0 as s0 → ∞.

Proof. Suppose E
[

1
‖w‖

]

= c for some c > 0. Then there

would be a finite probability that ‖w‖ ≤ c−1 as s0 → ∞,
contradicting Lemma 5.1.

Now we are ready for the main theorem, which proves no
finite library can be “complete” in the sense of achieving a
compression ratio of H0 when 0 < H0 < 1.

Theorem 5.2 (Library Incompleteness). If a problem do-
main has 0 < H0 < 1 and honest distributions (Defn. 1), no
finite library can achieve a compression ratio of H0.

Proof. (By contradiction). Suppose a finite library of compo-
nents achieves a compression factor H0. Call the program-
ming language φ and the library L. We can write an inter-
preter for φ that incorporates the library L; since the library
is finite this is a finite program. We call the resulting machine
model φ + L. Consider Kolmogorov complexity for this ma-
chine, writing Cφ+L(w) for the size of the smallest φ-program
using L that has the same behaviour as w. Saying the machine
φ + L achieves the compression factor H0 implies

E

[
Cφ+L(w)

‖w‖

]

= H0 (9)

From the invariance theorem of Kolmogorov complexity (Fact 3.1)
we have that there exists a constant c such that

C(w) ≤ Cφ+L(w) + c (10)

for every program w. Dividing through by ‖w‖ and taking
expectation,

E

[
C(w)

‖w‖

]

≤ E

[
Cφ+L(w)

‖w‖

]

︸ ︷︷ ︸

=H0

+E

[
c

‖w‖

]

(11)

From honesty E
[

C(w)
‖w‖

]

→ 1, and from Lemma 5.2 we have

E
[

c
‖w‖

]

→ 0. Therefore (11) is:

1 ≤ H0 + 0

but this contradicts H0 < 1.

Claim 5.1 showed that an infinite library can achieve expected
size ∼ H0s; Theorem 5.2 shows that no finite library can.
Therefore only infinite libraries can compress programs of
size s to expected size H0s. With finite libraries we can get ar-
bitrarily close to achieving H0s by including more and more

components. Doug Gregor suggested calling Theorem 5.2
the Full Employment Theorem for Library Writers, after An-
drew Appel’s boon to compiler writers. Theorem 5.2 has
a straightforward implication: no finite library can be com-
plete; there are always more useful components to add. This
suggests the importance of designing libraries for extensibil-
ity.

A minor change to the above proof yields a similar but slightly
stronger result.

Corollary 5.2. If a problem domain has 0 < H0 < 1 and hon-
est distributions, no computably enumerable library can achieve
a compression ratio of H0.

Proof. Repeat the proof of Theorem 5.2, replacing “finite li-
brary” with “c.e. library.” In particular the choice of a c.e.
library guarantees that the interpreter for φ + L is a finite
program: whenever a library subroutine is required, it is gen-
erated from the program enumerating the library.

I casually equate “not computably enumerable” with “requires
human creativity.” Corollary 5.2 indicates that the process
of discovering new and useful library components is not a
process that can can be fully automated.

5.4 Size of library components.
We now consider how big library components might be. If
we want to support “programming by wiring together compo-
nents,” this suggests that components ought to be quite large
compared to the wiring. The following theorem sheds light
on the conditions when this is possible.

Let S(n) denote the expected amount of code (in bits) saved
by each use of the nth component. We consider the case when
λ(n) ∼ 1

n‖c(n)‖f(n)
, where ‖c(n)‖ is the codeword (identifier)

length, and f(n) is a function f ∈ o(nǫ) for ǫ > 0 that ensures
convergence (cf. Section 4.2). This coincides with a Zipf-style
law as observed in practice (Figure 2).

Theorem 5.3. If a library achieves a compression factor of
H0 > 0 in an honest problem domain, then S(n) ∼ 1−H0

H0
·

‖c(n)‖ · o(f(n)).

