An Extensible Job Submission Design

Marvin Theimer, Microsoft Corporation

Chris Smith, Platform Computing Corporation

May 5, 2006
Copyright Notice

Copyright (C) Global Grid Forum (2006). All rights reserved.

Copyright (C) 2006 by Microsoft Corporation and Platform Computing Corporation All rights reserved.

Introduction

This white paper describes a message-based job submission design that could be used as the basis for defining Web services-based job submission protocols that enable interoperation with and among the most commonly used HPC job schedulers currently in use or being proposed for use in the near future.

The concepts described in this paper provide building blocks that can enable many different scheduling schemes. A premise of this paper is that the key to building a widely-accepted job submission design is to start with a minimalist design to which small, composable, extensible services and their associated interaction protocols are added in an incremental fashion. All parties (i.e. all clients and all job scheduling services) are expected to implement the base interoperability interface, which enables a base interoperability use case. Additional functionality is exposed by schedulers by means of optional extensions that enable common interoperability use cases. Clients (and schedulers acting as clients) determine which extensions a particular scheduler supports and interact with the scheduler via the base interface and whichever extensions that both parties understand.

To achieve specific interoperable job submission protocols, the following things must be defined:

· A base interoperability interface that consists of a set of interaction protocols and a profile specifying how these protocols must be composed.

· Enabling sets of extensions. These may include both extensions to existing interaction protocols as well as definitions of new interaction protocols that might be needed. Although clients are free to mix and match available extensions as they see fit, extension profiles may also be defined to describe particular types of functionality that require the composition of multiple extensions.

The rest of this paper consists of the following: Section 2 provides an overview of the key concepts dealt with and exposed by the job submission interface. This section first presents various conceptual building blocks and their associated issues that are relevant to job submission and then describes the extension mechanisms that will be used to enable those building blocks and functionalities that are not accessible via the base interoperability interface. Section 3 defines the base interoperability use case and an interface for enabling it. Section 4 describes various extensions that could be added to the base interoperability interface in order to achieve the common use cases described in “HPC Job Submission Use Cases – Base Case and Common Cases”.[HPCUseCases] Section 5 describes how various illustrative use cases could be implemented using the extensions described in section 4. Section 6 describes how this design proposal relates to existing specification efforts, such as JSDL and BES. In particular, it briefly sketches how these specifications might be used to implement a substantial part of the design proposed in this paper.

A variety of topics are outside the scope of this paper. In particular, the interface does not describe how clients, schedulers, and compute nodes find each other; merely how they can interact once they have found each other. The design does not cover issues such as system management, relying instead on the fact that this is a general topic that other parts of the HPC/Grid/Web services community are already working on. Similarly, the paper only discusses security aspects that are specific to job submission, relying on the results of wider security efforts that are already going on inside the broader HPC/Grid/Web services community for the rest.

Concept Overview

This section first presents various conceptual building blocks and their associated issues that are relevant to the various common use cases described in “HPC Job Submission Use Cases – Base Case and Common Cases”. These are presented without concern to whether they are relevant to the base use case or to an extended use case. The section then describes the extension mechanisms that will be used to enable those building blocks and functionalities that are not accessible via the base interoperability interface.
Job Submission Concepts and Issues
Core Concepts
The central concept in job submission is, of course, that of a job. Unfortunately this is an overloaded term that has many different definitions. The OGSA Glossary of Terms [OGSA-Glossary] defines it to mean “a user-defined task that is scheduled to be carried out by an execution subsystem”. Unfortunately neither the terms task nor execution subsystem are defined in this glossary. Many people in the Grid community interpret the term “job” to mean the execution of a single program in a single place. This interpretation gets blurry when considering things like MPI programs, which may consist of multiple instances of a single program running on multiple computers. In this case a “program” is really referring to multiple program instances and an “execution subsystem” is really referring to multiple facilities that each could be interpreted as being execution subsystems in their own rights. Furthermore, if one looks at the batch job scheduling literature of the past four decades – both for HPC environments and for enterprise data centers – one finds that the term “job” is frequently taken to encompass the following broader notions:

· A job consists of a series of multiple, related, user-defined steps, or tasks.

· A job represents an accounting “container” in whose context user-defined tasks run.

Some people use the term workflow to describe user-defined activities that encompass multiple related, but separate, program steps. However, the OGSA glossary defines this term in a manner that has more to do with prescribed interaction patterns among cooperating Web services or business processes.
Because this paper will deal with job submission concepts that span multiple user-defined tasks, we will employ definitions of terms such as job and task that could be considered to be at variance with how various members of the Grid community would define those terms. We recognize that the choice of terminology to use in any ultimate job submission interface specification will quite possibly differ from that chosen for exposition in this paper.

We define a task to mean the execution of one or more instances of a program on one or more execution subsystems. Execution subsystems may actually execute a job or they may be “proxies” that hand off a task to another execution subsystem for actual execution. We refer to an execution subsystem that actually executes a task as a compute node (which may be physical or virtual in nature).

In the base use case we make no distinction between tasks that run on one or more than one compute node. An extension in support of parallel, distributed programs will allow schedulers to advertise what kinds of infrastructure support they have for running various kinds of parallel, distributed programs (e.g. MPI programs
) and clients to specify relevant information needed to correctly instantiate such programs.

Compute nodes employ resources to execute tasks. Resources represent things like compute node CPUs, the amount of memory to be allocated to a task on a compute node, the amount of disk space to make available to a task on a compute node, etc. Resources can be referred to in aggregate, such as the number of compute nodes or CPUs needed to run an MPI program. When referring to something like a compute node, aggregation represents a “bundle” of associated resources that can be dealt with as a single (logical) unit. When referring to something like the number of CPUs needed to run an MPI program, aggregation represents the number of units of some resource that are needed. Resources can also be referred to in boundary specifications, such as a minimum amount of memory required to run some task.

Schedulers manage the process of allocating resources to tasks. Two integral aspects of resource allocation are the notions of resource allocation rights and resource reservation. A scheduler can allocate particular resources to a task if it has the right to allocate those resources. Since resources may be under the actual control of someone else – e.g. the resources of a compute node are controlled by that compute node – a scheduler may first need to reserve a given set of resources in order to have the right to subsequently allocate them to a task – or to someone else in the form of a granted reservation.

Resource allocation involves three different types of interactions, each of which may occur independently and at different times.

· A client or scheduler may query various parties about the availability of resources within a system. Such information queries may be directed at the owners of resources (i.e. those possessing the right to allocate them) or at various kinds of information services that keep track of resource information in one form or another.

· They may make reservation requests to obtain allocation rights to various resources within a system. Note that in a system in which resource reservation is not explicitly supported there is an implicit assumption that a given scheduler has, by some out-of-band means, obtained the right to allocate the resources that it schedules. That is, it has implicitly reserved the resources of the compute nodes on which it will subsequently schedule tasks. The notion of “delegating” resources to another scheduler via reservations will be employed as the basis of an extension that supports multi-scheduler environments.

· Finally, a scheduler may allocate resources for which it has allocation rights to either tasks or to parties that make reservation requests to it. In the latter case it is acting as a resource provider. Note that in the former case, when a scheduler allocates resources to a task, the scheduler is doing so on behalf of the client that submitted the task. If the client explicitly reserved resources from the scheduler beforehand then the scheduler employs those resources for the allocation. If the client submitted a task to the scheduler without first explicitly reserving resources for it then the scheduler must implicitly perform the reservation for the client.
Although not exposed in the base use case and associated interoperability interface, the concept of explicit resource reservations and of running one or more tasks within the context of a given resource reservation enables a variety of powerful capabilities, from the ability to make advanced reservations that take hold at a future point in time to being able to provide quality-of-service guarantees. We refer to a reified resource reservation as a job.
Figure 1 illustrates several different kinds of relationships between jobs and tasks. Two instances – a serial application and an MPI application – are shown in which a job is employed to run a single task. Note that the MPI task consists of multiple processes (each running an instance of the same MPI program), which run on multiple compute nodes. Jobs may also be used to run multiple (concurrent) tasks, as illustrated by the parametric sweep and work flow instances shown. In these cases it is well-defined and one can control which resources will be used to execute the parametric sweep and the workflow examples. In particular, one can both limit how many resources will be consumed by either as well as guarantee that a given set of resources will be available during the entire span of executing multiple tasks.

[image: image1.emf]Job

Serial Application MPI Application

Parametric Sweep

Application

Task Task Task Task Task

Task Task Task

Task Task Task

Task flow

Task

Task

Task

Task Task

Proc Proc Proc Proc

One Job

One Task

One Job

Multiple Tasks

Figure 1. Various relationships between jobs and tasks.
Task and Job States

The state of a task represents the current state of the executing (or pending-to-be-executed) program instance(s) associated with the task. Clients can request changes to the state of a task, including canceling it and modifying its resource requirements/limitations.

Figure 2 shows a state diagram describing the states that a task may be in. The diagram illustrates the states that the base use case would support. A later subsection describes how the base state diagram can be specialized to support richer scheduling semantics.

[image: image2]
Figure 2. Base task state transition diagram.

The base set of states that a task may be in is the following:

· New: This is the start state, in which a request to create the task has not yet been submitted to the scheduler by a client.

· Pending: The scheduler has accepted the task request but not yet sent it anywhere for actual execution.

· Running: The task is executing on some set of resources.

· Finished: The task has terminated. This is a terminal state.

· Canceled: The client – which might be some system administrator (and hence not necessarily the client who originated the request to create the task) – has issued a cancel task request. This is a terminal state.

· Failed: The task has failed due to some system error condition, such as failure of a compute node that was providing some (or all) of the resources reserved to the task that the task is part of. This is a terminal state.

Just as one can define a state diagram for tasks one can also define a state diagram for jobs. Figure 3 shows the “base” state diagram describing the states that a job may be in.

