
Rethinking the Java SOAP Stack
Steve Loughran
HP Laboratories

Bristol, UK
Email: steveloughran@hpl.hp.com

Edmund Smith
School of Informatics

University of Edinburgh, UK
Email: esmith4@inf.ed.ac.uk

Abstract— This paper examines the current SOAP APIs in
Java, and in particular the Java API for XML-based RPC,
commonly known as JAX-RPC, which is effectively the standard
API for SOAP on the Java platform. We claim that JAX-
RPC, and indeed any SOAP API that relies upon a perfect
two-way mapping between XML data and native language
objects is fundamentally flawed. Furthermore, we claim that the
attempt JAX-RPC makes to extend the remote method invocation
metaphor to SOAP services is counterproductive.

We base our argument both upon experience with JAX-RPC
and SOAP, and upon experience of previous distributed com-
puting technologies. We argue that JAX-RPC is not capable of
delivering on the SOAP design goals, but conclude by suggesting
an alternate system,Alpine, which is free from many known flaws
of existing systems, and should prove better able to deliver upon
the promise of SOAP.

I. I NTRODUCTION

In beginning any discussion of SOAP-based technologies,
it is valuable to review the core features which made adopting
SOAP attractive initially. We briefly characterise these as
follows:

1) Simplicity: It is intended to be easy to work with.
2) Interoperability: It is more interoperable than binary

predecessors.
3) Extensibility: The envelope/header/body structure allows

extra data to be attached to a request, potentially without
breaking existing systems.

4) Self-describing: Messages can contain type definitions
alongside data, and provide human readable names.

5) Flexibility: Participants can handle variable amounts of
incoming data.

6) Long-haul: It is designed to work through firewalls, over
HTTP.

7) Loosely-coupled: Participants are not expected to share
implementation code.

8) XML-centric: Built on XML and intended to integrate
with XML-based technologies.

We will refer to these criteria throughout our discussion, as
the desiderata against which any SOAP technology should be
judged.

A. SOAP in Java

Communication with SOAP can be viewed either as XML-
based remote procedure calls, or as a way of submitting XML
documents to remote URLs (optionally eliciting responses in
the form of XML documents). These two different perspectives

represent the RPC-centric and message-centric viewpoints. In
Java, the RPC-centric model has become the primary model
of SOAP APIs.

The Java APIs representing the two different underlying
perspectives are JAX-RPC1 [1] and JAXM2 [2]. We review
each of these in turn.

1) JAXM: JAXM was written to support both basic SOAP,
and more complex scenarios like asynchronous ebXML mes-
sage exchange over SOAP. This flexibility introduces signifi-
cant extra complexity into the design. Over time, the ebXML
focus of JAXM has declined, while the API itself has been
renamed SAAJ3 [3].

In JAXM/SAAJ, the developer works with the SOAP mes-
sage through Java interfaces derived from DOM4 [4]. These
are bound to a class that represents the body of the message,
which provides various operations to manipulate the pieces.
These include accessors and manipulators for the envelope,
headers, body and any binary attachments.

JAXM does not provide significant transport support: the
primary method of receiving JAXM messages is to implement
and deploy a HTTP servlet. The sole method of sending
a message is to ask aSOAPConnectionFactory for a
SOAPConnection instance, and then make a blocking call
of the endpoint.

JAXM has become an orphan specification. Had ebXML
been more successful, it is conceivable that JAXM might
have proven more popular, and made message-centric SOAP
development in Java commonplace. As it is, JAX-RPC is
touted as the recommended way to work with SOAP in Java.

2) JAX-RPC: In JAX-RPC5, all the details of how a mes-
sage was encoded are hidden, and the developer works with
Java objects created automatically from the XML data using
a semi-standardised mapping process. Java classes can be
automatically turned into SOAP endpoints, with each public
method in the class exported as an operation with a request
message and a response message. The message structure is
described in a WSDL file, which can be hand-written, or
automatically extracted from the Java classes through intro-
spection.

1Java API for XML-based RPC
2Java API for XML Messaging
3SOAP with Attachments API for Java
4Document Object Model
5The current edition of the JAX-RPC specification is version 1.1, and this

is the version we discuss here. JAX-RPC 2.0 is discussed in section III-A.



Client side proxy classes can be generated from the WSDL
files, proxy classes which again provide a method for every
operation the service supports. In communications between
systems running on the Java platform, the result is that
methods called on the proxy class result in the passing of the
method parameters to remote methods on an instance of the
implementation class, a behaviour that superficially resembles
Java RMI [5]. We will return to this in section II-C.

