Strawman
 of the Geneva grid job Execution Service (GES)
(draft version 0.5, 2009/04/29)
Editors:
Balázs Kónya (Lund University/ARC)
Moreno Marzolla (INFN/gLite)
Morris Riedel (FZJ/UNICORE)
Contributors:
Oxana Smirnova (Lund University/ARC)
Aleksandr Konstantinov (University of Oslo/ARC)
Luca Petronzio (Elsagdatamat/gLite)
Laurence Field (CERN/gLite)
Sergio Andreozzi (University of Bologna/gLite)
Mohammad Shahbaz Memon (FZJ/UNICORE)

31
Motivations

32
Scope of this document

43
Functional Requirements of a GES

43.1
Job management

43.1.1
Create an Activity

43.1.2
Create multiple Activities

43.1.3
Change the status of an Activity

53.1.4
Change the status of multiple Activities

53.1.5
Terminate an Activity

53.1.6
Terminate a set of Activities

53.1.7
Purge an activity

53.1.8
Purge a set of activities

53.2
Job monitoring

53.2.1
Obtaining the current status of an activity

53.2.2
Obtaining the current status of a list of activities

63.3
Resource management

63.4
Resource monitoring

63.5
Access to sessiondirectory

63.6
Data staging

63.6.1
stagein: client pushing input data to GES

73.6.2
stagein: GES pulling input data

73.6.3
stageout: GES pushing output data

73.6.4
stageout: client pulling output data from GES

73.6.5
stagein/out: performed as part of the grid job execution

83.6.6
TODO

83.7
RuntimeEnvironment support

83.8
Request routing

83.9
Delegation

84
Non-functional Requirements of a GES

95
Data model

95.1
State model

105.2
Job Description

105.3
Resource description

126
Security

137
Summary

1 Motivations
This document describes the interface and associated functionality which should be provided by a Grid job execution and management service. The functionality described here are the outcome of a preliminary discussion between members of EGEE/gLite, Nordugrid/ARC and DEISA/UNICORE. Together (gLite, ARC, UNICORE) we were trying to understand how we can adopt BES, JSDL and GLUE in our middlewares. This requires us to identify and extensions that need to be made to address the addition functionality we require and ensure that these extension area also agreed and adopted.

These three middlewares currently implement job description, job management, data transfer, information modeling and security in slightly different, incompatible ways. However, the core functionalities provided by all the three are mostly the same, but realized through home-made solutions. While standard interfaces for job submission and management do exist, we found them lacking features which are considered important as core functionality by gLite/ARC/UNICORE. This document in based on the preliminary discussion held in Geneva on September 2008; for this reason we refer to the hypothetical job execution service envisioned during the Geneva meeting as "Geneva Execution Service" (GES). This is a temporary name used through this document to refer to the service being described. This name is used as a label only.

2 Scope of this document

In this document we emphasize the requirements for a (hypotetical) GES, as they emerged during the Geneva meeting. This initial set of requirements will be distilled and hopefully integrated with additional requirements coming from the PGI WG. After the requirements have been agreed upon, the next step will be to map them onto actual operations and datat ypes from an appropriate specification.
3 Functional Requirements of a GES
This section describes the functional requirement of a GES; actually, this section provides a rough specification of the operations which should be provided by the GES. Note that we give operation names for convenience only. We indicate the main parameter and results expected for the invocation of these operations, but the exact number, kind and meaning of the parameters will need further discussions. In the following, we use the term "activity" by assuming the same meaning as defined in the BES specification.
3.1 Job management
3.1.1 Create an Activity
The GES should provide an operation for creating a single activity. The preferred way to do that is to have an operation ("createActivity") which accepts as input a description of an activity (this description is assumed to be given in some JSDL-like
notation
, see the section on Job Management requirements), and produces as output containing at least the following

:

· an ID uniquely identifying the newly created activity;
· the location where the client can stage any input data;
· the location where the client can fetch any output data.
Note that the output returned by the “createActivity” operation MUST be retrievable by the client also in some other way. Consider the following use case: suppose that the client invokes the “createActivity” operation; suppose that the client crashes (for whatever reason) before being able to process the returned result. At this point the user MUST be able to retrieve both the activity ID and the staging location, e.g. by getting the list of all activities on the GES endpoint.