[image: image3]
Figure 3. Base job state transition diagram.

The base set of states that a job may be in is the following:

· New: This is the start state, in which a request to create the job has not yet been submitted to the scheduler by a client.

· Unsatisfied: The scheduler has accepted the request and is trying to reserve the resources that have been requested.

· Satisfied: The scheduler has reserved the resources requested.

· Finished: The job has terminated and the resources returned to the ownership of the scheduler. This is a terminal state.

· Canceled: The client – which might be some system administrator (and hence not necessarily the client who originated the reservation request) – has issued a cancel request. This is a terminal state.

· Failed: The job has failed due to some system error condition, such as failure of a compute node that was providing some (or all) of the resources reserved. This is a terminal state.

Both tasks and jobs have finite lifetimes. A task that runs for longer than its specified lifetime is automatically cancelled by the system. A job that has been in existence for longer than its specified lifetime is automatically cancelled by the system and the resources that it holds are released for use by others. All tasks running against those resources are cancelled as well. Both tasks and jobs can be explicitly terminated by means of client cancel requests.

The lifetime of a task or job can be queried and modified by clients (with modifications subject to scheduler approval). A common scenario for jobs is that they should expire if no task has been run in their context for a specified amount of time. This can be implemented by allowing the scheduler to automatically extend the lifetime of a job every time a task is submitted under its context. Clients can specify whether this auto-extension policy should be employed for a job when the job is created or by subsequently sending an appropriate modification request to the scheduler.

A useful extension is to allow clients to optionally specify a callback address at which to be informed when a task or job has terminated, when it has changed state.

Multiple Schedulers

Multiple schedulers may be present in a system and may employ each others’ services. In this case some schedulers act as resource providers while others act as resource schedulers.

For example, an organization might run a “meta-scheduler” that schedules jobs and tasks across a forest of compute clusters, with each compute cluster running a dedicated scheduler on its head node that is responsible for scheduling jobs and tasks within that compute cluster. This results in a hierarchical scheduling infrastructure, wherein clients can submit their jobs and tasks to the meta-scheduler, which would then employ the services of each compute cluster’s scheduler in order schedule jobs and tasks on the compute nodes within that cluster. Figure 4 illustrates such a scenario, as well as showing desktop machines being scheduled directly by the meta-scheduler.

[image: image4]
Figure 4. Example system with meta-scheduler, two compute clusters, and a desktop machine.

Schedulers may be autonomous, depending on the policies that govern them. For example, the owners of a particular compute cluster might submit jobs and tasks directly to the scheduler of that cluster. The cluster scheduler might then preferentially run jobs and tasks locally and only submit jobs and tasks to the meta-scheduler if the local cluster is busy or a job is too big to host on the local cluster.

In this example the scheduler for an individual compute cluster may receive requests directly from “internal” clients as well as from the meta-scheduler. The implications for the meta-scheduler are that it cannot assume that it “owns” the resources managed by each compute cluster’s scheduler. Rather, it must assume an “advertising” model, in which compute cluster schedulers advertise their resources to both clients and the meta-scheduler. Consequently the meta-scheduler must be careful to confirm that its understanding of the availability of resources within a given compute cluster actually correspond to the cluster’s current state. Resources only become allocated to a specific client or meta-scheduler (acting on behalf of a client) when a job request causes them to be explicitly reserved.

Given the potential autonomy of schedulers (actual autonomy can be controlled by policy) it is possible to have systems in which there are multiple meta-schedulers and/or multiple layers of meta-schedulers. A key requirement to make such systems work is that there can be no request cycles.

One way of dealing with this problem, that doesn’t require imposing some “structural” means of preventing cycles from occurring, is to require that job and task submission requests record which schedulers (and meta-schedulers) are involved in them. That is, such requests must include a description of whom they are on behalf of. This description lists the “path” of schedulers that have made creation requests of which the current request will be a part. Inclusion of such a list enables a scheduler to detect and hence prevent cycles by scanning the list associated with a given request for its own presence in the list. Thus, for example in Figure 4, if the client were to issue a creation request to meta-sched, which in turn issued a creation request to sched13, then sched13 could check the associated path list to verify that it is not on the list. If sched13 were then to issue a creation request to meta-sched, the path list for that request would consist of meta-sched and sched13. meta-sched would see its name on the list and would reject the request so as to avoid creation of a scheduling cycle.
Viewed as “black boxes”, compute nodes are just special instances of schedulers. That is, they act like resource-managing schedulers that just happen to actually execute the tasks that are submitted to them. By the same token, resource-managing schedulers are free to employ other means for interacting with resources that they are managing. Thus, for example, the scheduler for a compute cluster is free to employ an alternative internal protocol for interacting with the compute nodes underneath it if it so desires. This is useful both for dealing with legacy systems as well as systems that might have an optimized internal or proprietary means of scheduler/compute-node interaction.

Information Representations

When clients and schedulers request status information about tasks and resources, that information will need to be presented in a form that is meaningful to them. Among other things, that means that all schedulers and compute nodes whose names might show up in information returned to a client will need to have globally meaningful and unique names. Similarly, all jobs and tasks will need to have globally unique names or IDs. The precise nature of these is something that must be defined in specific scheduling profiles.

Information describing resources needs to be encoded according to some commonly understood resource model, such as CIM or the GLUE schema. The choice of resource model to use must be defined in specific scheduling profiles.

Scheduling information about available resources, jobs, and tasks has (at least) two representational aspects to it: information about the task or resource itself and information about the set of schedulers involved with setting up and managing a given task or available/reserved resource. This leads to two different views of scheduling information:

· A flat view presenting information relative to the individual scheduler or compute node that is most directly associated with the information.

· A hierarchical view presenting information relative to the path of schedulers and compute nodes that are involved with the information.

For example, in Figure 4, suppose the client has created a job with ID 137 that includes reserved resources on compute nodes cluster13-1, cluster13-2 in compute cluster cluster13, desktop-foo, and cluster42-8 in compute cluster cluster42.
 The request to create job 137 was submitted by client to scheduler meta-sched, which in turn employed schedulers sched13 and sched42 to reserve resources on machines in cluster13 and cluster42. meta-sched directly reserved resources on desktop machine desktop-foo. In the context of job 137, Task1 is an MPI program running on cluster13-1 and cluster13-2. Task2 is a serial program running on desktop-foo. Task3 is another serial program running on the compute node cluster42-8.
A flat listing of job 137 and the tasks running in its context would look something like the following:

· Job 137

· Cluster13-1:

· 1 cpu, 512MB mem, 100GB dsk

· Task1: mpiexec foo.exe –p bar …

· Cluster13-2:

· 1 cpu, 640MB mem, 200GB dsk

· Task1: mpiexec foo.exe –p bar …

· Desktop-foo:

· 1 cpu, 512MB mem, 100GB dsk

· Task2: baz.exe …

· Cluster42-8:

· 1 cpu, 512MB mem, 100GB dsk

· Task3: bong.exe …

A hierarchical listing of job 137 would look something like:

· Job 137

· Meta-sched:

· Sched13:

· Cluster13-1:

· 1 cpu, 512MB mem, 100GB dsk

· Task1: mpiexec foo.exe –p bar …

· Cluster13-2:

· 1 cpu, 640MB mem, 200GB dsk

· Task1: mpiexec foo.exe –p bar …

· Desktop-foo:

· 1 cpu, 512MB mem, 100GB dsk

· Task2: baz.exe …

· Sched42:

· Cluster42-8:

· 1 cpu, 512MB mem, 100GB dsk

· Task3: bong.exe …

Advertising Resource Information

Although the question of how schedulers find each other and compute nodes is out-of-scope for this paper, there must still be a way for schedulers to ascertain what resources are available from a given scheduler or compute node. Schedulers and compute nodes can advertise their current state (both available resources and, optionally, the state of all resources they are managing) in the following ways:

· Compute nodes and schedulers can announce themselves to other schedulers by means of an announcement message. In its simplest form, this message simply informs its recipient of the existence of the sender, including an endpoint reference for the sender’s task submission interface. The message can also optionally include additional information about the current state of the sender.

· Interested parties can query a scheduler or compute node directly to ask it for its current state.

· Announcement and query can also be mediated through the use of a registry service. Compute nodes and schedulers can register themselves in a directory, such as one based on UDDI, and then interested parties can find schedulers within the registry and subsequently poll the schedulers for their resource information.

In its simplest forms, advertisement of resources can be done in one of two ways:

· Compute nodes and schedulers periodically announce themselves, including – optionally – their current state, to other schedulers. Announcements occur whenever a compute node or scheduler has experienced a significant change-of-state.

· Schedulers periodically query compute nodes and other schedulers for their current state. A variation of this has compute nodes and schedulers initially announcing themselves to other schedulers and then having those schedulers periodically query them for their current status.

The choice of whether to have information propagated via periodic announcement messages or periodic query messages depends on circumstances. Use of announcement messages enables information about resource state changes to propagate immediately to schedulers that might be interested in that information. Use of query messages enables schedulers to tailor what kind of information they wish to receive from compute nodes and other schedulers at any given time. It also provides schedulers with better control over how often they must process message traffic. A (centralized) scheduler can control the rate at which it queries a set of compute nodes and/or schedulers for information. If announcement messages are employed then the scheduler must either risk the possibility of being overwhelmed by a flurry of concurrent announcement messages or must employ some means of coordinating the generation of announcement messages so that they are spread out over time. The use of announcement messages also implies a more complicated implementation, as a means for registering for announcement messages via a protocol such as WS-Eventing will be required.