One good architectural feature of JAX-RPC is thehandler
chain, which consists of an ordered sequence of classes which
are configured to manage requests and responses. Using the
handler chain, it is possible to add support for new SOAP
headers to existing services, or to apply extra diagnostics, in
a relatively transparent fashion. The dispatch of operations
to Java methods, Enterprise Java Bean methods or other
destinations is generally implemented by specific handlers,
making the handler chain the foundation for the rest of the
system.

JAX-RPC is widely implemented, both by open source
projects (for example Apache Axis [6]), and by commercial
vendors like Sun, IBM and BEA. Although these SOAP toolk-
its do all implement the appropriate version of JAXM/SAAJ
to complement the RPC model, this feature is neither broadly
promoted nor used. All theevangelisationof SOAP focuses
on JAX-RPC, as do most of the examples in the vendors’
documentation.

The bias is such that, for Java development, it is widely
seen that JAX-RPCis SOAP.

B. The Hard Lessons of Service Implementation

The authors have recently been involved in developing
independent implementations of a SOAP API for deployment
[7]. This API, specified in a set of XML Schema (XSD) [8] and
Web Services Description Language (WSDL) files [9] defines
a service endpoint providing seven operations, which permit
suitably authenticated callers to deploy distributed applications
onto a grid fabric.

The development of this service was performed in a “pure
way”, by creating the XSD and WSDL files first. This ap-
proach is believed to aid in creating a platform-independent
system, and represents current best practise. However, the
XSD file for the service messages is approximately 2000
lines, including all the comments and annotations needed
to make it comprehensible. That it takes so many lines to
describe a relatively simple service is clearly one reason why
this approach, despite its alleged superiority of output, is so
unpopular.

Many problems were encountered turning this WSDL spec-
ification into functional clients and servers, problems that we
attribute to JAX-RPC. In section II we discuss a number of
the problems we believe this work highlighted. Section II-D
outlines the particular problems we believe typical JAX-RPC
oriented approaches to WSDL generation create.

II. T HE FUNDAMENTAL FLAWS OF JAX-RPC

A. The Object/XML Impedance Mismatch

JAX-RPC attempts to turn an XML document into Java
classes, using service specific mapping information. This is
distinct from the kind of mapping performed by DOM imple-
mentations, in that the classes are “serialised” from the XML
tree, not merely created to represent it (it is a semantic rather
than syntactic mapping). This serialisation/deserialisation is
an essential part of JAX-RPC, allowing method calls to be
translated into SOAP requests, and responses translated back
into Java objects.

We believe that the termserialisationdownplays the nature
of the problem, likening it to the more tractable problem of
creating a non-portable persistence format for a class. Instead,
we prefer to use the termO/X mappingto emphasise the simi-
larities it has with the heavily studiedO/R mapping problem6.
Over a decade has been spent trying create robust mappings
between records in relational databases and language-level
objects, and there is still no sign of an ideal solution. There
is significantly less experience in mapping between XML
and objects, and rather than drawing on the experiences of
the many failed attempts at O/R mapping, O/X mapping
technologies appear destined to share a similar evolution.

At first glance, the O/X mapping problem facing JAX-
RPC appears simple: create a Java object for each XML
element, building a directed, acyclic graph when serialising
to RPC/encoded SOAP or a tree when using document/literal
messages. Read or write between attributes and class fields,
bind to children and the conversion is complete... If only it
were so straightforward. Undermining it all is a fundamental
difference between the type systems of XML (especially that
of XML Schema) and that of Java, making any mapping both
complex and brittle.

1) Binding XML Elements to Java Classes:The language
of XML Schema is much richer than the object model of
Java. In Java, inheritance can extend a type, and change some
existing semantics, but derivation by restriction is not explic-
itly supported. Java, in common with many object oriented
programming environments, allows derived types to expand
upon the capabilities of their parents. XML schema allows
one to extend a type by restricting it, constraining attribute
and element values. Java has no intrinsic model for this type
of constraint.

This is a fundamental difference which means that one
cannot accurately model an XSD type hierarchy in a Java class
hierarchy. All one can do is inaccurately model it. Here, for
example, a postcode is modelled by restricting a string:

<simpleType name="UKPostcode">
<restriction base="xsd:string">

<pattern value="[A-Z]{2}\d \d[A-Z]{2}"/>
</restriction>

</simpleType>

6“Object-relational mapping is the Vietnam of Computer Science”- Ted
Neward, 2004.



The actual result is going to be a simple class of type
String : all restriction information will be lost in the trans-
formation from XML Schema to Java. This is a fundamental
difference, and one which would appear to remain intractable
except in special cases.

Note that XML Schema offers other type extension mecha-
nisms, such as substitution and derivation. These mechanism
have similar issues with mapping to the inheritance and type
model of Java.

