
File Components

The file components provide a cross platform way of representing files. There is an underlying pattern to most of
these components, in that after the component is running, it sets the attribute absolutePath to the platform-
specific, absolute path of the file or directory in question. Other components can bind to this value, merely by
setting a LAZY link to the absolutePath attribute of a component.

This same technique is used in other components, such as the repository download components of the Java
support package; again, at runtime, the absolutePath attribute points to the relevant file -in this example the
local cached copy of the downloaded JAR file. Any component that provides filenames to other components
should strongly consider adopting this pattern.

File Describes a file, with optional liveness checks for existence and type
Mkdir Creates a directory
SelfDeletingFile Identifies a file that must be deleted when the application is terminated
TempFile instantiates a temporary file
TempDir Creates a temporary directory
TextFile Saves text to a named file, with optional encoding
TouchFile Sets the timestamp of a file, creating it if needed.
CopyFile Copies a file

Declaring the components
The components are implemented in the package org.smartfrog.services.os.filesystem. To use them in a
deployment descriptor,

#include "/org/smartfrog/services/filesystem/components.sf"

This will include the schema and component descriptions ready for use.

Attributes Common to most components
name type description

filename String or
Component

Name of a file, or a reference to component that
implements FileIntf, in which case the method
FileIntf.getAbsolutePath() will be used to get
the absolute path of the file.

deleteOnExit boolean Attribute for those components (SelfDeletingFile,
TempFile, TextFile), that can be deleted on
termination.

absolutePath read only string the absolute, platform specific path of the file.
Equivalent to java.io.File.getAbsolutePath()

URI read only string A file: URI to the file. Equivalent to
java.io.File.getURI()

Detach and Termination Attributes. Common to File, Mkdir and TouchFile
components
Components that support this attributes: File, Mkdir, TouchFile.

name type description
sfShouldDetach OptionalBoolean Should the component detach itself from its parent

after completing its sfStart livecycle method.
sfShouldTerminate OptionalBoolean Should the component terminate itself from its parent

after completing its sfStart livecycle method.
sfShouldTerminateQuietly OptionalBoolean Should the component terminate quietly (it does not

notify its parent) when it terminates.

All these attributes are optional and can be combined. Example: a component can detach itself and then
terminate. These attributes are particularly useful when the components are used in workflows.

Components

File
This component represents a file. It does not have any actions at during deployment or termination, other than to:

1. Convert the parameters describing the file into a platform specific format.

2. Set the absolutePath and uri attributes, as with other filesystem components

3. Set the other read-only attributes to the state of the file/directory.

It can respond to liveness checks by verifying that any declarations about the state of the file still hold.

There are three ways of using this component. First, it can be used to identify files to work with. Secondly, it can
take existing files, and apply liveness checks to the file. Thirdly, by converting OS operations that query the file
into component attributes, it can be used to feed file state information into other components.

Writeable attributes

name type description
filename String Name of a file
dir String or

Component
Directory

mustExist OptionalBoolean file must exist
mustRead OptionalBoolean the process must have read access
mustWrite OptionalBoolean the file must be writeable
mustBeFile OptionalBoolean must be a file
mustBeDir OptionalBoolean must be a directory
testOnStartup OptionalBoolean verify state of file during startup
testOnLiveness OptionalBoolean verify state of file in liveness checks

It also supports OptionalBoolean attributes: sfShouldDetach, sfShouldTerminate and
sfShouldTerminateQuietly.See the "Detach and Terminate Attributes" section for more information.

Read-only attributes

name type description
absolutePath read only string the absolute, platform specific path of the file.