Proof. Summing over all components, the total code saved is:

∞∑

n=1

(λ(n)H0s + o(s))
︸ ︷︷ ︸

expected # uses

· S(n)
︸ ︷︷ ︸

savings per use

= (1 − H0)s
︸ ︷︷ ︸

total savings

(12)

Dividing through by H0s and taking the limit as s → ∞, and
substituting λ(n) ∼ 1

n‖c(n)‖f(n)
,

∞∑

n=1

1

n‖c(n)‖f(n)
S(n) =

1 − H0

H0

Now if S(n) ∼ na for a > 0 then the sum would diverge.
Therefore S(n) is not polynomial in n; in fact for the sum
to converge we must have S(n) ≺ f(n) which means S(n)
behaves asymptotically as

S(n) ∼ ‖c(n)‖ ·
1 − H0

H0
· o(f(n))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

H
0

(1
−

H
0)/

H
0, c

od
e

sa
ve

d
pe

r
co

m
po

ne
nt

 u
se

Very little reuse

Weak reuse

Strong reuse

Figure 4: Plot of 1−H0
H0

versus H0, indicating how much

code is saved, proportionately, per component use. When
H0 → 1 there is almost no reuse; H0 → 0 coincides with
the “strong reuse” ideal of wiring together large compo-
nents. In between is weak reuse, with moderate amounts
of code drawn from libraries.

where ‖c(n)‖ is the code length for the nth component.

Strong reuse? The interpretation of Theorem 5.3 is fairly in-
tuitive. Roughly it says the savings we can expect per compo-
nent are linear in the size of the component identifier. Which
is to say, we should expect savings for the nth component to
grow roughly logarithmicly in n. This is consistent with find-
ings in the reuse literature that small components are much
more likely to be reused. The important factor here is the mul-
tiplier 1−H0

H0
. As H0 → 0, this multiplier becomes arbitrarily

large. This suggests that “strong reuse” (Section 1) corre-
sponds to the region H0 → 0. For example, if programs in a
problem domain are thought to be solvable by wiring together
components that are (say) 105 times bigger than the wiring
itself, this suggests 1−H0

H0
≈ 105 or about H0 ≈ 0.00001.

The key result is that whether one is able to achieve strong
reuse depends critically on the parameter H0 — which mea-
sures how much diversity there is in the problem domain. We
therefore have a mathematical model that reproduces our in-
tuitions about when strong and weak reuse may occur.

6. EXPERIMENTAL DATA COLLECTION
Preliminary empirical data was collected from three large Unix
installations. The problem domain is not particularly well-
defined, but is rather “the mishmash of things one wants to
do on a typical research Unix machine.” On each machine we
located every shared object and used the unix commands nm

or objdump to obtain a listing of the relocatable symbols (i.e.,
references to subroutines in shared libraries).

Operating System # Objects # Subroutines

SunOS 23774 110306
Linux (SuSE) 12136 710691
Mac OS X 2334 37677

We counted the number of references to each subroutine,
sorted these by frequency, and this data is plotted in Figure 2.
The observed counts match nicely the asymptotic prediction
made in Section 4.2 (the family of curves cn−1 is shown as
dotted lines). To account for machine instructions, which are
not included in the tally but constitute by far the most fre-
quently occurring software components, we started number-
ing the subroutines at n = 50. Without this adjustment the
rates have a characteristic “flat top” and then rapidly converge
to n−1 lines; this is an artifact of the log-log scale.

The pronounced “steps” in the data for large n occur because
there are many rarely-used subroutines with only a few refer-
ences; this is typical of such plots (see, e.g., [17]).

Another prediction that may follow simply from our model
is that the number of components used in a program should
approach a normal distribution with a mean roughly linear
in the program size, and variance about the square of the
program size. This is reminiscent of the Erdös-Kac theorem
[4] that the number of prime factors of integers converges to a
normal distribution. Figure 5 shows some preliminary results
that support this result, drawn from the SuSE Linux data. The
number of component references have been normalized by an
estimated variance of σ2 = cs2 where s is the program size.
Subfigure (c) shows a suggestively shaped distribution for the
inset box of (a), a region where there is good “saturation” of
the problem domain with programs.