The user MUST have the ability to specify that the activity should be created, but not started immediately. This is useful if the user wants to explicitly stage input data; in this scenario, the user would first create the activity (but not start it), then upload the data on the location returned as part of the output of the "createActivity" operation, and then start the activity explicitly once the input-data has been transported to the stage-in location. This could be in particular interesting when preparing larger setups of jobs with many input data where scientists check these data at different times into the from the outcome defined ‘job sandbox
’
location.Should the activity creation fail, the "createActivity" operation MUST return an appropriate fault.

The GES service MUST validate the document which describes the activity to be submitted. The GES specification must state which parts of the activity document are mandatory and which are optional. The specification MUST also define JSDL conformance checking, that is, how the GES endpoint MUST handle unsupported/unrecognized activity description elements.
3.1.2 Create multiple Activities
The GES should provide an operation for creating multiple activities ("createMultipleActivities"). This operation accepts as input a list of activities, where each individual activity is described using the same notation as for the "createActivity" operation.

The “createMultipleActivities” operation should produce as output a list of results, each one being either:

· a container of activity ID and location for data staging, as in the "createActivity" operation; or
· an error indicating that the specific activity could not be created.
Similarly with the “createActivity” operation, it MUST be possible to specify that an activity should be created but not immediately started. Specifically, it MUST be possible to specify that some of them have to be started immediately, and others should be started explicitly by the user. As some of the activities could be created successfully and some could produce errors, the result of the "createMultipleActivities" operation MUST contain the appropriate output for all activities.
3.1.3 Change the status of an Activity
The GES should

provide an operation for changing the status of a single activity ("changeActivityStatus"). This operation accepts as input an activity ID and the new status of that activity (see the section on State Model). The GES implementation MUST change the activity status according to the request, if the change is allowed

. This operation returns an appropriate fault if the operation was unsuccessful (e.g., because the requested state transition is not allowed by the GES implementation), otherwise it returns the new status of the activity. Note that this operation MAY be used to explicitly start an activity which was created but not immediately started due to possibly performed data-staging-in activities (this however is an implementation decision which should be discussed in a separate document).
3.1.4 Change the status of multiple Activities
The GES should provide an operation for changing the status of multiple activities ("changeMultipleActivitiesStatus"). This operation accepts as input a list of activity IDs, and a list of new states. The GES implementation should change the status of all activities according to the request. This result of this activity is a list which contains, for those activities whose status has been successfully changed the new states. For the other activities, an appropriate error
3.1.5 Terminate an Activity
This operation is the same as the BES TerminateActivity operation.
3.1.6 Terminate a set of Activities
This operation is the same as the BES TerminateActivity operation.
3.1.7 Purge an activity
The GES must provide an operation for completely purging an activity ("purgeActivity"). Purging an activity means:
· (optionally) terminating it if it is still active, and
· removing all temporary files and other temporary resources allocated to that activity. This includes, for example, the storage space used for staging input/output data.

The "purgeActivity" operation should accept as input an activity ID. The operation must remove all temporary resources allocated for the activity (if requested, it must also terminate the activity). The "purgeActivity" operation should return a fault if the activity was not properly purged. Note that after the "purgeActivity" was succesfully completed, the purged activity no longer exists on the GES endpoint.

3.1.8 Purge a set of activities
The GES must provide an operation for completely purging a set of activities ("purgeMultipleActivities"). This operation is similar to the "purgeActivity" operation, except that it accepts multiple activity IDs, tries to purge all the requested activities, and then returns as output a list of status codes indicating whether each activity has been successfully purged and (if requested) terminated

3.2 Job monitoring
3.2.1 Obtaining the current status of an activity
The

GES must provide an operation to monitor the current status of an activity ("getActivityStatus"). This operation must be able to:

· provide the status information with different levels of verbosity (basic, detailed, more detailed)

· express the status information in different information models (by default the job state model will be based on GLUE2

and the default state model MUST be supported by all GES-compliant implementations, but GES implementations MAY support additional state models).
[image: image1.png]B.6 ComputingActivityState_t

For the values of this type, we RECOMMEND the following syntax:
* namespace:state
* namespace:state:substate

Open enumeration:

Value Description

bes:failed (a terminal state): the activity has failed due to some system error/failure
event, such as failure of a computational resource that the activity was running
on

bes:finished (a terminal state): the activity has terminated successfully. Successful

termination implies that the activity exited of its own accord rather than due to
some failure in the BES or of the computational resources on which the activity
was running. Note that a successfully terminating activity MAY nevertheless
return an error code as its return value

bes:pending the service has created a record for an activity but not yet instantiated it on a
suitable computational resource or enabled it to start execution on such a
resource

bes:running the activity is executing on some computational resource

bes:terminated (a terminal state): the client — which might be some system administrator

(and hence not necessarily the client who originated the request to create the
activity) — has issued a TerminateActivity request

For more information on the BES state model, see [BES].

