
BES Approach DRAFT

Basic Execution Management Services (BES): An Approach
Karl Czajkowski, Ian Foster, and Steve Tuecke for the Globus Alliance

karlcz@univa.com, foster@mcs.anl.gov, tuecke@univa.com

Draft of 9 March 2005

This document catalogs and briefly summarizes the issues of concern to the Basic
Execution Management System (BES) discussion from the point of view of the Globus
Alliance and the Globus Toolkit architecture, using where possible the terminology set
forth in the "Basic EMS Service" draft from Grimshaw, Morgan, Smith, Newhouse, and
McCough.

Globus Alliance Position: BES is a straightforward generalization of HPC job
submission as seen in existing Grid projects. Today's batch scheduling algorithms are
simply implementation components for job managers tailored to enforcing a particular
range of operating policies. However, the underlying protocol requirements for Actor
creation, monitoring, and management is the same in BES and job submission.

Scoping: We endorse the idea that BES should be generalized enough to support a range
of Actor types, from bootable OS images, to executable binaries, Java classes with a
Main() method, or deployable Web Services.

Patterns: We endorse the notion of Service Containers to which requests to create an
Actor are directed. However, we question whether legacy Actors should be treated
specially, or whether the creation should always generate what the BES document refers
to as a Proxy Actor and which we would refer to as an Actor Management Interface.
Whether the Actor itself surfaces as another Web Service is then an application-specific
detail of which BES need not concern itself.

Agreement semantics: We believe that the Actor creation pattern is best thought of as a
simple agreement-establishment mechanism: after the interaction, the client and Service
Container have agreed that the provider will host the Actor (or not). In order to be
effectively automated, this interaction must precisely express the nature of the executive
instance and the nature of the hosting agreement, e.g., it must distinguish between
whether the Container is agreeing to satisfy any embedded quality of service constraints
or merely agreeing to consider the execution later. In other words, it must distinguish
whether the Container has performed all his policy evaluation and “run his scheduler”
before accepting the request, or that happen later, in which case the Container is merely
creating a provisional Proxy Actor through which the ultimate decision will be visible.

WS-Agreement: There is considerable confusion within GGF about the features and
intent of WS-Agreement. As architects and contributors to the WS-Agreement
specification, we firmly believe that WS-Agreement is (or will be, upon completion) a
good candidate for representing the “Actor creation” pattern referred to above. Still, other

1

BES Approach DRAFT

BES message exchanges may be required is to represent the management operations that
may target an existing Actor.

Advertisement: In combination with the need for precise agreement semantics to be
determined through the creation document exchange, we believe that a long-term viable
BES model requires that Containers export a precise advertisement of their “effective
capabilities”. The effective capabilities are the range of supported Actor Instance
Descriptors, constrained by the parameterization limits of the provider’s resource pool as
well as by the operating policies of the provider. The problem here is that an automated
client must eventually be able to compare (structurally) the Actor Instance Descriptor for
the Actor he wishes to create against the advertisements of providers in order to select a
viable Service Container.

Uncertainty: Due to the practical inability for advertisement to precisely target an
individual consumer, the advertisement may not encode all of the parameterization
constraints caused by policies affecting a particular consumer. This, coupled with the
intrinsically dynamic nature of the Grid, means that there remains an uncertainty in
whether agreement can be made, no matter how perfectly the advertisement matches the
client’s goals. In other words, the agreement step itself is the authoritative arbitration step
in BES, while advertisement and discovery are at best hints for optimization as compared
to some random trial-and-error strategy.

Discovery: The prerequisite for automated Actor placement is a discovery system that
allows clients to find relevant Containers. Clearly, we must assume an externally
provided discovery system, e.g., distributed registries or directories of services. However,
BES advertisements should be applicable in such systems. Exposing advertisements as
BES service metadata is a good basis upon which to hook BES into a discovery
framework.