Failures and Recovery

When a client requests the creation of a job or task at some scheduler a unique ID is returned to them to enable future interactions concerning that job or task. The scheduler is expected to maintain knowledge of that ID for at least as long as the job or task remains in existence. In particular, if the scheduler should crash and recover while the job or task continues unaffected on another machine then the scheduler must be able to successfully field subsequent client requests referencing the job or task. Thus the scheduler must maintain persistent state information about existing job and tasks or have some equivalent means of obtaining that information (e.g. by querying known compute nodes on which a job or task might exist).

For the use cases considered in this paper we only focus on fail-stop failures of compute nodes and schedulers, as well as network partitions. More complicated failures, such Byzantine failures, are out-of-scope. The recovery model we consider (to be decomposed into base and extension cases later on) is the following:

· Resources that have been reserved and are deemed no longer reachable will result in a new reservation that will be fulfilled by other (currently reachable) resources. Unreachable resources are marked as such and are deleted from the job they were associated with. In the base use case, resources marked as unreachable are not automatically reintegrated into a job. However, in some extended use cases clients may depend on specific resources and wish to have such resources be automatically reintegrated into their jobs (with the job remaining in a ‘pending’ state in the mean time).

· A task that has declared itself as “re-executable” and that is running on resources that are deemed no longer reachable will result in a new task execution request that will be fulfilled by other (currently reachable) resources belonging to a job. A non-re-executable task running on unreachable resources will result in an abnormal termination response to its initiating client. Unreachable tasks are designated as “orphan” tasks and schedulers should send a termination request to them should they become reachable at any time in the future. Note that, in any case, all orphan tasks should eventually terminate due to exceeding their lifetime limits. An allowable variation on this can occur when a scheduler has created a second instance of a re-executable task: when the unreachable (first) instance of the task becomes reachable again, the scheduler can choose to send a termination request to the second instance instead of the first one.

This failure/recovery model implies that jobs may at times have more resources reserved to them than a client has requested, re-executable tasks have “at least once” execution semantics, and non-re-executable tasks have “at most once” execution semantics.

It is up to the initiating clients and schedulers to decide when resources are deemed to be unreachable. Jobs and tasks cannot be prematurely terminated by the compute nodes on which they reside. Thus, for example, a scheduler might choose to wait a considerable time before declaring a long-running task to be unreachable in the hope that its unreachability is due to a network partition and not a crash of the compute node running the task. Alternatively, the scheduler might aggressively declare tasks unreachable in order to achieve minimum task completion times in exchange for sometimes initiating unnecessary redundant task execution requests.

How long a scheduler should wait before declaring a resource unreachable is beyond the scope of this paper. Clients should be able to indicate their preferences to the scheduler by including such preference information in their job and task creation requests. System administrators should be able to control the scheduler’s behavior by specifying appropriate policy settings via a system management interface to the scheduler. Ideally, resource descriptions for compute nodes might include information about their typical reachability. An extensible approach to resource description will enable compute nodes and schedulers to optionally exchange this kind of information.

An important requirement of re-executable tasks is that they be able to tolerate having several instances of themselves running simultaneously in parallel. This precludes any task that would, for example, generate output to a specific global storage location that is the same across multiple executions of a task and that doesn’t have a means of detecting when other instances of the task are already running.

The principle means by which clients and schedulers can determine the reachability of resources is through periodic state queries of the associated schedulers and compute nodes or by monitoring expected periodic announcement messages from them. It should be noted that, although employment of periodic query messages or monitoring of periodic announcement messages sets up an implicit “connection” between various parties, these are not explicit connections such as those created in a protocol such as WS-Eventing. In particular, there is no notion of lifetime. There is, however, a notion of one party being able to tell the other that it is about to drop out of the connection.

Security and Credential Delegation

Client users of a system’s scheduling services are assumed to have credentials that allow them to prove their identity to schedulers. Perhaps the most common form of credentials is user-name/password pairs; however, other kinds of credentials – such as those based on X.509 certificates – are also possible. Similarly, schedulers must have credentials that allow both end client users and other schedulers to verify a scheduler’s identity. If one were to have scheduler credentials be based on public/private key pairs then arbitrary clients could verify a scheduler’s identity without having to know any secret information about it (such as the user-name and password of the account it runs under). Other kinds of credentials for schedulers are, of course, also possible.

How clients and schedulers learn of the credentials they need to know (e.g. the public scheduler key needed by a client to interact with that scheduler or the user-names and passwords that a scheduler needs to know in order to authenticate clients that contact it) is beyond the scope of this paper.
Regardless of which types of credentials are used within a given system, we assume that WS-Security is the required way to ensure the integrity and privacy of message interactions among clients, schedulers, meta-schedulers, and compute nodes implementing the interfaces described in this paper. This does not preclude the attachment of “leaf” systems whose internal implementations employ alternative means. For example, the Windows CCS compute cluster scheduler employs a proprietary interaction protocol with the compute nodes it controls. That interaction protocol is secured by proprietary means not described in this paper.

In order to enable efficient interactions spanning multiple messages between two parties, secure conversations are employed for all interactions unless the policies governing the interactions between two specific parties explicitly allow for non-secure interactions. Non-secure interactions would forego encryption and integrity support, but would still require authentication and access control. The identities used to establish each secure conversation between two parties are the identities of the directly communicating parties. For example, a meta-scheduler acting on behalf of a client will use its own credentials – not the client’s credentials – when establishing a secure conversation with another scheduler (or compute node).

Credentials are used in multiple ways:

· They are used for authentication purposes: both as part of establishing a secure conversation between two parties and to establish the identity of someone making a request to a scheduler (or a compute node) – or on whose behalf a scheduler request is being made.

· They are used for authorization purposes: scheduler requests are only executed if they are authorized for the credential on whose behalf they are being made.

· They are used for delegation purposes: tasks are run with credentials that enable them to access various resources, as well as request various actions within the system.

Scheduler requests require multiple credentials: in addition to the implicit credential needed to establish a secure conversation over which a scheduler request may be made, each scheduler request also has an explicit client credential parameter that identifies the ultimately originating client on whose behalf the request is being made. Specifically, job requests need to contain a task credential parameter, which specifies credentials that should be given to any task that is run as part of the created job. Task creation requests may contain a task credential parameter as well: the credentials given to a task consist of the union of the credentials given to the job the task is running under and the credentials specified explicitly for the given task in its creation request. In the case of user-name/password credentials, the union of two user-name/password credentials may not be supported by the underlying operating system that must run a task. In that case an error must be returned to the task creation request.
The following examples illustrate the use of credentials in multi-scheduler settings:

· Suppose a system contains client C, meta-scheduler M, cluster scheduler S, and compute node N. C might send a job creation request to M, which might cause M to send a job creation request to S, who might in turn send a job creation request to N. The secure conversation between C and M would be created using the credentials of C and M. Similarly, the secure conversation between M and S would be created using the credentials of M and S, and so forth. The client credential parameter of each job request would contain the credentials of C, since each job request is ultimately on behalf of C.

· Suppose C now requests that task T be created and run under the newly created job J. A task creation request would be issued by C to M, who would issue a subsidiary task creation request to S, who would in turn issue one to N. N would then launch T as a program running with the union of the credentials provided by the job and task creation requests it received. If C wanted to run its tasks using its own credentials then it need not supply those credentials again for the creation request for T. However, if it wanted to run T using different credentials then it would supply different credentials in the task credential parameter of its task creation requests.

· If C wanted to cancel the task then C would send a cancel task request to M, who would issue a subsidiary cancel task request to S, who would issue one to N. The client credential supplied in each of these requests would be C, indicating that the cancellation is being requested on behalf of C and that authorization checks for the cancellation request should be done against C’s identity.

· Suppose now that client, A, with administrative privileges, wanted to cancel a task that C created. A could send a cancel task request to any of M, S, or N. The request would contain A’s credentials as client credential parameter, indicating that the request is on behalf of A and that authorization checks should be run against A’s identity (and authorization privileges). If A sent the request to M, then M would send a cancel task request to S and S would send one to N. In each case the client credential parameter would contain A’s credentials.

· If A wanted to run a task under job J (that would run with C’s task credentials) it would issue a create task request with its own credentials as client credential and null credentials as task credential (so that J’s task credentials get used as the credentials assigned to the task).

Schedulers (and hence also compute nodes) need to maintain a variety of policy information in order to implement both authentication and authorization of requests. They may need to maintain a list of the credentials of all clients and schedulers that may establish a secure conversation with them. They may need to maintain authorization information specifying on behalf of which clients various scheduler requests may be made. Finally, they may need to maintain authorization information specifying which schedulers may make requests on behalf of various clients. This last type of policy information is a matrix keyed on both the originating client and the immediately requesting party – which might be the originating client or an intermediate scheduler.

One implication of this broad approach to authorization policy is that intermediary schedulers cannot necessarily know whether a job creation request to another scheduler (or compute node) will be rejected due to restrictions on which resources a user is authorized to use. They must therefore be prepared to search for other resources when trying to fulfill the resource requirements specified in a job creation request.

How authentication and authorization policy information is maintained and updated throughout a system of schedulers is beyond the scope of this paper. Similarly, what kinds of policies to use is something that must be defined in a profile document. However, we describe below a likely set of policies as an illustrative example:

· A well-known, secure, virtual organization-wide database is maintained of clients and schedulers who may establish secure conversations with each other. Any member of this database may establish a secure conversation with any other member.

· Clients may create jobs whose tasks run with their credentials. Clients may cancel tasks and jobs that have been created on their behalf (typically by themselves, although an administrator can also have done so). Clients may modify their own tasks and jobs, subject to restrictions placed by schedulers (such as maximum lifetime or maximum resource request limits).

· Any scheduler can query any other scheduler, as well as send announcement messages to any other scheduler.

· Only administrators can issue scheduler modification requests. In general, administrators can issue any request to a scheduler that they wish to.

