EMS Architecture Composition Roadmap

Steven Newhouse, Hiro Kishimoto, …

7/11/05 v0.2
1 Motivation

The OGSA EMS architecture has been under discussion for many years. In its entirety it is, quite rightly, a complex set of interdependent services. However, not all of these services are required to perform simpler operations within the EMS space. This document provides a set of scenarios that build upon each other to move towards the full EMS architecture. It is proposed that this roadmap be used to drive the factorisation and capability of the services and interactions within the complete EMS architecture.

Initially, we should focus on the fundamental job execution scenarios as these are well understood and in common use in Grid infrastructures such as EGEE and OSG. Once these have been established activity can move in parallel focussing on:

· Configuration and Provisioning 

· Resource Allocation by Agreement
2 Fundamental Job Execution 

One scenario builds on top of another.
2.1 Direct Job Execution

Using an established BES Container a client (user) contacts the BES and starts an activity within the container as described within a simple JSDL document. Progress is monitored directly by the user from the client machine.

Requirements: BES and JSDL specifications.
[image: image5.emf]
2.2 Indirect Job Execution

To enable more sophisticated EMS scenarios it is important that the user can delegate decision making and control to a user ‘agent’ – the Job Manager. The user contacts the job manager, specifying the job, which is then executed on an established BES container. Once the activity is established it is monitored by the Job Manager.

Requirements: Job Manager interface.
[image: image2.emf]
2.3 Selected Job Execution

Through the job manager the Resource Selection Service (RSS) is used to select a BES instance. Internally, the RSS uses a simple selection algorithm (e.g. number of pre-defined BES instances to round-robin the job request from the job manager to one of these interfaces.

Requirements: RSS interface.
[image: image3.emf]
The User Agent submits an abstract JSDL document (i.e. one that is not tied to a specific resource) to the Job Manager receiving in return a WS-Name that can be used to query the status at a later date, The Job Manager contacts the Execution Planning Service (EPS) specifying the policy that must be used to select the ‘best’ resource specified within the JSDL abstract document. The JSDL document provides criteria to select the appropriate resource. In this example the EPS selects a BES from a number of existing pre-defined BES instances according to the ordering policy. The ordering policy expresses the desirability of one BES instance over another. It returns a concrete JSDL document that can be passed to a specific BES instance for execution.

Assumptions: WS-Agreement is not used. The EPS is a ‘black box’ in this example encapsulates other components of the RSS architecture. The activity started by BES ends cleanly at some point in the future. Pre-requisites: Established User Agent, Job Manager, BES and EPS instances. Requirements: EPS interface. 
Todo: JSDL group to define what might be blank in an abstract JSDL document.
Ian’s comment: I would be concerned if there was an attempt to incorporate this as a primitive. As the brief and far-from-comprehensive list above shows, there are many different resource selection strategies that may be applied, and these strategies may be applied in many different ways and in different places.
2.4 Job Termination
The simplest case of job control (not full job management) returning to JM at the end of the job
2.5 Dynamic Job Selection

Instead of using a static pre-defined list of BES instances these service interfaces will be obtained and selected from a service registry (information service). With a defined selection language the RSS implementation can be more sophisticated than in 2.3 allowing a user defined selection policy to be applied to the available services in the registry.

Requirements: Information/Data model to represent the service and a selection language.

The state of art – EGEE & OSG & Naregi.

3 Deployment and Configuration

3.1 A BES Instance

Use CDDLM to provision a BES container and to configure it so that it appears in a registry instance and then becomes available for selection by the RSS in 2.4.

Requirements: CDDLM document and provisioning service.

3.2 An Application

Use CDDLM to explicitly provision an application on to a system and a BES instance that can be used to invoke it. Both appear in the registry and become available for selection by the RSS.

Requirements: CDDLM document and provisioning service.

3.3 Using ACS

Use the ACS model to obtain the application archive (with the deployment and configutation information) and instantiate it on a container (through BES?).

Inititiate the process through provisioning?

Dejan: In a summary, we plan to leave the things as is, with the current specs on both sides unchanged. At the moment, they are closest to the option 2 (communication through data services). However, see also discussion below, which implies the interactions between ACS and CSG, even though it only relates to the data/information path between ACS and CSG and instead it is really about future services that CDDLM may offer. CSG interaction with ACS has not been discussed within ACS group, it is ambiguous and we believe that this was really the core of this whole controversy about the relationship between ACS, CDDLM, and CGS. It is about how CSG can obtain the information about the resource requirements and deployment time from the deployment descriptions, which is the topic of the next two items.
[image: image1.emf][image: image4.emf]Provisioning 

Deployment 

Configuration

Information 

Services

Service

Container

Accounting 

Services

Execution 

Planning Services

Candidate Set Generator 

(Work -Resource mapping)

Job Manager

Reservation

Application 

Repository

Application 

Archive

A

C

S

Data Services 

(GridFTP, …)

ARI

Provisioning 

Deployment 

Configuration

Information 

Services

Service

Container

Accounting 

Services

Execution 

Planning Services

Candidate Set Generator 

(Work -Resource mapping)

Job Manager Job Manager

Reservation

Application 

Repository

Application 

Archive

A

C

S

Data Services 

(GridFTP, …)

ARI


How to estimate the deployment time?
Dejan: It is not possible, it could only be a hint. History is better source of this information. We could potentially, (from hints) resolve CDL by obtaining for each component the predicted deployment time, then from component graph calculate compound estimate (e.g. add times where components are serialized, return max where components are parallel, etc.). We will continue to explore these options.

We do not plan to support this sort of functionality in the existing specs; we may want to support it in versions 2.0, or if it is urgently required, we can address it in a separate spec. This could be something called "Deployment Estimates Services" (DES). This will heavily depend on this information provided as a part of the CDL. These Deployment Estimates Services can also address the resource requirements, by having a similar run through the tree and adding up the resource required. .

In addition to these offline services, we can provide the statistics about the run-time deployment time, by collecting time of the deployment of each component as well as overall time. These times can then be matched against the estimate times. Again, we do not plan to support this in the current versions of specs, but rather in the second versions or in separate specs.

Where do we stop in expanding the tree (e.g. at the OS provisioning?) and how do we mark this?
Dejan: CDDLM (and CDL) are transparent to this. This is more matter of the policy and best practices. If further required, we can take this offline with Jay and come up with a proposal.

Allocation
Allocation (i.e. reservation) scenarios using an agreement infrastructure.

4 Accounting

Accounting scenarios based around RUS?

5 Data

Replica space

Populating abstract JSDL with file locations

6 Integrated EMS Architecture

By bringing the scenarios described in section 2-5 together we will have defined and demonstrated integration of a significant fraction of the OGSA EMS architecture.

Risks: Effective demonstration of these services will require the interfaces to have been defined and implementations to have been provided.

Continual redesign

Provisioning Service: Will fill the gaps in the requirements by deploying and provisioning to fill gaps.

Who talks to who?:

Peer to peer around the job manager

Or is there a hierarchy? Job manager -> RSS -> provisioning (for example)

Need to learn from existing experience from implementations to build new standards.

Sequence diagram. 

Paper design (or architecture) vs. implementation

Actions:

· Sequence diagram (from early stage)

· Architectual 