Equivalent to java.io.File.getAbsolutePath()
uri read only string A file: URI to the file. Equivalent to

java.io.File.getURI()

name type description
exists Boolean true iff the file exists
isFile Boolean true if the file is
isDirectory Boolean true if the file is a directory
isHidden Boolean true if the file is
timestamp long timestamp of the file, -1 if the file is not present
length long length of file (0 if the file is not present)
isEmpty Boolean true if the file is of length zero (or implicitly: does not

exist)

SelfDeletingFile
This component deletes a file when it is terminated. If the file does not exist, or the deleteOnExit flag is not set
to true, this does not take place.

name type description
filename String or

Component
Name of a file, or a reference to component that
implements FileIntf, in which case the method
FileIntf.getAbsolutePath() will be used to get
the absolute path of the file.

deleteOnExit Boolean Attribute for those components (SelfDeletingFile,
TempFile, TextFile), that can be deleted on
termination.

absolutePath read only string the absolute, platform specific path of the file.
Equivalent to java.io.File.getAbsolutePath()

uri read only string A file: URI to the file. Equivalent to
java.io.File.getURI()

TempFile
This component names a temporary file.

name type description
prefix String Prefix -this should be three or more characters long
suffix OptionalString suffix, e.g. ".tmp"
dir OptionalString a directory. If not specified, the temp directory for this

JVM will be used.
deleteOnExit Boolean Attribute for those components (SelfDeletingFile,

TempFile, TextFile), that can be deleted on
termination. Default=false.

absolutePath read only string the absolute, platform specific path of the file.
Equivalent to java.io.File.getAbsolutePath()

uri read only string A file: URI to the file. Equivalent to
java.io.File.getURI()

Files created with deleteOnExit set to true, it will be deleted when the component terminates. If the file cannot
be deleted at that point in time, the file is marked deleteOnExit for the JVM itself to clean up if it shuts down
cleanly. This is an emergency measure which cannot be relied upon.

TempDir
This component is a variant of TempFile (with exactly the same attributes), which instead creates a temporary
directory. The directory is created and the absolutePath and uri attributes set to point to it.

If the directory is created with deleteOnExit set to true, it and all child directories and files will be deleted when
the component terminates. If the directory already existed when deployment took place, it is not deleted during
termination. This is a safety feature designed to stop users accidentally deleting their home directory or some
other valued piece of the filesystem.

TextFile
A text file

name type description
filename String or

Component
Name of a file, or a reference to component that
implements FileIntf, in which case the method
FileIntf.getAbsolutePath() will be used to get
the absolute path of the file.

deleteOnExit Boolean Request deletion on termination.
absolutePath read only string the absolute, platform specific path of the file.

Equivalent to java.io.File.getAbsolutePath()
uri read only string A file: URI to the file. Equivalent to

java.io.File.getURI()

encoding String Text encoding to use (default="utf8")
text String Text to write

When a TextFile component is deployed, it fills in the nominated file with the contents of the text attribute,
using whatever encoding is requested. The file will be deleted at termination, if deleteOnExit is set.

TouchFile
This component touches a file. if the file does not exist, it is created. A timestamp can be passed in as seconds
since 1970-01-01, or -1 for "latest time".

sfConfig extends Compound {
 sfSyncTerminate true;

 temp1 extends TempFileWithCleanup {
 deleteOnExit true;
 prefix "temp1";
 suffix ".txt";
 }

 assert extends Assert {
 fileExists LAZY temp1:filename;
 }

 touch extends TouchFile {
 filename PARENT:filename;
 timestamp PARENT:timestamp;
 }

 //the filename
 filename LAZY temp1:absolutePath;
 //and timestamp
 timestamp 100000L;
}

It also supports OptionalBoolean attributes: sfShouldDetach, sfShouldTerminate and
sfShouldTerminateQuietly.See the Detach and Terminate Attributes section.

CopyFile
This component creates a copy of a file.

name type description
source FilenameType Either a string filename or a File component (or other

component that has or sets the attribute
absolutePath).

destination FilenameType Either a string filename or a File component (or other
component that has or sets the attribute
absolutePath).