An implication of using username/password combinations as client credentials is that all schedulers (and all compute nodes) participating in a given job or task must be trusted to safeguard the credentials that are presented to them from the client initiating the job or task. To support alternative forms, the credentials parameters of scheduler requests are represented in an extensible form (an XML infoset) that enables specification of which kind of credential is being passed in, as well as the credential itself. Similarly, compute nodes running tasks must be able to install passed-in credentials in the local operating system a manner that allows tasks to actually make use of them (since resource access is typically an operating system-specific activity).

An example of an alternative type of task credential might be digitally signed delegation certificates that confer specific rights to specific parties. For example, client C might specify a certificate that enables meta-scheduler M to have read access to a particular file F. M might create a delegation certificate that confers to scheduler S that same read access right, and S might further delegate that right to N with another delegation certificate. When creating task T, N would give it the chain of delegation certificates, including one conferring the read access right to T. T could then employ these credentials to actually perform a read request on F.

Extensibility Mechanisms

Types of extensions

At a high level, there are two types of extensions that one might consider:

· Purely additive extensions.

· Extensions that modify the semantics of the underlying base-level design.

Purely additive extensions that, for example, add strictly new functionality to an interface or that define additional resource types that clients and schedulers can refer to, are fairly straight-forward to support. Modifying extensions fall into two categories:

· Base case semantics remain unchanged to parties operating at the base (i.e. un-extended) level.

· Base case semantics change for parties operating at the base level.

Modifying extensions that leave the base-level semantics unchanged are straight-forward to incorporate. An example is adding at-most once semantics to interface requests. These operations now have more tightly defined failure semantics, but their functional semantics remain unchanged and base-level clients can safely ignore the extended semantics.

Extensions that change base-level semantics should be disallowed since they violate the fundamental premise of base-level interoperability. An example of such an extension would be having the creation of tasks at a particular (extended) scheduler require that the client issue an additional explicit resource deallocation request once a task has terminated. Base-level clients would not know to do this and the result would be an incorrectly functioning system.

The following types of extensions are used in the rest of this paper to enable various common use cases that will not be supported by the proposed base interoperability interface:

· Addition of new WSDL operations.

· This is needed to support additional new functionality, such as the addition of suspend/resume operations.
· We model additional parameters to existing WSDL operations as new WSDL operations (with appropriately defined names) in order to avoid potential tooling issues around “operation overloading”. An example is adding a notification callback parameter to task creation requests.

· Support for array operations and other forms of batching.

· When 1000’s of tasks are involved the efficiency gains of employing array operations for things like queries or abort requests are too significant to ignore.

· We add array operations alongside the corresponding individual operations, so that one can selectively interact with tasks (as well as things like data files) in either an “object-oriented” fashion or in “bulk-array” fashion.

· Array operations are an example of a service-oriented rather than a resource-oriented form of interaction: clients send a single request to a scheduler (service) that refers to an array of many resources, such as tasks.
 This raises the question of whether things like tasks should be referred to via EPRs or via unique “abstract” names that are independent of any given service’s contact address. At a high level, the choice is unimportant since the client submitting an array operation request is simply using either one as a unique (and opaque) identifier for the relevant resource. On a pragmatic level one can argue that abstract names are easier and more efficient to deal with than EPRs since the receiving scheduler will need to parse EPRs to extract what is essentially the abstract name for each resource. (Using arrays of abstract names rather than arrays of EPRs is also more efficient from a size point-of-view.) Hence we propose that the design make it possible to name things like jobs, tasks, and schedulers by means of abstract names, independent of whether they can also be referred to by means of EPRs. Using WS-Names represents one way of doing this.
· Extensions to state diagrams: This is described in detail in section 2.2.2.
· Standardized extensions to things like resource definitions and other declarative definitions (e.g. about provisioning). We propose two approaches, including combinations of the two:
· Extensions define composable sets that cover specific “subjects” (e.g. GPUs). In the extreme, these sets could be of size 1. This implies that clients and services need to be able to deal with the power set of all possible meaningful combinations of these sets. As long as individual definitions are independent of each other (i.e. the semantics of specifying A is unchanged by specifying B in the same description) this isn’t a big problem. Allowing the presence of different items in a description to affect each other’s semantics is arguably a variation on modifying the base-level semantics of a design via some extension to the design and hence should be disallowed. We expect that, in practice, the most useful approach to defining resource sets will be to define “major” sets that broadly characterize particular (common) cases. “Aspect” sets can then be defined that extend major sets in particular, minor ways that cover various more special cases.
· If resource descriptions are used only for “matchmaking” against other resource descriptions then another approach is to allow arbitrary resource types whose semantics are not understood by the HPC infrastructure, which deals with them only as abstract entities whose names can be compared textually and whose associated values can be compared textually or numerically depending on their data type. It is important to understand that, whereas the “mechanical” aspects of an HPC infrastructure can mostly be built without having to know the semantics of these abstract resource types, their semantics must still be standardized and well-known at the level of the human beings using and programming the system. Both the descriptions of available computational resources and of client requests for reserving and using such resources must be specified in a manner that will cause the underlying HPC “matchmaking” infrastructure to do the right thing. This matchmaking approach is exemplified by systems such Condor’s class ads system.

· Extended representations of information: In order to provide an extensible interface, all information is represented in the form of XML infosets. Additional types of resources can be specified beyond those assumed present in all systems. Schedulers and compute nodes that do not understand a particular resource type will, by default, return an error when they encounter an unknown resource specification. However, they can be explicitly told to ignore unknown resource specifications.

· Decomposition of functionality into “micro” protocols.

· Micro protocols should reflect things that must occur at different times (e.g. resource reservation/allocation vs. resource use/task-execution) or that can be employed in a stand-alone manner (e.g. task execution vs. data transfer). The decomposition that seems relevant for the HPC use cases (i.e. are visible to clients) is the following:

· The base case defines an interaction protocol for dealing with tasks and for querying schedulers for resource information.

· Resource reservation is covered by an extension that defines a separate job interaction protocol.
· A client may need to transfer specific data objects (e.g. files) to and from a system that is under the control of a job scheduling service. This requires that there be well-known data transfer protocols.
· Micro protocols may have relationships to each other. For example, task execution will need to be able to accept a handle of some sort to jobs that have already been created by the requesting client.
Specialization of States
To enable interaction among clients and schedulers that understand differing levels of functionality, the notion of specialization of states is necessary. This enables a simple client who only understands base scheduler states to still interact with more complex schedulers, albeit only understanding such schedulers’ activities in base terms. Similarly, it provides a way for more complex clients to “down-level” their interactions with simpler schedulers in a well understood, interoperable manner. Specific specializations of the base scheduler state set – or of other specializations thereof that have been previously defined – should be defined using profiles.

An example of state specialization is the following: A profile might extend the “satisfied” job state to include the states “partially satisfied” and “fully satisfied”, to represent the notion of a job that can start executing tasks because it has some – but not all – of the resources it has asked to reserve. A client understanding only the base job state diagram could still create jobs on a scheduler that implements partially and fully satisfied job states; it would simply ignore the specialization of the “satisfied” state that jobs can be in. Similarly, a client understanding the extended job profile would still understand how to interact with a scheduler implementing only the base job states since those base states are a strict subset of those defined in the extended job profile.

An example for tasks might involve the definition of a profile that extends the “running” task state to include the state “suspended”, in order to represent the notion of a task that has started running but has been suspended from execution. This example has an important difference from the previous example: the transition from “running” to “suspended” may be something that a client should be able to request. In that case, the scheduling profile must define additional interface operations that enable clients to request “suspend” and “resume” state transitions.

If multiple independent scheduling profiles are defined the question arises of what it means for schedulers to implement multiple profiles, and how clients that may not understand some of the added profiles can still interact with the scheduler.

Consider the following three state diagrams, representing separate, independent extensions of the base scheduling protocol. Profile A extends the base scheduling protocol to support the notion of task migration. Profile B extends it to support the notion of staging input data in from a client user to a compute node before a task executes on that compute node, and then staging result data out from the compute node back to the client user after the task has finished executing. Profile C extends the base scheduling protocol to support the notion of task suspension.

[image: image5]
Figure 5. Profile A: Task state transition diagram for a scheduling profile that extends the base protocol to support task migration.

[image: image6]
Figure 6. Profile B: Task state transition diagram for a scheduling profile that extends the base protocol to support the notion of staging in data to a compute node before a task runs and staging data out back to the client user after the task has finished execution.

[image: image7]
Figure 7. Profile C: Task state transition diagram for a scheduling profile that extends the base protocol to support task suspension.

These scheduling profiles really represent “component” profiles since a scheduler might wish to implement both at the same time, yielding a scheduler capable of supporting both migration of tasks as well as data staging activities. However, a naïve composition of the profiles raises a number of questions:

· Can the migrate operation of profile A be applied to all the sub-states of “Running” that are defined in profile B? One can imagine that the migrate operation is meaningful/supported for a task that is in state “Stage-in” or state “Executing”, but not for a task in state “Stage-out”.

What response should a client issuing a migrate request for a task in state “Stage-out” get back? Should they get back a fault response indicating that the requested operation is illegal? Does that take them to state “Failed”? Should they get back a fault response that indicates that the requested operation is inapplicable, implying that the task stays in its current state because the request was effectively a no-op?

Similarly, what if the scheduler doesn’t support the migrate operation for tasks currently in state “Stage-in”? Should a migrate request result in a fault response? Should the semantics be that the migrate request gets applied eventually, once the task is in state “Executing”?

Note that different schedulers could meaningfully support either the notion that migration is applicable to the “Stage-in” state or not. Does this mean there need to somehow be two different task profiles defined to cover each case?