7. CONCLUSION
We have developed a theoretical model of reuse libraries that
provides good agreement, we feel, with our intuitions, the lit-
erature, and the preliminary experimental data we have col-
lected on reuse on Unix machines. Much of what we have
done has served to emphasize the importance of this one
quantity, H0, the entropy rate we associate with a problem
domain. It determines if we can have strong reuse (H0 → 0),
or whether we can have weak reuse (0 < H0 < 1), and how
much code we might be able to reuse from libraries: at most
1 − H0.

We have shown that libraries allow us to “compress the in-
compressible,” reducing the size of programs that are Kolmo-
gorov-incompressible, by taking advantage of the commonal-
ity exhibited by programs within a problem domain. We have
also shown that libraries are essentially incomplete, and there
will always be room for more useful components in any prob-
lem domain.

8. ACKNOWLEDGMENTS
This paper benefited immeasurably from discussions with my
colleagues at Indiana University Bloomington. In particu-
lar I thank Andrew Lumsdaine, Chris Mueller, Jeremy Siek,
Jeremiah Willcock, Douglas Gregor, Matthew Liggett, and Brian
Barrett for their valuable suggestions. I thank Harald Ham-
merström for letting me disappear with his copy of Li and
Vitányi [13] for most of a year.

9. REFERENCES
[1] Robert Ash. Information Theory. John Wiley & Sons,

New York, 3 edition, 1967.

[2] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo.

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

10
5

Software size (bits)

N
um

be
r

of
 d

is
tin

ct
 li

br
ar

y
su

br
ou

tin
es

(a) Scatter-plot of the number of subroutine references

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−3

0

1000

2000

3000

4000

5000

6000

Normalized number of references

N
um

be
r

of
 p

ro
gr

am
s

(b) Distribution histogram

1 2 3 4 5 6 7 8 9 10

x 10
−4

0

20

40

60

80

100

120

140

160

180

Normalized number of references

N
um

be
r

of
 p

ro
gr

am
s

(c) Distribution for inset box

Figure 5: Data illustrating the library analogue of the Erdös-Kac theorem. (a) A scatter-plot showing the number of
distinct library subroutines used vs. software size for the Linux RPM data. (b) Histogram for the number of references,
normalized (see text). (c) Histogram only for the inset box of (a), illustrating an Erdös-Kac-style normal distribution for
the number of components used in software. Such plots might provide a useful tool for assessing the extent of reuse vs.
ideal predictions from a model.

How reuse influences productivity in object-oriented
systems. Commun. ACM, 39(10):104–116, 1996.

[3] Daniel M. Berry. A new methodology for generating
test cases for a programming language compiler.
SIGPLAN Not., 18(2):46–56, 1983.

[4] P. Erdös and M. Kac. The Gaussian law of errors in the
theory of additive number theoretic functions. Amer. J.
Math., 62:738–742, 1940.

[5] Ronald L. Graham, Donald E. Knuth, and Oren
Patashnik. Concrete Mathematics: A Foundation for
Computer Science. Addison-Wesley, Reading, MA, USA,
second edition, 1994.

[6] T. R. G. Green. Cognitive dimensions of notations. In
Proceedings of the HCI’89 Conference on People and
Computers V, Cognitive Ergonomics, pages 443–460,
1989.

[7] M. L. Griss. Software reuse: From library to factory.
IBM Systems Journal, 32(4):548–566, 1993.

[8] P. Harremöes and F. Topsøe. Maximum entropy
fundamentals. Entropy, 3(3):191–226.

[9] Charles W. Krueger. Software reuse. ACM Comput.
Surv., 24(2):131–183, 1992.

[10] D. Kuck. The Structure of Computers and Computations,
Volume 1. John Wiley and Sons, New York, NY, 1978.