// FROM GLUE2 only for discussion purposes copied in – it related to BES!
The "getActivityStatus" operation should accept as input the ID of a single activity; it must also accept the verbosity level and the information model (e.g., given as a URI, but this is an implementation decision) which must be used to express the required information. The "getActivityStatus" operation must produce as output the activity status with the required verbosity level and described with the requested schema; in case of error (e.g., no activity with the given ID can be located) this operation must return an appropriate fault.
3.2.2 Obtaining the current status of a list of activities
The GES must provide an operation to monitor the current status for a set of activities ("getMultipleActivitiesStatus"). This operation must accept as input a list of activity IDs, verbosity levels and information schemes, and return the list of current status of these activities. As for the other "aggregate" operations, an error message should be returned for those activities whose status cannot be computed.
3.3 Resource management

The GES is NOT REQUIRED to provide any service management operation. Service management operation (e.g., starting/stopping accepting new activities, and so on) are local to the endpoint, that is, are invoked by administrators using separate means (or separate interfaces).

3.4 Resource monitoring
The GES service must provide an operation to monitor the service itself ("getServiceInfo"). This operation is similar to the "getFactoryAttributesDocument" BES operation. The "getServiceInfo" operation must be able to provide information about the GES service with some user-specified information model (default: GLUE2), and at different user-specified verbosity levels:

· Basic: only the description of the GES service;

· Medium: description of the GES service plus list of the IDs of all non-purged activities;

· Full: description of the GES service plus list of the IDs of all non-purged activities, plus detailed description of all activities.
3.5 Access
 to sessiondirectory

Sessiondirectory is the current working location of the activity; typically, this is the location where the standard output, error and other outputs eventually produced by the activity occur. Sessiondirectory is defined upon activity creation, and persists until activity end. It may be preserved past activity end.

Sessiondirectory must be accessible for reading (subject to authorization) at any time while it exists, for monitoring and debugging purposes.

Sessiondirectory may be accessible for writing (subject to authorization), when it is required by interactive applications.

More text needed
3.6 Data staging
A GES may support the following data staging (both in and out) scenarios. A GES service may choose to support only subset of data staging capabilities. If the requested capability is not supported then Service returns error with reason clearly stated both in machine and human readable way.
GES must advertise supported functionality through resource/job information. The Glue2 description of service in ComputingEndpoint.Staging property can be used.

The enumeration values of that property currently are missing support for some of the cases. Instead of having values for all 26 combinations (or at least 14 if case 5 is out of scope) maybe this property could have multiplicity 0..* with possible values: stagein, stageout, pushin, pullout, runtime.
Which methods are required/optional, how to distinguish between the different options, how can a user request a certain type of datastaging in his/her JSDL?
How to/when request a datastaging capability, is this done during create activity, would it imply parsing/processing the JSDL at submission time?

Failures: If Service does not support any of requested Data Staging cases then CreateActivity request must return InvalidRequestMessageFault with failed element referred and human readable description of problem.
3.6.1 stagein: client pushing input data to GES
The data needed for job execution resides locally at client or directly accessible by client or by an entity which can act on behalf of client.
In this scenario the client initiates the data staging and uploads the data to a location (URL

) specified and communicated back by the GES during CreateActivity procedure. The GES service should provide to the client the information where to stage data related to the job. This kind of information may be accessible also in other ways after the job creation phase (e.g. obtainable through job/resource information).
In reply to CreateActivity request Service returns CreateActivityResponse with additional DataStaging elements of JSDL schema with FileName identical to one in original JSDL and Target containing URI which client will use for transferring data. Alternatively the createActivityResponse can contain a URL for a directory to which the client can upload its input data.
Input data files are represented by DataStaging elements of JSDL with a special Target element.