· Consider next the composition of profiles A, B, and C. Suppose that a client understands all three profiles and encounters a task in state “Suspended” that it wishes to migrate. The client is smart enough to know that if the suspended task was originally in state “Stage-out” then a migrate request is both inapplicable and unnecessary. However, unless the characterization of a task’s current state describes the union of all the sub-states that it is currently in, an intelligent client may not be able to decide on the most appropriate actions to take.

· Finally, consider a variation of profile B, in which the “Stage-in” state is a sub-state of state “Pending” instead of a sub-state of state “Running”. In this case, there would now be a state transition from a “Pending” sub-state to state “Failed”, which a base-level client would not understand.
To support schedulers wishing to implement both profiles one can take one of two approaches:

· One can require that schedulers only implement a single scheduling profile (or at most only a set of completely independent profiles) and require profile designers to specify the power-set of all useful combinations of “component” task profiles.

· One can define rules for how schedulers may individually create compositions of selected “component” scheduling profiles in a manner that results in meaningful interfaces and implementations.

The former approach will quickly become practically infeasible if any significant number of component scheduling profiles is created; therefore the latter approach is chosen.

The following concepts/requirements are introduced to support the composition of multiple scheduling profiles:

· A scheduling profile cannot add state transitions that aren’t “covered” by the state transitions already present in the base scheduling protocol and in the scheduling profiles from which it is being extended. For example, no task profile may define sub-states of the “Pending” task state that may transition to the “Failed” task state. Thus, a client who understands fewer extensions than a scheduler it is interacting with will never see any unexpected state transitions.

· All clients and schedulers are expected to understand the fault response “operation not applicable to current sub-state”. When a client receives this response from a scheduler the semantics are that the requested operation was not performed and the state of the scheduler and the respective job or task remains unchanged.

A scheduler is free to decide to implement a requested operation (and associated state transition) by deferring it until the respective job or task is in a more suitable state. In this case the scheduler should not reply until the operation has been performed successfully (assuming that it actually gets performed successfully once the job or task have transitioned to a suitable state). The scheduler may optionally include informative information in the response it sends to such an operation request.

· In order to enable clients to understand as much as possible about the state of a job or task, state information must include the union of all sub-states that the job or task are currently in. For example, a task that was in state “Stage-in” and is currently migrating will have a state that consists of both “Stage-in” and “Migrating”. “Union states” of this sort can be easily represented as XML info-sets in which the top-level element is the base scheduling protocol state (e.g. “Running”) and sub-elements exist for each task profile sub-state that the job or task is logically in.

The result of adding these requirements is that clients must be prepared to sometimes have requested operations be rejected due to inapplicability, but they will never see job or task state transitions that they can’t understand. Furthermore, by defining the notion of “union states”, clients can be given as much information as possible about the current state that a job or task is in.

Although these requirements imply that the set of allowable scheduling profiles and their “mixings” are restricted, the belief is that this design approach should be sufficient to support most job scheduling designs that people will desire in practice.
Base Case: Simple Job Execution

Base Use Case

The simplest HPC use case is a high-throughput compute cluster that is managed by a batch job scheduler and that is used only from within an organization. It has the following characteristics:

· Users can make the following requests to a job scheduler:

· Submit a task for execution, with a specification of resource requirements. The scheduler will return either a scheduler-relative unique taskID or a fault reply.

· Query a specific task for its current state. Users can only query tasks that were submitted using their user credentials. The scheduler will return either a standard description of the specified task’s state, including its current execution state (see below) and a copy of the submission request, or a fault reply if the task is unknown.

· Cancel a specific task. Users can only cancel tasks that were submitted using their user credentials. The scheduler will return either an indication that the cancellation succeeded or a fault reply.

· List tasks. Users can request a list of the IDs of all tasks that have been submitted using their user credentials. The scheduler will return either a list of taskIDs or a fault reply.

· The state diagram for tasks that have been submitted by a client to a scheduler contains the following states: new, pending, running, canceled, failed, and finished. A task is in the new state while it hasn’t been submitted yet to the scheduler. It is in the pending state while it is waiting to run. Once the scheduler has dispatched the task to actually run on resources that have been allocated to it, the task is in state running. When the task terminates it enters one of the terminal states canceled, failed, or finished. These correspond to terminating due to cancellation, a system fault, or because the task exited successfully, possibly with an application error code.

· Only a small set of "standard" resources can be specified in resource descriptions, such as number of CPUs/compute nodes needed, memory requirements, disk requirements, etc. While not described in this paper, it is assumed that there are standardized, well-known semantics associated with the meanings of these resource descriptions and any associated scheduling behaviors they imply. Part of the semantics that must be defined for these resource descriptions is the set of comparison operations that may be used in a description. Only equality of string values and numeric relationships among pairs of numeric values are provided in the base use case.

· Once a task has been submitted it can be cancelled, but its resource requests can't be modified.

· Data access issues are considered to be out-of-band, e.g. because of the presence of a distributed file system. Stated somewhat differently, data access is considered to be an application issue rather than something that is supported as part of the underlying HPC infrastructure (for this base use case).

· Program provisioning is also considered to be out-of-band. That is, programs are assumed to be pre-installed – either directly on the compute nodes of the cluster or on something like a distributed file system that is accessible from the nodes of the compute cluster.

· Creation and management of user security credentials are considered to be out-of-band. Users are assumed to have the necessary credentials needed to submit both data and work to the compute cluster. Note that this covers, among other scenarios, systems where all tasks are run using “anonymous” credentials and users must explicitly stage any private data they wish to use to common “pool” storage facilities.

· The compute cluster's job scheduler is reachable at a well-known communications endpoint. Thus there is no need for directory services beyond something like DNS.

· Management of the system resources (i.e. compute nodes) and services of the compute cluster is out-of-band and indeed opaque to users of the cluster. This is not to say that there isn’t a standard means of managing a compute cluster; just that system management is not part of the HPC cluster use case.

· Fault tolerance model:

· If a task fails due to system problems then it must be resubmitted by the client (as a new task); the scheduler will not automatically rerun the task.

· The scheduler can fail but must keep information about tasks it has received on persistent storage. The scheduler may discard information about tasks that have finished longer than a given time period ago, with the value for that time period being a standardized value (likely to be at least 1 day). If persistent storage fails then all task information – past and present – is assumed lost.

· Failure of the scheduler may or may not cause currently running tasks to fail.

· Tasks eventually time out and are garbage collected if they don't finish of their own accord or get cancelled by a user request.

· When a task exits (for whatever reason) information is kept about the following:

· Whether it exited successfully, with an error code, or terminated due to some other fault situation.

· How long it ran in terms of wall-clock time.

This information is kept for a time period determined by the administration policy of the compute cluster.

· Which scheduling policies a scheduler supports is out-of-scope. Similarly, concepts such as quotas and other forms of SLAs are out-of-scope.

· Tasks are completely independent of each other. The notion of dependencies among tasks is out-of-scope.

· A task consists of a single program running on a single compute node; infrastructure support for parallel, distributed programs – such as MPI programs – is not assumed in the base HPC use case.

· Reservation of resources separate from allocation to a task about to be run is out-of-scope. That is, things like reserving resources for use at some particular time in the future or for purposes of implementing quality-of-service or SLAs is not supported.

· Interactive access to running tasks is out-of-scope. It is not prohibited, but is viewed as being an application-level concept that has no system support (at least in the base use case).
Base Interoperability Interface

In this and later sections, interface operations are described by means of a pseudo interface description language. The first argument to each interface operation is the Web services endpoint reference (EPR) that the operation request should be sent to. A representation language such as JSDL is assumed to be used for describing resources in the parameters and results of each interface operation.
The base interface that we propose that all schedulers should implement contains the following operations:

· CreateTask(schedulerEPR, resourceDescr, credentialsDescr, lifetime) (taskDescr: Create a task. The characteristics of the task, such as executable to run, time limits, and resource requirements, are described by ‘resourceDescr. ‘resourceDescr’ is an XML infoset describing the resources the client desires to reserve to the task. ‘credentialsDescr’ is an XML infoset describing the credentials that should be associated with the task. If ‘lifetime’ is not null then it represents the maximum length of time that this task should be allowed to exist before the scheduler is free to terminate it and reclaim the resources allocated to it. ‘taskDescr’ is an XML infoset describing the created task. Two of the top-level elements in the returned infoset are a task ID, which uniquely identifies the task, and a ‘taskEPR’, which is an endpoint reference for the task. Other elements describe its current run state (e.g. ‘pending’, ‘running’, ‘finished), and the resources allocated to it.
· QueryTask(taskEPR, taskID, queryDescr) (taskDescr: Return a description of the current state of the task designated by ‘taskID’. ‘queryDescr’ is an XML infoset that describes what kind of information the scheduler should return about the task. If it is null then a full description should be returned. The base case allows requesting either the current state of a task (e.g. ‘running’) or a full description of the task.
· CancelTask(taskEPR, taskID): Terminate the task’s execution.
· QueryScheduler(schedulerEPR, queryDescr) (schedulerDescr: Query the indicated scheduler for the current state of any resources it manages and/or any tasks it manages. ‘queryDescr’ describes what kind of information the scheduler should return. If it is null then the scheduler will return a full descriptions of the resources and tasks it is currently managing. As described earlier in the security section, all requests are subject to access controls that may limit what information is actually returned to any given request. The base case allows requesting either resource information (e.g. compute nodes’ status and resources), task information, or both.
Finally, ‘schedulerDescr’ should also return an element describing the time at which the scheduler’s persistent database was last initialized. This is needed so that clients can reason about when a scheduler’s persistent storage might have been reset by either a failure or an administrative operation.
The set of states and associated state diagram for tasks is the same as that defined in Section 2.1.2.