WSRF: As accompanying presentation of the Globus Toolkit 4.0 GRAM illustrates, the
use of WSRF modeling conventions and implementation tooling can greatly simplify the
rendering of BES-like interfaces. In particular, WS-Addressing mechanisms can be used
to provide transportable reference to a specific Actor, and WS-ResourceProperties
mechanisms can be used to model a domain-extensible set of Annotations for
communicating the status of the Actor. Additionally, WS-BaseNotification can be useful
to render the idiom of asynchronous transmission of dynamic Annotations to the client or
another interested third party.

Bottom-up: To be widely useful, BES must be designed “bottom-up” to provide
management of the range of concrete and more abstract execution systems. The concrete
capabilities are rather well understood, and the main exercise is to generalize them for
appropriate scoping, without damaging applicability to current systems or future
abstractions. For example, a lower tier of BES systems will only understand concrete
Application Instance Descriptors in terms of binary files, data, and startup parameters and
will have no use for abstract Application Descriptors. At the same time, even these lower
tier components should support the association of Annotations with an Actor, even when

2

BES Approach DRAFT

those Annotations are asserted and only understood by a higher-level component that is
managing the Actor.

Time is of the essence: While there are many difficult challenges facing the development
of a BES model that will stand the test of time, there is a pressing need for BES
interoperability standards now. Any work group activity must strive to produce
conservative, basic works that can be applied to a core set of interoperability problems
today. More complex or contentious problems should be addressed through composition
of BES with other domain-specific content and services and/or extension or refinement of
the document content standards used in BES messages. Depending on the target schedule
for BES, we would advocate rendering a simple creation WSDL interface or waiting for
WS-Agreement to be finalized so that it can be used for Actor creation.

Static tooling: We believe that a successful Web Service rendering of BES must consist
of a relatively small number of PortTypes which are generic enough to be shared by all
(or nearly all) deployments of BES. Extensibility should happen within the document-
oriented payloads of the operations grouped in these PortTypes, rather than through the
introduction of myriad new PortTypes over time. New PortTypes should be considered
only for “generational” advancement or revision of the BES or EMS model, e.g.
transition from an ad-hoc WSDL to use WS-Agreement instead, rather than to support
typical scenarios for Actor or Container heterogeneity.

Protocol vs. API: We believe that the role of standards for fundamental technologies like
BES should be to provide protocol interoperability. While APIs are important for
application work, the main purpose of BES is to enable construction of other brokers and
middleware---protocol-level standards are needed to make sure these different proprietary
and open source components can function together in the Grid. The Web services
architecture is meant to provide such protocol standards, and only indirectly implies APIs
through the tooling one uses to generate “stubs” for the message exchanges. It is
important that the BES activity keep in mind that we are developing a message exchange
protocol and not an API.

Binding Independence: A recurring problem in GGF discussion involving Web Services
is what kind of binding technologies are assumed. The Web services architecture, in
theory, assumes binding neutrality and focuses on using WSDL for abstract application
protocol modeling. This means that issues like reliability and performance are meant to
be addressed orthogonally by binding mechanisms and tooling-specific extensions.
Practical systems that use BES will need to concern themselves with issues beyond the
WSDL itself, but we think these “profiles” must emerge from community practice after
BES itself is deployed. The only binding-level concerns we should consider are questions
of whether certain required behaviors can be achieved in more than one way with current
tools, i.e., to evaluate whether EMS protocol proposals are too restrictive in terms of what
bindings are feasible for use with EMS messages.

Automation via extension: The single most difficult challenge for BES and EMS is to
provide viable support for automated clients, brokers, meta-schedulers, etc., which can

3

BES Approach DRAFT

function in an environment with multiple BES Service Containers, each supporting
different subsets of executive type, environment parameterization, quality of service
levels, and differentiated policy. Systems to date fail to support realistically federated, i.e.
Grid, levels of automation because they require human-level intelligence and/or
significant out-of-band conventions to plan around and distinguish different providers
and execution instances. These systems fail because of poor information modeling. At
best, many wasted operations may be attempted to discover (too late) which capabilities
are available from a provider; at worst, faults due to unsupported capability requirements
may not be automatically distinguishable from other kinds of runtime error. We do not
believe this problem can be solved in an initial BES standard any more than it has been
solved in the many existing Grid job management systems. This problem is very difficult
and cannot be made a requirement for BES to solve initially.

4