What should be the Source? Shall we define a special target to indicate this kind of client-push data stagein, e.g. an empty Target element?
The location to which the client is pushing input data (called sessiondirectory) may be advertised as part of the resource or job information. Clients may have access to the sessiondirectory after the job creation phase as well.
3.6.2 stagein: GES pulling input data
The data needed for job execution resides at a location accessible by GES (sub-) service. In this scenario the service initiates data stagein, "downloads" all the necessary input data for the grid job on behalf of the owner of the grid job. This scenario requires delegation of credentials.

Input data files are represented by DataStaging elements of JSDL with FileName and Source elements. The Source must have URI pointing to the external location of the input data to be fetched by the GES. There may be multiple elements with same FileName for multiple possible sources of file.

The GES service may perform stage-in from only one of them.
3.6.3 stageout: GES pushing output data

Data generated as a result of the job execution to be saved at a destination accessible by GES. In this scenario the GES is initiating the uploading (staging out) of output data to destinations specified in JSDL. This scenario requires delegation of credentials.

Output data files are represented by DataStaging elements of JSDL with FileName and Target elements. The Target must have URI pointing to the upload destination. There may be multiple elements with same FileName for multiple possible destination of the same file. The GES service must perform stage-out to all of them.
What happens when failures occur in the outstaging process - where are errors shown or stored for later retrieval?
3.6.4 stageout: client pulling output data from GES
Data generated as a result of the job execution to be saved at a destination not accessible by GES. In this scenario the client initiates downloading of output data to a potential remote location or to the client itself.

The source of the output data is obtained from the GES. The GES service should provide to the client the information from where to download the data related to the job. This kind of information may be accessible also in other ways during other phases of the job life cycle (e.g. obtainable through job/resource information).

Output data files are represented by DataStaging elements in JSDL with FileName and special Source element.

What should be the Source? Shall we define a special Source to indicate this kind of client-pull data stageout, e.g. an empty Source element?
How to find out the URL of the output data to be fetched by the client? resource/job information? special operation?
3.6.5 stagein/out: performed as part of the grid job execution
Data staging (both in and out) can occur as part of the grid job. This case the data movement is initiated and performed by the application (or a wrapper script around the application) itself while it is being executed on the "worker node". This scenario can be useful when e.g. when the source and/or destination of the (application specific), dynamic input/output data is unpredictable.
This scenario should be supported in an application specific way possibly requesting that application to be executed in specially crafted environment (RTE) which enables application to perform needed data access. Advertising such environment should be part of GES functionality but it belongs to different section.
3.6.6 TODO
Work out the relation of the data staging scenarios and the state model. E.g. in which state it is allowed/required to initiate data staging?
Consider that maybe there could be some ways to specify how many destinations should be processed under scenario 3)

Define structure of URI of Source/Target Datastaging element, how to specify data sources and upload destinations (make sure SRM is properly covered as well as direct GRIDFTP, potentially updates to metadata in relation databases – use cases in biology often require that, i.e. GridFTP URL in WS-DAIS DB along with metadata, while actual file resides somewhere on the storage)
Select minimal set of supported protocols, agree on the advertisement of supported protocols. Protocols must support capability of ensuring that complete file/data instance is transferred. It is proposed to have at least HTTP(S) supported.

Think of a set of additional protocol specific elements within JSDL datastaging.
Work out the necessary delegation mechanisms for scenario 2 & 3.
3.7 RuntimeEnvironment support
The GES

should support pre-installed software environments (RuntimeEnvironment, RTE) and the available RTE should be published as part of the resource description. Grid jobs requesting an RTE should be executed in a specially prepared environment so that the pre-installed software is transparently made available for the grid job.
3.8 Request routing

The GES should provide support for "routing" requests (according to the job description provided by the user) to multiple underlying computing shares. In this case GES is acting as a single interface serving multiple resources (one endpoint-multiple shares scenario).The GES should allow users to define their "preferred share", e.g., to direct the requests on a specific share (provided that they are authorized to do so). Note that this requirement will probably require support from the activity description notation.
[image: image2.emf]
Different possibilities for deployments related to available computing shares / queues / pers BES instances…it is important since it may break interop and is not a container issue alone.
3.9 Delegation
The

GES should be able to execute actions on behalf of the user submitting an activity. For example, suppose that the description of the activity needs to stage in external files, and after execution needs to stage some locally produced data to an external location. This use case is currently supported, e.g., by the JSDL specification. If the user who submitted the activity has access to the service where the data is stored, then she needs to temporarily (and securely) transfer her credentials to the GES service so that the service can access the data on her behalf or restrict the delegation method in appropriate manners using constraints/restrictions (e.g. only data pull instead of push, aka data read only). Here many biological databases are publicly readable but not writable – one example.