As described in the base use case description in section 3.1, the failure model for the base interoperability interface is the following:

· The scheduler is expected to maintain a persistent record of tasks that it has created and must maintain that record for some scheduler-specific amount of time after a task has terminated. Thus clients can expect QueryTask to return meaningful results about a task even after the scheduler has crashed and recovered. This is assuming that its persistent storage hasn’t failed. Since QueryScheduler returns an indication of the last time that a scheduler’s persistent storage was initialized, clients compare that time to the time that they submitted a task in order to estimate whether information about that task might have been lost.

· Although the scheduler is expected to maintain persistent metadata about the tasks it has created, there is no requirement that the scheduler execute a task exactly once. The scheduler is expected to execute any task it has created at most once. That is, it may record that it has created a task and then not manage to actually run it (or run it to conclusion, since it is generally undefined what it means to successfully “run” a non-atomic activity such as a task). However, once it has recorded the creation of a task, a scheduler may not run it more than once.

· There is no assumption made that operation request or reply messages will be reliably delivered. Hence clients must keep track of the taskIDs they receive from CreateTask requests and must rely on QueryScheduler requests to obtain accurate information about which tasks a scheduler has knowledge about.

· If a task fails due to a system error it is the responsibility of the client to resubmit the task (if it so desires) via a new CreateTask request.
As described in section 2.1.7 on security and credential delegation, we rely on standard Web services-based security. The base interoperability interface is intended to be used primarily within an organization rather than across organizations. Hence the credentials required for running a task are treated as an opaque XML element whose syntax and semantics need only be understood by the particular compute nodes on which the task will run.
System administration – including modifying the state of the scheduler (e.g. managing policies) – is done via a separate system management interface that is out-of-scope for this paper.
Extensions

This section describes various extensions that could be used to implement the common use cases described in the HPC use case document. One topic that is left undefined for the moment is how to describe the set of extensions that a scheduler supports in a manner that allows programmatic clients to efficiently ascertain which extensions they should try to employ. We assume that an XML infoset is used to describe the extension set that a scheduler implements, but we do not suggest how clients can find this infoset (e.g. through WS-Policy) nor do we go into much detail about the structure of this infoset.
Generic Extensions

This section defines “generic” extensions that are applicable to more than one interface (e.g. both the basic task interface as well as the extended job interface).
Array Operations

Operations such as Create, Query, and Cancel (as well as relevant operations in extensions) refer to a single entity, such as a task. In this extension an array equivalent for each operation is also supported by the scheduler. The array operations have the same parameter and return value signature as the corresponding non-array operations, except that an array of elements is used/returned in place of each element in the corresponding non-array operation.

As an example, the array versions of the base interface operations are shown below:

· CreateTasks(schedulerEPR, resourceDescr[], credentialsDescr[], lifetime[]) (taskDescr[]

· QueryTasks(schedulerEPR, taskID, queryDescr[]) (taskDescr[]
· CancelTasks(schedulerEPR, taskID[])
Note that the QueryScheduler operation would not have a corresponding array operation. This brings up the question of how to designate which operations in an interface have array equivalents in the interface’s description of the extensions it supports. The simplest way is to arguably define an array extension for each interface for which it makes sense (e.g. the base interoperability interface or the extended job interface) and to have each scheduler export an indication of whether the particular array extension interface is supported by it or not.
An important difference between array operations and the corresponding non-array operations is that array operations may experience partial failures. For example, a ‘CancelTasks’ request might contain some number of valid taskIDs and one or more taskIDs that are invalid. The return messages for these operations will need to intersperse fault indications with the data that is normally returned for a successful completion of a requested operation. The use of XML infosets for both returned data and returned fault indications should make this composition straight-forward.
Notifications

Clients may wish to receive notifications about state changes to the jobs and tasks they have created. This extension defines an additional version of an interface’s creation operations that include a notification parameter. That parameter specifies a WS-Eventing notification EPR.
Query Operation Modifiers

Clients may wish to control what, and how much information they receive from the various query operations they perform. This type of extension defines additional elements that clients may include with a query operation to control what information is returned.

There are at least 3 different ways of specifying query modifiers:
· Perhaps the simplest extension approach is to define well-known enumeration types for each type of information that can be returned to a client. In particular, one might define separate enumeration types for job, task, and scheduler information.

· Another relatively simple extension approach is to represent information as sets of properties and allow clients to retrieve information by means of specifying subsets of properties to return.

· A somewhat more complicated extension approach would be to use something like XPath queries to select which parts of an infoset to return.
Idempotent Message Delivery Semantics

The base interoperability interface makes no assumptions about whether operation request/response messages are reliably delivered. Hence clients must be careful about how to deal with tasks that they perceive to have been submitted to a scheduler but not run by it. To simplify this problem, we introduce an extension that makes operation requests idempotent. In particular, clients may supply a unique identifier to associate with a request. A scheduler encountering a second request containing the same identifier will know that the second request message is a duplicate and will discard it.

A nuance of this extension is that it requires that buggy or malicious clients can’t interfere with other clients’ requests by submitting a request that contains the unique identifier being used by some other client. This requires that requests be securely associated with particular clients and that client-supplied identifiers be unique with respect to the set of identifiers supplied under the auspices of a particular client credential. Since the base interoperability interface does not require security support, this extension implicitly adds a security requirement to its implementation.
EPR Resolution

Highly-available schedulers may need to rebind their service interface to a different EPR when they fail over to a backup instance. This extension supports this by introducing the notion of EPR resolution. This could be done requiring that interfaces traffic in WS-Names instead of plain EPRs and separate abstract names.
Task Interface Extensions

Re-execution of failed tasks

Tasks, if they can tolerate re-execution, should ideally be re-executed if they fail because of a failure that is no fault of their own – such as a crash of the compute node(s) they are running on. This extension allows tasks to be marked as re-executable, so that schedulers supporting this sort of capability can know which tasks to re-execute when necessary.

Additional and extended resource definitions

This type of extension involves defining additional ontological terms for things like resource descriptions, scheduling polices, etc. Extensions can both add new concepts as well as augment/specialize existing ones.
Additional operations

The base interoperability interface does not allow for the modification of tasks. An obvious extension is to support a ModifyTask operation:

· ModifyTask(taskEPR, taskID, resourceDescr) (taskDescr: Request a change to the set of resource requirements/limitations for a task.

Various kinds of changes to a job or task can be envisioned. Perhaps the most important one is to be able to change the lifetime of the job or task.
Examples of other operations one could imagine adding:

· Suspend/Resume: This is a more interesting example of a task operation than ModifyTask since it involves both additional operations as well as state specialization (there must now be a suspended sub-state).
Additional Scheduling Policies

There are two aspects to this extension: how schedulers advertise the set of scheduling policies they implement – such as weighted, fair-share scheduling, support for back-fill, various kinds of quotas, and various kinds of quality-of-service guarantees – and how clients can indicate/control which scheduling policies should be applied to their tasks (subject to scheduler approval).

In many cases clients will have no control over the scheduling policies that will get applied to their tasks by a given scheduler. However, they may decide which scheduler to select for task submission based on what scheduling policies it advertises (presumably by whatever means is used to advertise the set of extensions the scheduler implements in general).

One common, simple way of exporting a choice of scheduling policies is by means of different submission queues. One form of extension is therefore to standardize a set of scheduling queues that schedulers might make available.

Other, as well as more expressive (and complicated) forms of extension are, of course, also possible. For example, another extension might define notions of hard and soft quota limits.
Support for Parallel/Distributed Programs

There is nothing that prevents clients from launching and assembling parallel, distributed programs “by hand” using the base interoperability interface to launch individual pieces onto multiple compute nodes. To implicitly launch something like an MPI program onto multiple compute nodes requires at the very least the ability for the client to request how many compute nodes are necessary/desired for the program. Thus, this extension must define additional well-known resource description terms, such as number-of-nodes and number-of-cpus-per-node.

Things like MPI programs also assume an existing infrastructure, such as SMPD daemons for things like establishment of communication links and aggregation of distributed program outputs. Schedulers will need to advertise in their extension set descriptions which infrastructures they have available (or can instantiate on demand).
Data Staging

Clients need to stage data to the tasks they wish to run, as well as stage data back once a given task has completed. More generally, when aggregate activities such as parameter sweeps and workflows are involved, clients need to be able to specify which data sets should be made available between various tasks running on behalf of a client, as well as which data sets should be made available to various combinations of multiple tasks.

One simple form of data staging extension is to allow tasks to specify which files (and directories of files) a given task should have staged in before it is executed and which files should be staged out after it has terminated, such as is supported currently within JSDL. In its simplest form, files would be staged to and from the local file system of the compute node(s) on which a task will run and the descriptions of which files to stage would include indications of which transport methods to use when staging them.

Various more complicated extensions are necessary to deal with several additional facets of data staging, including the following:

· Data sets that will be used by multiple tasks must be marked in such a fashion that the job scheduling infrastructure will not inappropriately delete them at the wrong time – and will know when it can finally delete them.

· Placement (and potentially replication) of data sets to be used or shared by multiple tasks can be optimized by the scheduling infrastructure in order to avoid unnecessary data transfer traffic. However, to do this requires that task descriptions employ abstract file locations when specifying where data should be staged to.

· Many organizations only allow data staging to occur as a two-step process that involves clients explicitly copying data into a “DMZ” storage system and the scheduling infrastructure then explicitly copying that data out of the DMZ into a storage infrastructure that is strictly internal to the organization. The latter step, which is a “pull” step, can essentially be dealt with as an instance of data staging of the form that has already been introduced. However, the former step is a “push” step that must be driven by the client. An extension supporting this kind of two-step data staging must define several things:

· The name space offered by DMZ storage systems must be sufficiently well-specified that clients and schedulers will correctly stage the desired files.