#include "/org/smartfrog/services/filesystem/components.sf"

sfConfig extends CopyFile {
 source extends File {
 //a directory
 dir "/";
 //file must always exist
 mustExist true;
 testOnDeploy true;
 filename "test.sf";
 }

 // The copy will be a SelfDeletingFile.
 // The copy will be deleted when CopyFile terminates
 destination extends SelfDeletingFile {
 filename "testSelfDeleteCopy.sf";
 }
}

It also supports OptionalBoolean attributes: sfShouldDetach, sfShouldTerminate and
sfShouldTerminateQuietly.See Detach and Terminate Attributes section.

DeployOnCopy
This is an extension of the CopyFile component that deletes the copied file when terminating. It can be used to
deploy to any application server that automatically deploys any file copied into its deployment directory. The
supported attributes are those of CopyFile,

#include "/org/smartfrog/services/filesystem/components.sf"

sfConfig extends DeployOnCopy {
 source "/home/example/app/dist/lib/application-3.14.war";

 destination "/home/example/jboss/server/default/deploy/application.war";

}

If the copy failed, then the destination file is not deleted during termination.

Mkdir
This component creates a directory when deployed. All necessary parent directories are auto-created.

name type description
dir String or

Component
Name of a file, or a reference to component that
implements FileIntf, in which case the method
FileIntf.getAbsolutePath() will be used to get
the absolute path of the file.

parent OptionalString
or Component

Parent directory. Optional

deleteOnExit Boolean Request deletion on termination

absolutePath read only string the absolute, platform specific path of the directory.
Equivalent to java.io.File.getAbsolutePath()

name type description
uri read only string A file: URI to the directory. Equivalent to

java.io.File.getURI()

If the directory is created with deleteOnExit set to true, it and all child directories and files will be deleted when
the component terminates. As a safety check, if the directory existed before deployment, it will NOT be deleted.
This is to reduce the risk of accidentally deploying something that deletes a user's home directory, or similar.

It also supports OptionalBoolean attributes: sfShouldDetach, sfShouldTerminate and
sfShouldTerminateQuietly.See the Detach and Terminate Attributes section.

Example: Mkdir

#include "/org/smartfrog/services/filesystem/components.sf"
#include "/org/smartfrog/services/assertions/components.sf"

sfConfig extends Compound {

 newdir LAZY mkdir:absolutePath;

 sfSyncTerminate true;

 mkdir extends Mkdir {
 parent LAZY PROPERTY java.io.tmpdir;
 dir "/new-directory-for-mkdir";
 deleteOnExit true;
 }

 assert extends Assert {
 dirExists PARENT:newdir;
 }

}

This example creates a directory under the parent directory ${java.io.tmpdir}, then asserts that it has been
created. Note the use of LAZY PROPERTY reference when extracting this value. If the non-lazy property were
used, the parent attribute would be set to the temporary directory of the JVM/Process which parsed the
deployment descriptor, not the process which actually deployed the component. When deploying to a remote
system, the difference can be significant.

Although "/" is used as the directory separator, this descriptor is still valid on Windows systems, and other
platforms with alternate path separators. The directory attribute will have / and \ characters converted to the local
platform's type during deployment. The target platform is not an issue with the file types, although the value of the
absolutePath attribute will be different for the different systems.

Limitations of the components
1. Because Java has no explicit access to file system permissions, SmartFrog components cannot create files

with access rights other than the default for the Java process. Java1.6 promises to correct this; until then you
need to execute the native chmod program.

2. There is not (yet) an rmdir component, to delete a directory.

Examples

Example: temporary text file
This is a temporary text file that is deleted after termination

#include "/org/smartfrog/services/filesystem/components.sf"
#include "/org/smartfrog/services/assertions/components.sf"

sfConfig extends Compound {
 sfSyncTerminate true;

 temp1 extends TempFile {
 deleteOnExit true;
 prefix "temp1";

 suffix ".txt";
 }

 assert extends Assert {
 fileExists LAZY temp1:absolutePath;
 }

 textFile extends TextFile {
 file LAZY temp1;
 text "Here is some text that we want to use in our document";
 }

 //the filename
 absolutePath LAZY textFile:absolutePath;
 //the uri
 uri LAZY textFile:uri;
}

The temp1 component names and creates a temporary file in the system's temporary directory. The text file
component then fills this in with some text of our choice, in the default (UTF8) encoding.