2) Mapping XML Names to Java Identifiers:Not all XML
names can be turned into Java identifiers. XML names may
begin with a letter in one of many Unicode languages,
an ideograph or an underscore (“”) . They can be fol-
lowed by any of the same characters, and also a hyphen “-
” or a full stop “.”. Some examples are:schr ödinger ,
unknown.type-set , andString .

Java identifiers almost comprise a proper subset of XML
names7. Because of the much greater range of allowable XML
identifiers, the system will often need to perform a non-trivial
mapping from the XML names to valid class and package
names. Package names are typically derived from namespace
URLs if not overridden, as discussed in section II-A.6.

The translation is inordinately brittle: whenever a new
version of Java is released, the logic must be updated to
avoid new reserved words (likeassert and enum), or
the generated code will no longer compile in the enhanced
language. Needless to say, such an upgrade will break any
existing code that linked to old classes which made use of
these names.

3) Enumerations:One specific example that deserves spe-
cial mention is howxsd:enumeration declarations are
mapped to Java. Before Java 1.5, there was no explicitenum
clause in the language, and the JAX-RPC approach to SOAP
enumerations is based on a workaround. However, the problem
of mapping enumerations from XML to Java is unchanged,
regardless of the language version used: generate a set of
identifiers, one for each value in the enumeration.

This appears a straightforward example of how O/X map-
ping should work. But what if the value of the one of the
enumeration types is a reserved word? Our API (as described
in section I-B contains a lifecycle state machine like this:

<xsd:simpleType name="lifecycleStateEnum">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="initialized"/>
<xsd:enumeration value="running"/>
<xsd:enumeration value="failed"/>
<xsd:enumeration value="terminated"/>
<xsd:enumeration value="null"/>

</xsd:restriction>
</xsd:simpleType>

One element in this enumeration is reserved:null . How-
ever, the JAX-RPC specification states that an implementation
must now enumerate all states asvalue1 , value2 , and

7XML names beginning in “xml” (any case) are reserved.

so on, for the entire list. The enumeration names in the
Java source no longer contain any informative value at all,
other than a position number in the set. Any change to the
enumeration could reorder the values, without this change
being detected by code that used the enumeration. The defect
would only show up in interoperability testing.

4) Unportable types:Some Java types are by nature ex-
plicitly unportable. One would not expect to be able to have a
SOAP runtime serialise a database connection instance and
have it reconstituted in working order at the far end, for
example. One might hope that ajava.util.Hashtable
could be translated into some XML structure that could be
turned into a platform-specific equivalent at the far end. But
surely ajava.util.Calendar object could be sent over
the wire, with its obvious relationship to thexsd:dateTime
type in XML Schema?

We can certainly attempt to send such times. They are
readable on the wire, and are mapped into whatever the remote
endpoint uses to represent time. Unfortunately, in this case,
differences in expectations between Java and .NET date/time
classes prevent the same time being received at the far end.
If both client and server are in the UTC time zone all works
well, but if either of them are in a different location, hours
appear to get added or removed. Clearly a different expectation
regarding time processing is at work.

This is an insidious defect as it is not apparent on any
testing which takes place in the same time zone, or between
Java implementations. It is only apparent when remote callers,
using different platforms, attempt to use the service.

5) Serialising a Graph of Objects:XML is a hierarchical
data structure, and can only describe trees or lists of data.
Java classes almost invariably refer to other objects, often
creating cyclic graphs of references. If such a cyclic graph
is to be mapped into XML, the mapping infrastructure must
recognise the cycle (a naive implementation would enter a
non-terminating loop). Once the cycle is recognised, it must
be addressed. The options appear to be:

1) Signal an error.
2) Insert cross references into the XML message, for

processing by the mapper at the destination.
3) Break the graph by duplicating content in the XML.

The only one of these solutions which seamlessly mar-
shals cyclic graphs of objects is the second: inserting cross
references into the XML. The SOAP solution for this is
described in section 5 of the specification [10]. This linking
mechanism is only supported in RPC/encoded messages; the
document/literal message format does not allow it.

JAX-RPC was originally based on RPC/encoded messages,
but the alternate representation, document/literal, is now
broadly agreed to be more flexible and generally superior.
There is no way to marshal a cyclic graph into a docu-
ment/literal message without custom code8. Any technology

8This problem is covered in detail in “Effective Enterprise Java” [11], where
it is termedthe object-hierarchical impedance mismatch.



that attempts to map XML to a cyclic object graph will suffer
from the same problem.