· The set of allowed data transfer protocols must be defined so that clients and schedulers understand how they should stage files both into and out of the DMZ.
Provisioning

The base interoperability interface assumes that a task will execute a program that is already accessible from the compute node(s) on which it will run at the time the task is to run. This will be the case if a task specifies either a pre-installed program or a user-supplied program whose executable (and library) files can simply be staged in as data files before execution is to begin.

Provisioning extensions must deal with at least the following cases:

· A task may wish to specify specific versions of various things such as code libraries. The base interoperability interface only allows specification of a program executable. Hence an extension is needed to allow customization of things like libraries or other such entities.

· Installation of a user-supplied program involves more than simply copying the relevant program files to an accessible file system location. For example, a program may need to first run an installer package that sets up various infrastructure components or injects various pieces of information into the computing infrastructure. Note that installation of user-supplied programs that involves changes to the underlying computing infrastructure are often subject to administrator approval and hence a provisioning extension in support of such programs will need to define task fault responses that indicate that a user-supplied program was not allowed to be installed.

After a task has terminated, such programs need to be uninstalled. An important nuance that must be dealt with is the issue of when a program can be uninstalled. If program installation involves creation of a single instance that is to be shared by all task instances running on a compute node then uninstallation can only occur once all tasks employing that program have terminated. A provisioning extension that supports these kinds of programs must define how clients (or applications) can indicate to the scheduling infrastructure what the correct uninstallation policy should be.

Static Workflows

Multi-task workflows can be implemented entirely outside the scope of a job scheduling interface by having workflows be orchestrated by clients. However, it may be useful from an efficiency point-of-view to allow clients to submit multiple tasks to a scheduler with an indication that certain tasks cannot be started until others have been completed. Making this static form of workflow visible to schedulers allows them to optimize resource allocation strategies and avoids requiring a long-running client workflow orchestrator to hang around and be reachable in order for a workflow to make progress through multiple tasks.

An extension in support of these kinds of static workflows will require that clients can specify inter-task dependencies to schedulers in a well-defined manner. One possible approach is to allow clients to supply unique task identifiers and be able to include a task dependency list as part of the resource description infoset they supply to the CreateTask operation.
Resource Reservations

An extension to support this sort of functionality might involve an additional interface supporting the following operations:

· CreateJob (schedulerEPR, resourceDescr, credentialsDescr, lifetime) (rsrvDesc: Create a new job at the scheduler indicated by ‘schedulerEPR’. This operation is much like the CreateTask operation, except that it only specifies resources to be reserved and does not specify a particular task to run using those resources.

· QueryJob(rsrvEPR, rsrvID) (rsrvDescr: Return a description of the current state of a job.
· ModifyJob (rsrvEPR, rsrvID, resourceDescr) (rsrvDescr: Request a change to the set of resource requirements/limitations for a job and/or to the lifetime of the job.
· CancelJob (rsrvEPR, rsrvID): Terminate the job and release all associated resource reservations/allocations. Also causes the termination of all tasks associated with the job.
The set of states and associated state diagram for jobs is the same as that defined in Section 2.1.2. The lifetimes of jobs are also as described in Section 2.1.2. The failure and security models for jobs are essentially the same as for tasks.

Multiple schedulers

An extension supporting multiple schedulers must augment the base interoperability interface in several ways:

· Information returned from query operations should now support both a flat and a hierarchical representation format. Hence this extension will need to supply normative definitions for these representations.

· In order to avoid scheduling cycles, we introduce the notion of client scheduler lists, which specify the list of clients that have been involved with any given task or job creation request. Thus this extension needs to define alternative CreateTask and CreateJob operations that include a ‘clientSchedulerList’ parameter.

· The extended security model described in section 2.1.7 will need to be used.

An additional extension one might add in support of multiple schedulers is a scheduler announcement operation:
· AnnounceScheduler(schedulerEPR, announcerDesc): Tell the indicated scheduler of the presence of another scheduler. ‘announcerDesc’ is an XML infoset that contains an endpoint reference at which the announced scheduler can be reached. It may optionally also contain additional information about the announced scheduler.
Example Scenarios

This section sketches various common use cases to illustrate how the proposed extensions might be used to implement them.
Adding additional resource types

Suppose various compute nodes have special-purpose vector processing hardware attached to them. To enable scheduling decisions that involve such hardware requires that an XML description be defined for a “vector processing unit” resource and that the ‘resourceDescr’ parameters employed in ‘CreateTask’ and ‘CreateJob’ include references to this new resource type as appropriate. Similarly, the infosets returned from those operations, as well as from ‘QueryTask’ and ‘QueryJob’ requests will need to include information about vector processing units.
Controlling what information gets returned from querying a scheduler

By default, ‘QueryScheduler’ returns full information about the status of a scheduler and the resources it is managing. ‘queryDescr’ is used to modify what information gets returned. One might define an enumeration type that allows designation of several standard subsets, such as ‘resource-info’, ‘task-info’, and ‘scheduler-internal-info’.
Additional states and operations on jobs and tasks

Following are some examples of possible job state specializations:

· The “satisfied” state can be extended to include the notion of “partially satisfied”, to represent jobs for which the scheduler has found sufficient resources to allow for the execution of some tasks, but for which it is also still trying to find additional resources.

· The “satisfied” state can be extended to include the notion of a provisioning step during which resources allocated to a task are provisioned. Similarly, the “finished” state can be extended to include the notion of a clean up step during which resources that belonged to a task are de-provisioned. To represent these specializations, the “satisfied” state can be extended to include a “provisioning” sub-state and the “finished” state can be extended to include a “cleanup” sub-state.

· The “unsatisfied” state can be extended to include the notion of “holding” a job at the scheduler in a state where the scheduler knows of the job but is not actively trying to satisfy its resource requirements. A “place-on-hold” state transition would take a job from a state of “unsatisfied” to a state of “hold” and a “release” state transition would take a job in state “hold” back to the state “unsatisfied”. Since these state transitions imply corresponding requests from a client or system administrator, they require extension of the job interface with corresponding PlaceOnHold and Release operations.

· The “unsatisfied” state can be extended to represent the notion that the scheduler is “negotiating” with some other resource owner in order to obtain reservation of some resource.
Some examples of possible task state specializations are:

· The “running” state can be extended to have a suspended sub-state, with “suspend” and “resume” state transitions connecting it to the “running” state. This example requires that the task interface be extended with corresponding Suspend and Resume operations.

· The “running” state can be extended to have a “migrating” sub-state, with a “migrate” state transition going from the “running” state to the “migrating” sub-state and a “migrated” state transition going from the “migrating” sub-state back to the “running” state. This requires the addition of a Migrate operation to the task interface.
· In order to run a task on some compute node the executable and associated data/resources needed by the executable must first be provisioned on the relevant compute node. Similarly, once the task has finished, it may be necessary to clean up the state of the compute node that was used; for example, by erasing the executable program file and associated data/resources. The “running” state can be extended to have a “provisioning” state to represent tasks for which provisioning is currently occurring.
 Similarly, the “finished” state can be extended to have a “clean-up” state to represent tasks for which clean-up is taking place.

Provisioning and clean up can also involve the staging of user data to and from the compute node(s) that a task will run on. To represent the difference between a task for which user data is being staged versus provisioning/clean up of the task’s executable resources, one can specialize the “provisioning” and “clean-up” sub-states to have their own sub-states. For example, “provisioning” can be specialized to “stage-user-data-in” and “provision-executable-resources”, while “clean-up” can be specialized to “stage-user-data-out” and “clean-up-executable-resources”.
· The pending state can be extended to include the notion of a “hold” state, with “hold” and “release” state transitions taking the task from the “pending” state to the “hold” state and back again. As with jobs, this example requires the inclusion of PlaceOnHold and Release operations in the task interface.
Multiple scheduler queues

Some schedulers support the notion of multiple scheduler queues, which may represent different priority levels, different projects, etc. Which queue to place a job or task in can be represented as an additional type of resource description. Thus, for example, a client wishing to place a task in the “EngineeringSchool” queue would specify that constraint in the ‘resourceDescr’ parameter of the ‘CreateTask’ message it sends. Similarly, job and task descriptions returned by ‘QueryJob and ‘QueryTask will contain resource descriptions that describe which queue a job or task is in. Moving a job or task from one queue to another would be done using the ‘ModifyJob’ or ‘ModifyTask’ requests, with appropriate resource description parameters.
Meta-scheduler forwarding jobs and tasks to cluster head-node schedulers

In this scenario a meta-scheduler employs the services of a forest of compute clusters, each of which is managed by its own dedicated scheduler. We assume that the compute cluster schedulers are somehow aware of, and able to find an EPR for, the meta-scheduler.

Each cluster scheduler sends an ‘AnnounceScheduler’ message to the meta-scheduler in order to make itself known to the meta-scheduler. The meta-scheduler periodically queries each cluster scheduler it knows about using ‘QueryScheduler’ to determine what resources are available on the compute cluster being managed by that scheduler.

When the meta-scheduler wants to employ a compute cluster it issues a ‘CreateJob’ request to the cluster’s scheduler in order to reserve resources on the cluster. Subsequent ‘CreateTask’ requests cause tasks to be attached to the created job and executed on the reserved compute nodes of the cluster.

A ‘CreateJob’ request from a client of the meta-scheduler can result in multiple ‘CreateJob’ requests being made by the meta-scheduler to various cluster schedulers. Similarly, ‘CreateTask’ requests from the client of the meta-scheduler may be directed to one of several different cluster schedulers, depending on where the meta-scheduler wants to execute any particular task.
Clients viewing the status of their tasks and tasks will see that status information in either a flat or a hierarchical view. If they request a flat view then resources will be listed according to the compute nodes they belong to and tasks will be either listed according to which compute nodes they are currently running on or which scheduler they are currently pending at (which might be a cluster scheduler or the meta-scheduler itself). If they request a hierarchical view then a tree of schedulers and compute nodes will be presented, with resources being listed with the appropriate leaf nodes of the tree and tasks being listed with the appropriate leaf nodes, if they are currently executing, and with the appropriate intermediate (scheduler) nodes if they are currently pending execution.