The assert component verifies that the file exists;

The absolutePath attribute in the root component is LAZY bound to the value of the textFile. This component
is not explicitly set, but is implicitly set when the component binds to the file component. This happens at
deployment time. The uri attribute is similar.

Because the temp1 file is already marked as deleteOnExit, there is no need to indicate this in the textFile
declaration, though to do so should be harmless. We say should, as the sole risk is that during undeployment,
after temp1 deletes the file a new file may be created with the same name as is about to be deleted, a file that
textFile may then unwittingly delete. This is a possible, albeit unlikely race condition.

Example2: encoded text file
This example uses a different text encoding, and an alternate cleanup mechanism

#include "/org/smartfrog/services/filesystem/components.sf"

sfConfig extends Compound {

 sfSyncTerminate true;

 temp1 extends TempFile {
 prefix "encoded";
 suffix ".txt";
 }

 cleanup extends SelfDeletingFile {
 file LAZY temp1;
 }

 textFile extends TextFile {
 file LAZY temp1;
 text "UTF16";
 encoding "UTF-16";
 }

 //the filename
 absolutePath LAZY textFile:absolutePath;
 //the uri
 uri LAZY textFile:uri;
}

Here, a SelfDeletingFile is used to clean up the file at termination time.

Using the filesystem components in other components
The goal of these tasks is to make it easy to name files in a cross platform manner.

Here are the ways to do this.

Extend FileUsingComponentImpl
This class has support code for the core writeable attributes (file, deleteOnExit), and those that are set at
runtime (absolutePath, uri). To use the features

1. extend the class FileUsingComponentImpl.

2. In sfDeploy() or later, bind to a filename.

3. If deleteOnExit is to be supported, call deleteFileIfNeeded() during termination.

4. Implement any other interfaces or operations that are desired. Note that the methods of FileIntf and
UriIntf are already implemented.

To bind to a filename

• use bind(File) to set the runtime attributes, and set the file member variable, a variable that can be
accessed via getFile();

• Use bind(boolean mandatory,String defval) to force the filename attribute to be read, converted from
a File instance or a string path into an absolute path, and then bound to.

• Determine the file name as a string, and use setAbsolutePath(String) to bind the component to a path.

Use static helper methods in FileSystem
There are is a static method, lookupAbsolutePath(), in the class FileSystem, methods that can resolve any
attribute of a named component, and then either convert its string value into a local pathname, or resolving it to a
FileIntf interface, ask for the path with a call to getAbsolutePath(). The resolveAbsolutePath() method
does the same, except it returns a File instance.

The FileSystem class also includes helper methods to close input and output streams quietly, without throwing
an IO exception, and checking for null parameters. These should be used in exception handlers, to quietly close
streams on failure. They should not be used in the main body of a method, as there may be a valid reason for a
close operation to fail (such as a full filesystem), valid reasons that should be propagated.

Consult the Javadoc documentation for details on how to use these method. It can be used from any component
that needs to resolve pathnames.

	File Components
	Declaring the components
	Attributes Common to most components
	Detach and Termination Attributes. Common to File, Mkdir and TouchFile components
	Components
	File
	SelfDeletingFile
	TempFile
	TempDir
	TextFile
	TouchFile
	CopyFile
	DeployOnCopy
	Mkdir
	Limitations of the components

	Examples
	Example: temporary text file

	Example2: encoded text file
	Using the filesystem components in other components
	Extend FileUsingComponentImpl
	Use static helper methods in FileSystem