6) XML Metadata and Namespaces:As discussed in the
previous sections, XML Schema provides a type system that
is much richer than that of Java. One aspect not mentioned
so far is the relationship between XML metadata, notably
namespaces, and Java classes.

The problem is essentially as follows: each node in an XML
message can have attached to it a namespace. There is no
related construct in Java which can model this accurately.
The choice that is normally made is to model it inaccurately
by package names (mapping namespaces to Java packages
provides many of the problems discussed in section II-A.2,
since these are more examples of identifiers).

The problems that typically arise are of two kinds:

1) Mapping an incoming message to a web service object
requires that either the namespace of either the operation
itself or its parameters be guessed. This guessing can be
wildly inaccurate when the web service’s Java interface
was generated from WSDL using package renaming.

2) When dynamic invocation is desired (service invocation
without the use of pre-built stub classes) it can be very
difficult to determine the correct namespaces for service
invocations (the WSDL typically leaves this unspecified,
meaning that for JAX-RPC services the WSDL is not a
complete description of the service interface).

If more metadata were recorded with generated types, this
problem would not arise. We therefore expect that future
versions of JAX-RPC will address this problem by way of the
code annotation facility recently added to the Java language.

7) Message validation:hen a message is received, the
serialised form is generated and passed to the handlers for
processing. In typical web service stacks, no validation of the
incoming XML against the message schema is performed, and
in particular any restrictions on the number of times an item
is required are not checked. This forces the implementation
code to follow one of two paths:

1) It could ignore the problem. If the client code and
functional tests do not generate invalid messages (as is
likely if they are also all written in JAX-RPC) then the
problem will not be noticed, only only surfacing when
a third party attempts to use the service.

2) The developers could write procedural logic to verify
that the Java classes representing a deserialised message
have a structure that matches their expectations given the
schema. This requires an understanding of the schema,
knowledge of the serialisation mapping and its potential
trouble spots, the willingness to write the tests to validate
this extra logic, and most of all, the time to do so.

We suspect that most services err on the side of ignorance,
and do not validate their incoming messages adequately. This
brings their ability to operate in a heterogeneous environment
into serious question.

8) Inadequate Mixing of XML and Serialised Data:JAX-
RPC and JAXM are two different views of the world. When

JAX-RPC encounters a piece of XML which cannot be
deserialised within a message, it creates a SAAJNode to
describe that part of the document tree. From that point on,
the tree below the node is permanently isolated from JAX-
RPC processing (in some sense the developer has sailed off
the edge of the JAX-RPC world, and fallen into the universe
of XML.) Any O/X mappings which may exist for data within
this piece of the message are now inaccessible: all that is left
is the low-level JAXM API.

This behaviour implies that incorporating arbitrary XML
within a SOAP message is not an approved action, yet the
ability to easily incorporate such XML is a key aspect of
SOAP’s flexibility and a major part of enabling it to be more
extensible and less brittle than its predecessors.

9) Fault processing:JAX-RPC makes an attempt to mar-
shal Java faults over the network in such a way that they can
be reconstituted at the far end into the same fault. This is a
somewhat complex process to manage, as the class name of
the fault must be exchanged as the fault code. Since faults
are often immutable, the standard serialisation mechanism of
named getter and setter methods must be replaced by a more
exotic one: getter methods are used to extract the contents of
a fault, a fault which must offer a constructor that takes every
attribute in a parameter of the same name9.

We believe that attempting to seamlessly marshal faults is
a problematic approach. Furthermore, by propagating the still
controversial “declare all possible faults” Java requirement into
remote interfaces, it exposes platform implementation details.
If a service could only raise a normalSOAPFault unless
its developers explicitly declared and implemented custom
WSDL fault elements, service definition would be platform-
neutral.

Exposing implementation details in the service interface
makes ensuring interoperability much more difficult. We recall
that interoperability was a major reason for adopting SOAP
initially, and that this is yet another capability of SOAP’s
which JAX-RPC fails to deliver upon.

B. SOAP is not just RPC

SOAP’s parentage includes XML-RPC [12] and (indirectly)
COM/DCOM [13], [14]and CORBA [15]. It was clearly
designed at its outset to be a form of remote procedure call
in XML, over HTTP. Over time, the world-view that lead to
that choice has changed. Though it is often presented as a
form of RPC, we would argue that it is coming to be seen
as more powerful when viewed as a system where arbitrary
XML documents are exchanged between parties, potentially
asynchronously, and potentially via intermediaries.

In this world, the programming paradigms that seemed
appropriate for an RPC infrastructure look out of place. On
a fast network, RPC invocation is often a good choice, as
other models of communication are harder to code, and their
benefits are not readily apparent. A complex communication
can be modelled in a few lines of code, rather than a state

9This implicitly requires code to be built with debugging information, so
that the bytecode can be analysed to determine parameter names.



machine, and the synchronous nature of the communication
makes it easier to to build a model of the state of the remote
system.