[11] A. Laemmel and M. Shooman. Statistical (natural)
language theory and computer program complexity.
Technical Report POLY/EE/E0-76-020, August 15 1977.

[12] Mario Latendresse and Marc Feeley. Generation of fast
interpreters for Huffman compressed bytecode. In
IVME ’03: Proceedings of the 2003 workshop on
Interpreters, virtual machines and emulators, pages
32–40, New York, NY, USA, 2003. ACM Press.

[13] M. Li and P. Vitányi. An introduction to Kolmogorov
complexity and its applications. Springer-Verlag, New
York, 2nd edition, 1997.

[14] M. Li and P. M. B. Vitányi. Kolmogorov complexity and
its applications. In Jan van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume A: Algorithms
and Complexity. Elsevier, New York, NY, USA, 1990.

[15] Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi, and
Henrik Schwarz. An empirical study of software reuse
vs. defect-density and stability. In ICSE ’04: Proceedings
of the 26th International Conference on Software
Engineering, pages 282–292, Washington, DC, USA,
2004. IEEE Computer Society.

[16] Jeffrey S. Poulin. Measuring Software Reuse: Princples,
Practices, and Economic Models. Addison-Wesley, 1997.

[17] David M. W. Powers. Applications and explanations of
Zipf’s law. In Jill Burstein and Claudia Leacock, editors,
Proceedings of the Joint Conference on New Methods in
Language Processing and Computational Language
Learning, pages 151–160. Association for
Computational Linguistics, Somerset, New Jersey,
1998.

[18] Sheldon M. Ross. Stochastic Processes. John Wiley and
Sons; New York, NY, 2nd edition, 1996.

[19] David Barkley Wortman. A study of language directed
computer design. PhD thesis, 1973.

APPENDIX
A. BACKGROUND
A.1 Asymptotics
Here we recall briefly some facts and notations concerning
asymptotic behaviour of functions and series. For a more de-
tailed exposition we suggest [5].

Asymptotic notations. For positive functions f(n) and g(n),
we make use of these notations for asymptotic behaviour:

f(n) ∼ g(n) ⇐⇒ lim
n→∞

f(n)

g(n)
= 1 (13)

f(n) ≺ g(n) ⇐⇒ lim
n→∞

f(n)

g(n)
= 0 (14)

f(n) � g(n) ⇐⇒ ∃c ∈ R . lim
n→∞

f(n)

g(n)
= c (15)

The “big-O” style of notation f ∈ o(g) is equivalent to f(n) ≺
g(n). When we write h(n) ∼ g(n) + o(n2) we mean there
exists some function f ∈ o(n2) such that h(n) ∼ g(n) + f(n).

Series and their convergence. A series
∑∞

i=1 ai is conver-

gent when limN→∞

∑N

i=1 ai exists in the standard reals; oth-
erwise it is divergent. The Harmonic series hn = 1

n
is diver-

gent, since
∑∞

i=0 hi = 1 + 1
2

+ 1
3

+ · · · fails to converge.

We shall make use of the following key fact for bounding con-
vergent sequences.

Fact A.1. Let an, bn be positive sequences. If
∑∞

n=1 an con-
verges and

∑∞
n=1 bn diverges, then an ≺ bn.

Proposition A.1 is useful to establish a bound on the asymp-
totic growth of a sequence: for example, if

∑∞
n=1 an must

converge, then an ≺ 1
n

since the harmonic series diverges.

	Introduction
	Reuse and Zipf's law

	Modelling library reuse
	Distribution of programs in a domain
	The diversity parameter H0
	Libraries maximize entropy
	The Platonic library
	Existence of reuse rates
	Ordering of library components

	Background
	Kolmogorov Complexity

	A bound on reuse rates
	Coding of references
	Derivation of reuse rate bound

	Reuse potential
	The uniform case: H0=1
	Libraries compress the incompressible
	The incompleteness of libraries
	Size of library components.

	Experimental data collection
	Conclusion
	Acknowledgments
	References
	Background
	Asymptotics