The delegation operation is being discussed as part of the security thread which is currently active.
4 Non-functional Requirements of a GES
This section contains a set of non-functional requirements for the GES. At the moment these requirements are given in a rather informal way, and should be further discussed and appropriately worded.
· Clean specifications and interface definitions, no need to carry over the unnecessary, never-to-be-used garbage (those will have performance implications). Ideally, the GES specification should be as much self-contained as possible, so that implementers can refer to the GES document only. If references to external specifications/profiles are required, it is suggested that the GES specification clearly state what part(s) of the external specification/profiles are mandatory, and what are optional. In general, it is advised to limit external dependencies so that we limit the “avalanche effect” in which GES requires specification X which in turn requires Y which in turn requires Z and so on.Clean, nicely structured job description which can be compared against advertised resource attributes

· Support for parallel jobs

· How to treat non-understood or non-supported job requests (compatibility level)

· The EPRs (job IDs) should contain minimal information

· GES should advertise its resource properties in such a way that such properties can be requested by the job description

· The job description (JSDL-like), the resource and job monitoring should not be mixed: e.g. the JSDL document shouldn't be used to propagate job status/monitoring information

5 Data model
This section describes the data model used in the GES.

5.1 State

model
A grid job travels through series of states during its execution at a GES service. A job state may change because of the progressing execution within GES or due to an explicit request originating from a client (see “changeActivityState” and “TerminateActivity” operations).

A hierarchical state model is proposed for GES managed activities (grid jobs):
· First level states are the core BES states: Pending, Running and the three final states: Finished/Failed/Terminated). The Pending state is defined as a passive state, the grid job is not active on the resource (e.g. there is no associated data staging activity, neither any related LRMS activity). The Running state corresponds to the "active" phase of the grid job, all activity is captured under Running. At the end of its life cycle the job enters ito one of the possible final states. Successfully completed jobs have the terminal state "Finished", Cancelled jobs enter the "Terminated" while failed jobs (in any stage of its life cycle) will end up in the "Failed" final state.

· Second level states are sub-states of the first level states. The 2nd level substates of Running are: Stage in, LRMS, Forwarded, Stage out, Terminating. Running:Forwarded is a state when the activity is forwarded to another service. With the "Forwarded" substate nesting of states is possible. (a WMS example with a GES forwarding an activity to another GES: Running:Forwarded:Running:LRMS:Queued)

· Several third level states are defined for the Running:LRMS, Running:Stage in, Running: Stage out 2nd level states. The list of 3rd level states:
· Running: Stage in: Staging
· Running: Stage in: Staged
· Running: LRMS: Submitted
· Running: LRMS: Queued
· Running: LRMS: Running
· Running: LRMS: Finished
· Running: LRMS: Hold
· Running: LRMS: Other
· Running: Stage out: Staging
· Running: Stage out: Staging
Give better definition for first level states, better distinguish Pending and Running

Is there any second level substates of Pending/terminal states?

Review the Running:LRMS:XXX states. Try to find a suitable subset of LRMS substates useful for most of the batch systems.

Check state model vs. “changeActivityStatus” operation.

5.2 Job Description
A GES instance executes a grid job described by a job request document (JSDL document). From the GES perspective the JSDL document is the external data representation of the grid job, the job description document carries all the necessary information needed for job execution. Apart from the rare cases when a GES (re)submits a grid job to another GES, the service itself is considered as a JSDL consumer and not a producer.

The skeleton of a JSDL job description document:

<JobDefinition>
 <JobDescription>
 <JobIdentification... />?
 <Application .../>?
 <Resources .../>?
 <DataStaging .../>?
 <File... />*
 <Directory... />*
 </DataStaging>
 </JobDescription>
 </Meta>?
</JobDefinition>

General considerations:
· For every JSDL element a user specified attribute "optional" indicates whether the element is required to be "understood" by the GES or not (this is similar to the SOAP “MustUnderstand” attribute).