When we begin to work over long-haul connections, how-
ever, or with large content (e.g. several megabyte attachments),
the limitations of RPC become clear. The greatest of these is
that RPC is synchronous. Although asynchronous behaviours
can, with some difficulty, be introduced, this is not the natural
way for RPC to behave. As content becomes larger and the
network latency increases, the problems posed by synchronous
calls become more and more acute.

Currently, our only option is to split network communication
into a separate thread from the rest of the program. While
this works, it provides the programmer no way to give the
user effective feedback or control over the communications.
There is no way to receive progress notifications or cancel
an active call, despite the face that the underlying transport
code invariably permits such features. This can cause problems
when working with file transfers, foe example: one of the
authors wrote a GUI front end to a service that could accept
15-30MB CAD files, and whilst multithreading could keep the
UI responsive, there was no way to present an upload progress
indicator or offer a cancel button. These are both features one
expects in an application of this kind.

Again, following our principle that SOAP technologies
should uphold the same desiderata as SOAP itself, we note
that one reason SOAP was adopted was to simplify the task
of working over long haul connections. By making it both
difficult and complicated to work over a long connection, JAX-
RPC fails to meet this criterion for a SOAP technology.

C. SOAP is not RMI

JAX-RPC suffers from a greater flaw than those classically
associated with RPC invocation: it tries to make the communi-
cations look like Java RMI. Java’s RMI system is a simple and
effective mechanism for connecting Java classes running on
different machines. It is an IDL-free communication mecha-
nism, which relies on introspection to create proxy classes and
to marshal classes. It works because the systems at both ends
are running on the Java platform, typically different pieces of
a single larger application. Even then, it is most effective when
both ends are using the same versions of all classes.

With the kind of versions synchronisation of common code
described above, objects can be trivially serialised and trans-
mitted across a network connection. Exceptions become just
another type of object, and so too can be sent over the wire.
There is no need for an IDL, as Java interface declarations
can perform much of the same role. And as the recipient is
a remote object, state is automatic. One can even keep code
synchronised by using a special class loader, one that fetches
code from jointly accessible URLs.

JAX-RPC tries to reuse many of the programming pat-
terns of RMI. For example, the runtime will attempt to
serialise classes marked asSerializable , ignoring those
fields marked astransient . It will even serialise complex
compound objects where possible. The user appears to have

a reference to something like an object, though one that
represents the current conversation with an endpoint, not a
direct endpoint proxy.

SOAP strove to overcome many of the failings of precursor
technologies like CORBA and DCOM. These technologies
work well over local area networks, and enable rich bidi-
rectional communications, but are not completely cross plat-
form10, and ended up being used to produce distributed object
systems that were too tightly coupled. Recall that one of our
key hopes in adopting SOAP (section I) was to enable loose
coupling between the components of a distributed system.

While Java RMI provides convenience, the one thing it does
not provide in any way is loose coupling. Interacting systems
typically run from the same codebase, and each element of the
distributed system contains many implicit assumptions about
the rest of the system. By trying to turn SOAP into RMI, we
imitate this architecture, and risk losing the very things we
turned to SOAP for in the first place.

D. WSDL: an extra complication

The role of an interface definition language (IDL) has
always been twofold:

1) Firstly, an IDL allows the creation of a definition of
the interface of the remote system, independent of
any particular implementation, programming language
or environment. This is “interface” in the sense ofthe
implementation independent signature of the service,
and does not imply that an implementation language
needs an explicit notion of interfaces. The interface
is inherently implementation independent, and can be
frozen or carefully managed with respect to versioning.

2) Secondly, the act of writing an IDL description inher-
ently forces the author to define the system in terms
of the portable datatypes and operations available in the
restricted language of the IDL. This can effectively guar-
antee portability, and is a significant improvement over
similar definitions in implementation languages, which
invariably contain constructs which are not portable.
As such constructs are excluded from the interface
language, a portability issue is the exception, rather than
being commonplace.

IDLs have many advantages for creating interoperable sys-
tems, yet the generally accepted practise for working with
JAX-RPC discards all these notions. Instead of generating
implementation classes from WSDL, the WSDL description is
usually generated from the implementation classes using tools
leveraging Java’s Reflection API. We shall term this process
WSDL-last development.

This has the following consequences.

• There is no way to ensure that the published interface of
a service remains constant over time. Every redeployment
of the service, every upgrade of the SOAP stack or even
the underlying Java runtime may change the WSDL, and
hence the interface.

10Admittedly for arguably political rather than technical reasons



• Some aspects of the service are not extracted from the
raw signatures of the classes and methods. For example, if
a method chooses to extract attachments from a message,
that information can be hidden in the contents of the
message, instead of in the signature of the call. The
generated WSDL will hence omit any information about
the attachment needs of the service.

• There is no warning of portability issues before integra-
tion time. When defining a service using an IDL, the
author typically knows when there are problems as the
IDL will not compile. Yet with WSDL-last development,
everything may well seem to work until the service goes
live and a customer using a different language attempts
to import the WSDL and invoke the service.

The alternative to WSDL-last development is clearlyWSDL-
first development. Although this is the better approach from the
perspective of portability and interface stability, web service
developers are not pushed in this direction.

One of the underlying causes of this has to be the sheer
complexity of XML Schema and WSDL. The XSD type
system bears minimal resemblance to that of current object
oriented languages, and WSDL itself is over-verbose and
under-readable. As evidence of this, consider the broad variety
of products that aim to make authoring XSD and WSDL
documents easier, and recall that such products were never
necessary in the IDL-era of distributed systems programming.

We in passing that that REST systems [16] tend not to
make use of WSDL, even though it is theoretically possible.
Instead they resort to their XML type language of choice and
quality human-readable documentation. This would appear to
be sub-optimal, yet REST is growing in popularity, despite (or
perhaps because of) the lack of WSDL integration.

Returning to the desiderata for SOAP, following a WSDL-
last process sacrifices interoperability for ease of service
development. Perhaps WSDL is not the appropriate language
for describing SOAP services (we are certainly not enthused
about it), yet the sole solution being advocated is not a major
undertaking to fix WSDL’s core flaws, it is to continue to
encourage developers to hand over to their SOAP stacks the
challenge of deriving a stable and portable service interface
from the inherently unstable and unportable service imple-
mentation.

We are not proposing any changes to WSDL, merely
mourning the fact that its over-complexity discourages WSDL-
first, contract-driven development more aggressively than any
previous IDL ever did. We do observe that once the type
declarations of a service have been moved into their own
document, WSDL becomes much more manageable and this is
a pattern of service definition which we strongly encourage.

III. I MPLICATIONS

We believe that only two categories of web service de-
veloper exist: those who are comfortable with XML and
want to work with it, and those who aren’t but end up
doing so anyway. JAX-RPC provides a sugar coated wrapping
that encourages developers who are relatively unfamiliar with

XML to bite. Yet, as anyone who has written a web service of
any complexity knows, the XML must be faced and understood
eventually. In practise, the task of creating a real web service
is made more difficult, not less, by the huge volume of code
JAX-RPC introduces into a project.

JAX-RPC only superficially benefits developers who do not
want to work with XML: by hiding all the details, and giving
developers a model of remote method calls via serialised Java
graphs, JAX-RPC makes it harder to write true, interoperable
SOAP services. Not only that, but it introduces the O/X
mapping problem, while retaining an invocation model that
is inappropriate for long-distance networks and slow commu-
nications.

We argue that JAX-RPC greatly complicates users’ software
by introducing a complex and fickle serialisation system. The
generation of WSDL from Java code, which JAX-RPC encour-
ages, makes it very difficult to maintain version consistency of
an interfaces, and creates significant interoperability problems.

On top of all of this, for users who do want to work with
the XML (typically those whose first project did not!) JAX-
RPC is inappropriate because it hides everything. Trying to
integrate custom XML documents with JAX-RPC serialisa-
tions is possible, but very hard work. In Apache Axis, DOM
trees get recreated when assigning or extracting them from
SoapMessageElement implementations.

A. The Future

JAX-RPC has become a cornerstone of Enterprise Java [17],
alongside RMI and RMI-over-CORBA. That is not by itself a
bad thing, but we believe that it creates the misconception that
developers can trivially migrate from RMI to web services. If
they attempt to do, they will fall into the traps that JAX-RPC
creates for them.

The forthcoming 2.0 release of the JAX-RPC specification
promises to correct some of these flaws, it is unclear whether it
corrects sufficiently many of them. An alternate O/X mapping,
JAX-B, the Java Architecture for XML Binding, is introduced
which is a compile-time declaration of what XML is to be
expected, but is independent of the SOAP stack. The 2.0
release also retains the core metaphor of service calls as
method invocation, with the payload of most invocations being
Java objects that are somehow mapped to XML content. The
automated generation of WSDL from Java source is retained,
despite this problem having been shown to be fundamentally
flawed.