· Ranges are obsolete

· The data model (job description) should avoid unnecessary overlaps between Application and Resource elements (e.g. no need to specify memory requirements both under Application and Resource)

· The JSDL should be synchronized with the resource model (GLUE2)

Work out the details of "optional" attribute which purpose is to capture the use case where a user can set the required conformance level, define what are the minimum set of JSDL elements a GES instance must understand.

Attribute special attention to the DataStaging element, elaborate on the defined meaning and support for additional elements within DataStaging.

Attribute special attention to elements necessary to represent multiprocessor jobs. The existing OGF specs are not suitable but serves as a good starting point.

From DEISA point of view: we need a much more precise JSDL description reflecting current HPC machines and their specific attributes, e.g. threads/node, network topology (e.g. torus), etc.
5.3 Resource description
GLUE2 offers a suitable data model for resource description. The access mechanism to this information is however not part of the GLUE2 specification.
The GES job and resource monitoring functionality and some part of the Data staging should be closely coupled to the GLUE2 model.
6 Security
All the security aspects from the GES are being discussed on a separate thread.

7 Summary
�The document is a good start on identifying requirements. That said, the document often confuses requirements with specifications. A requirement is what you need, a specification is how you will do it, e.g., the function will be called XX with the following inputs and outputs.

�

//One personal answer to ASG3:

From my perspective, JSDL-like refers to a “tuned JSDL “(cp. my ecosystem slides) where the essential elements we need are taken out of JSDL, JSDL FSE, JSDL HPC-A, JSDL PWJE, JSDL SPMD + additional elements such as network topology, libraries, multi-threading support, all the shortcomings of JSDL, etc.

Bottom line: I would vote for taking out of existing specifications as much as we can (-> JSDL Tuning), but of course similar like GES this has to be discussed.

Important is that we come with an agreement which elements are mandatory and not to be ignored from the container if not satisfied.

For simplicity we may should do the JSDL (or not JSDL) discussion later and not mix it with GES.

�What does “JSDL-like” mean? Does it mean JSDL with some modifications, or does it mean starting over? JSDL compliant could be a requirement if there is an objective to use existing tooling that manipulates JSDL.

�I think the requirement is that the activity is uniquely identified and that it is possible to, given that identity, stage-in/out data, and fetch output data, do operations on the activity, etc.

�Why should be the “do operations on the activity”requirement be part of create an activity?!

�Needs to be defined

�The sandbox refers to the working directory of the computational jobs, gLite calls it sandbox, UNICORE USpace, and so on.

Later on I guess someone also mentioned Sessiondirectory, which I personally didn’t like as a name for this.

�MUST?

�I agree with must, otherwise manual file staging can’t be supported I guess

� must change state over what time period, instantly, at its leisure?

�I would vote for ASAP time period (i.e. instantly)

�This section is means not requirements

�I would vote for having the ability to monitor a job as a true requirement

�The specific parts of GLUE2 that are requirements should be stated (perhaps in an appendix), as well as their XML rendering.

�I guess we refer here to the “ComputingActivityState_t” of the GLUE2 specification (copied snapshot for simplicity&Discussion into the doc)

Note: It points to BES… :-) Isn’t that funny, so we have another link to existing specs…;-)

�Is this the same as the “sandbox”

�I guess it is the same as the sanbbox – so we should rename it so sandbox

�Are you sure you mean URL and URI or IRI? Also, in general we should specify IRI and not URI so that Asian characters can be accepted.

�I have seen rarely specs that use IRI…but if that’s the new brilliant technique…

�An important requirement not discussed so far is credentials and protocols.

�True, but this opens up a very big new discussion…

�I would suggest the requirement is to advertise what pre-installed software is available.

�Yes, we do this in UNICORE already, but here we should all agree to the format which might be again JSDL-like?!

�I think request routing is irrelevant in this spec. What goes on inside the container is its business.

�I guess this refers to the point of having multiple shares – I had a presentation about these issues ones and copied a picture of it inside the doc for discussion purposes…

Hence, I guess it is worth looking at and we have to address it, because it breaks interop (we had this between U6 and gLlite in the past)

�This whole section is implied by staging. Unfortunately, different protocols, eg., scp, http, gridftp, require different authentication mechanisms. The HPC-WG developed a nice solution in the HPC-FSE.

�I agree here and it is worth looking at the FSP solution

�What about suspended?

�Just forgotten I guess – I think it’s worth addressing this state suspended!