We understand the rationale for much of this. Working with
raw XML is hard. Writing good XML Schema documents is
hard. WSDL is exceedingly painful to work with. However, we
believe that if developers do not create the XSD and WSDL
definitions of their service, they will never have control of the
messages that get sent over the wire, and that without that
control, interoperability and loose coupling will remain out of
reach.

IV. A LPINE: A PROPOSED ALTERNATIVE

We are in the preliminary stages of designing an alternative
SOAP stack for Java, by the name ofAlpine.



A. Manifesto

Our goal is to create a SOAP stack that is easy to use,
robust, and maintainable. In order to do this, we are adopting
an XML centric approach. Alpine will make no attempt to
map between XML and custom Java classes, instead providing
access to the SOAP messages using modern XML support
libraries, which make it easy to navigate an XML document.
By avoiding O/X mapping we greatly decrease the volume
and complexity of our code. Some may argue this will make
Alpine more difficult to use, but experience shows us that
simpler systems are typically more straightforward to work
with, as they react in more predictable ways.

If a WSDL description of an Alpine-hosted service is re-
quired, the user will be required to write it: as we concluded in
section II-D generating WSDL from Java introduces unwanted
implementation dependencies and hampers interoperability.

With so much stripped out, Alpine will be a SOAP stack
reduced to its essentials: a system for managing the flow of
messages through a set of handlers, and libraries to handle
transport across supported the protocols. Core compliance
with the SOAP protocol will be provided, namely envelope
validation and mustUnderstand processing of headers.
Developers will be expected to use XPath specifications to
work with contents of the message; we are considering basing
our design upon the “XOM” XML framework. [18].

This will not be a SOAP stack that attempts to make SOAP
look like Java RMI, nor will it prevent developers from being
aware of the format of the messages sent over the wire. Instead,
Alpine will just provide the basic housekeeping and handler
chain management to make simplify web service development,
leaving the interpretation and mapping of the XML messages
to the applications themselves.

B. Design Goals

The full design goals are as follows:

1) Stay in the XML Space as much as possible
2) Take advantage of as much leading edge infrastructure

as we can
3) Adopt the the handler chain pattern of Axis/JAX-RPC
4) Target SOAP1.2 (POST) only, WS-I 1.1
5) Document/literal only, not RPC/encoded
6) Run server-side, client-side, and as an intermediary.
7) No support for JAX-RPC or JAX-M/SAAJ APIs.
8) Configurable only procedurally or through JMX.
9) Permit dynamic handler chain configuration during mes-

sage processing.
10) One supported parser
11) Run on Java 1.5 and later.
12) No provision of side features such as a built in HTTP

server, or a declarative configuration mechanism. These
are delegated to other products.

We believe the core of this design is likely to resemble
JAX-M/SAAJ in in terms of classes, integrated with a handler
chain based on the JAX-RPC/Axis model.

C. XSD validation

Although we are still unsure as to how complete our WSDL
support will be, we note that document/literal SOAP messages
can be validated simply by comparing the incoming messages
to the XML Schema that describes them.

Mainstream SOAP stacks do not do this, usually for perfor-
mance reasons. This means that the set of XML documents
which an endpoint can receive is significantly larger than the
set of XML documents which its XML schema considers valid.
With no built-in validation, developers must either write both
validation logic and corresponding tests themselves, or ignore
the problem. Given that there is no warning that the problem
occurs, we suspect that many developers remain unaware of
the problem.

Errors caused by the absence of logic to detect and reject
illegal documents are unlikely to show up in development,
especially if a test-centric process is not followed, but become
inevitable once a service goes live, and callers using other
languages invoke the service. Such insidious defects, defects
that only show up in production, are always unwelcome.

There is a trivial solution to this problem, one that is com-
mon to other XML stacks. It is: validate incoming messages
against the XML schema of the service. We aim to implement
a handler which will do this, which, if included on a handler
chain, will reject invalid messages. It will also be able to
validate outbound messages , which should be useful during
development.

D. A Community SOAP Stack

From perspective of an open source project, JAX-RPC
creates many problems. Because the API hides all the XML,
it creates a gulf between the implementation code and the
end user code. This makes it hard for end users to become
developers, something that open source platforms depend on.

An open source project succeeds from the contributions of
its users, and so is dependent upon users who are able and
willing to understand the implementation. JAX-RPC, by its
very nature, places too firm a divide between end users and
developers.With Alpine, we hope to avoid creating such a split,
because the XML runs all the way through the toolkit.

E. The Implications of Alpine

If Alpine succeeds, it will be a SOAP stack that requires
an understanding of XML before it can be used. This might
appear to be a barrier to the widespread adoption of the
tool, and perhaps it will prove so. Unlike commercial SOAP
vendors, we have no fiscal gain in making our product broadly
usable. We will, however, have a SOAP implementation which
all its users should be able to understand and maintain.
Furthermore, we believe that a good understanding of XML is
needed for any robust web service, and by forcing developers
to acquire that skill early on, we avoid them having to learn
it just before their shipping deadlines are missed.

This may seem somewhat ruthless: to deny the right to
write web services to developers who are and wish to remain
ignorant of XML. However, we have to ask:if they do not



want to know XML, why are they writing web services?. If the
developers want to use a less portable, more brittle, remote
method invocation system, they would be better off using a
stable technology such as Java RMI or CORBA.

If it fails, then either the design was unworkable, or it
did not appeal to enough of a developer community for it
to survive. The the workability problem is the most pressing
one. We have argued that JAX-RPC is the wrong API for
SOAP in Java; if an XML-centric design does not work either,
what would that mean? In our opinion, it would mean that
the promised flexibility of XML messaging infrastructures are
inaccessible to the “Java generation” of languages, into which
we include C# and VB.NET, all of which share a similar type
system and object model, with different syntaxes around them.
If these languages are not flexible enough to work with XML,
then the true promise of XML messaging systems, both REST
and SOAP, will only be realised by the next generation of
platforms, be they extensions of existing languages, such as
Cω, or XML runtimes such as Apache Cocoon and NetKernel
by 1060research [19], [20].

REFERENCES

[1] R. Chinnici, “Java API for XML-Based RPC (JAX-
RPC),” Java Community Process, Tech. Rep., 2003,
http://java.sun.com/xml/downloads/jaxrpc.html.

[2] N. Kassem, A. Vijendran, and Rajiv.Mordani, “Java API for
XML Messaging (JAXM),” Sun Microsystems, Tech. Rep., 2003,
http://java.sun.com/xml/downloads/jaxm.html.

[3] Sun Microsystems, “SOAP with Attachments API for
Java (SAAJ),” Sun Microsystems, Tech. Rep., 2004,
http://java.sun.com/xml/downloads/saaj.html.

[4] V. Apparaoet al., “Document Object Model (DOM),” W3C, Tech. Rep.,
1998, http://www.w3.org/DOM/.

[5] Sun Microsystems, “Java Remote Method Invocation - Distributed
Computing for Java,” Sun Microsystems, Tech. Rep., 1997,
http://java.sun.com/products/jdk/rmi/reference/whitepapers/javarmi.html.

[6] Axis, Apache Axis, 2001, http://xml.apache.org/axis/.
[7] S. Loughran, “A SOAP API for Deployment,”

2004. [Online]. Available: http://forge.gridforum.org/projects/cddlm-
wg/document/DeploymentAPI - Draft 0/en/1

[8] W3C, “XML Schema 1.0,” W3C, Tech. Rep., 2002,
http://www.w3.org/TR/xmlschema-0/.

[9] ——, “Web Services Description Language (WSDL) 1.1,” W3C, Tech.
Rep., 2002, http://www.w3.org/TR/wsdl.

[10] ——, “SOAP version 1.1,” W3C, Tech. Rep., 2000,
http://www.w3.org/TR/SOAP/.

[11] T. Neward,Effective Enterprise Java. Addison-Wesley, 2004.
[12] D. Winer, “XML-RPC,” 2000, http://www.xmlrpc.com/spec.
[13] D. Box, “A brief history of SOAP,” online, 2001,

http://webservices.xml.com/pub/a/ws/2001/04/04/soap.html.
[14] ——, Essential COM. Addison-Wesley, 1997.
[15] M. Henning and S. Vinoski,Advanced CORBA(R) Programming with

C++ . Addison-Wesley, 1999.
[16] R. T. Fielding, “Architectural styles and the design of network-based

software architectures,” Ph.D. dissertation, University of California,
2000, http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm.

[17] Sun Microsystems, “Java 2 Platform, Enterprise Edition Specification,”
Sun Microsystems, Tech. Rep., 2003, http://java.sun.com/j2ee/.

[18] E. R. Harold, “What’s Wrong with XML APIs (and how to fix them),”
2002, http://www.cafeconleche.org/XOM/whatswrong/.

[19] L. Cardelli, “Transitions in Programming Models,”
online presentation, 2003. [Online]. Available:
http://research.microsoft.com/Users/luca/Slides/2003-11-
13%20Transitions%20in%20Programming%20Models%20(Lisbon).pdf

[20] P. Rodgers, “1060 NetKernel- A new Abstraction for Web-systems,”
2004, http://theserverside.com/articles/content/NetKernel/article.html.