We consider what happens when a client requests that a job or task should get retried or re-executed, since that represents a good example of an (extension) operation whose implementation ripples through multiple schedulers. Retry/re-execution requests end up getting processed as follows:

· Retrying the creation of a reservation involves releasing all its resources and then reserving new ones. The meta-scheduler will cancel all resource reservations that it has made with cluster schedulers and will then reevaluate the job creation request. This reevaluation will result in new job requests being sent to appropriate cluster schedulers.

· Re-executing a task involves canceling it and placing it back in the queue if it is currently running. If a task is running then the meta-scheduler will issue a cancel request to the cluster scheduler of the compute cluster on which the task is running. The meta-scheduler will then requeue the task within its own queues.

Cluster schedulers monitor the compute nodes they manage and re-execute tasks that were running on failed compute nodes if they are marked as re-executable. The meta-scheduler monitors the cluster schedulers it employs by means of the periodic query messages it sends them. If a query request results in a fault reply, the meta-scheduler assumes that the corresponding cluster scheduler is unreachable and removes all its associated resources from the list of available resources. If several more query requests result in fault messages then the meta-scheduler assumes that the entire compute cluster may have crashed and requeues jobs and tasks that were running on the cluster for submission elsewhere.

Network partitions and compute cluster head node failures may result in orphan jobs and tasks. Orphan jobs and tasks get deallocated/cancelled as soon as they are detected by the meta-scheduler.

If user names and passwords are being used for credential delegation then the meta-scheduler includes these when making ‘CreateJob’ requests to cluster schedulers. These credentials are safe within the ‘CreateJob’ messages because of the encryption and integrity provided by WS-Security. Of course the meta-scheduler trusts the cluster schedulers to not misuse the credentials that it sends to them, just as its clients trust it to not misuse them when they send their credentials to it.

As mentioned earlier, schedulers are free to employ whatever means they please to implement jobs and tasks “within” themselves. This implies that eventually a different form of credentials delegation other than username/password could be used between meta-scheduler and cluster schedulers as is used within a compute cluster.
Cluster schedulers forwarding jobs and tasks to a meta-scheduler

This scenario is similar to the previous scenario, except that instead of having all clients submit jobs and tasks directly to the meta-scheduler, clients are free to submit jobs and tasks directly to a cluster scheduler instead (e.g. if the compute cluster is owned by that client). This adds two additional facets to the scenario:

· A cluster scheduler must sometimes decide whether to keep a job and its tasks local to its own cluster or submit them to the meta-scheduler.

· The meta-scheduler cannot assume that it is the only consumer of resources advertised to it by cluster schedulers. That is, sometimes it may issue a ‘CreateJob’ request to a cluster scheduler that can’t be honored because that scheduler has already reserved its resources to a concurrent ‘CreateJob’ request from a local client.

Cluster scheduler decisions for direct, “local” clients are based on policy. A likely policy is that all jobs from local clients get dealt with locally except when their requests can’t be satisfied by the local cluster’s resources.

A notable difference between this and the previous scenario is that one gets a different hierarchical view of resources, jobs, and tasks in this scenario. The local cluster scheduler will be at the top of the tree and the meta-scheduler will be an intermediate node, whereas in the previous scenario the meta-scheduler will be at the top of the tree and the cluster scheduler will be an intermediate node.
Job and task forwarding through multiple levels

There are two scenarios that can occur when there are multiple meta-schedulers in a system: all the schedulers can form a single hierarchy or schedulers can “compete” with each other for resources. In the former case we have a generalization of the meta-scheduler-to-cluster-scheduler scenario, with multiple layers of schedulers residing between clients and compute nodes. In the latter case we have a situation where clients can pick from multiple schedulers, each of which has the possibility of reserving the same resources from other schedulers within the system. This allows for competition between schedulers, as well as for the presence of “specialty” schedulers that implement a variety of different scheduling algorithms.

In the latter case, as in the cluster-scheduler-to-meta-scheduler scenario, schedulers must assume that their ‘CreateJob’ requests may fail due to race conditions among concurrently issued requests. Schedulers must also now do cycle detection by checking the list of schedulers that are already involved in a ‘CreateJob’ request and rejecting requests that would create cycles.
Cycle scavenging

Desktop machines announce themselves to the desktop cycle scavenging meta-scheduler. (We assume they somehow know how to locate the meta-scheduler.) Once the meta-scheduler receives an announcement message from a desktop machine, it starts sending periodic ‘QueryScheduler’ requests to it to monitor its state. When a query request returns a fault message the meta-scheduler assumes that the desktop machine is no longer available (either because it has crashed or because it has signaled that it is no longer available by generating a fault reply). It then stops sending query requests to the machine. Should the desktop machine wish to advertise its availability at some later time – or if it recovers from a crash some time later – then it will send out another ‘AnnounceScheduler’ message to the meta-scheduler.
In terms of all other interactions, the meta-scheduler treats desktop machines in the same fashion as a cluster scheduler treats its compute nodes. Note that the meta-scheduler may employ different scheduling algorithms from those used in a dedicated compute cluster, but that is separate from the question of how schedulers and compute nodes interact with each other from a protocol point-of-view.
Condor-style matchmaking

Condor’s model of scheduling specifies that clients reserve resources directly from the compute nodes that have them. Schedulers merely act as “match makers” who provide clients with hints about which compute nodes might have the resources they need. Thus, a scheduler keeps track of the current state of all the compute nodes in a system by employing either periodic ‘QueryScheduler’ requests to each compute node or by signing up for ‘AnnounceScheduler’ messages from each compute node to learn of significant state changes.

Condor clients query the scheduler for the availability of desired resources and then send a job request to all the compute nodes described in the query reply message they receive from the scheduler. More specifically, clients employ ‘QueryScheduler’ instead of ‘CreateJob’ to a system meta-scheduler to learn about available resources. The ‘queryDescr’ indicates that a Condor matchmaking specification is being passed in as part of the ‘queryDescr’ infoset. When a client receives a reply to its ‘QueryScheduler’ request indicating that the requested resources appear to be available, it sends ‘CreateJob’ requests directly to each compute node mentioned in the ‘QueryScheduler’ reply. The client can then run tasks directly on the resources it has reserved by this means.

It should be noted that some or even all the ‘CreateJob’ requests may fail since compute nodes might have gotten other ‘CreateJob’ requests during the time between when the client queried the scheduler for status information and the time it sent its requests to the compute nodes. In that case the client must query the scheduler for additional resource information in order to find additional compute node candidates to send ‘CreateJob’ requests to.
Related Work

BES:

· BES looks very similar to the basic interoperability interface.

· We could use BES with minor modifications as the basic interoperability interface.

· Add QueryScheduler operation

· Parameters and contents of parameters change.
JSDL ~ resource description language

· We should use this for resource descriptions and related types of descriptions (e.g. provisioning info)
· Might require some clarification of elements and possible restriction of the use of some elements.
Byte-IO and GridFTP and ??? ~ data staging protocols

· Could use Byte-IO as one (of several different) means of transferring data from a DMZ into an execution subsystem.
· Need something like GridFTP – but with WS-Security infrastructure instead of GSI – to stage data from external clients to DMZs.
· Need to look at work being done in OGSA data group and DMIS group.
Other specs, such as CDDLM, RSS, and WS-Agreement

· Some are still too ill-defined to be directly usable.
· Some target use cases that may not mesh well with the HPC use cases
References

[WS-Eventing] D. Box et al., “Web Services Eventing (WS-Eventing)”, August 2004.

[WS-Naming] ???, “Web Services Names (WS-Naming)”, 2006.

[WS-Security] ???, “Web Services Security (WS-Security)”, 2004.

[OGSA-Glossary] J. Treadwell et al., “Open Grid Services Architecture Glossary of Terms, Version 1.5”, 2006.

[HPCUseCases] Marvin Theimer, “HPC Job Submission Use Cases – Base Case and Common Cases”, 2006.

Full Copyright Notice

Copyright (C) Global Grid Forum (2006). All rights reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English.

Copyright © 2006 by Microsoft Corporation and Platform Computing Corporation All rights reserved.

This Extensible Job Submission Design is provided for information only. No rights are hereby granted expressly, by implication, by estoppel or otherwise.

THE SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THE SPECIFICATIONS.
New

Pending

Running

Finished

Canceled

Failed

New

Unsatisfied

Satisfied

Finished

Canceled

Failed

Client

Meta-sched

Sched13

Task2

Sched42

Task1

Task1

Cluster13-2

Cluster13-1

Cluster13

Cluster13-headnode

Task3

Desktop-foo

Cluster42

Cluster42-8

CN

CN

CN

CN

…

42-1

42-7

New

Pending

Running

Finished

Canceled

Failed

Running:

Migrating

Migrate

New

Pending

Running:

Stage-in

Finished

Canceled

Failed

Running:

Executing

Running:

Stage-out

New

Pending

Running

Finished

Canceled

Failed

Running:

Suspended

Suspend

� MPI stands for “Message Passing Interface” and represents a standard means of message-based communication employed by many parallel, distributed, high-performance computing applications. MPI applications typically consist of multiple processes, each running on a different CPU, that collectively implement the application.

� Note that the term resource reservation is used here in a manner that implies immediate reservation (or at least once the reservation has been granted) of resources rather than advanced reservation of resources to be used at some specific later point in time. That is, once a reservation has been granted, the owner of that reservation has rights to use/allocate the reserved resources immediately, as well as at any time in the future until such time as the reservation expires or is terminated.

� We use small relative names/IDs here instead of fully-qualified, global names for the sake of brevity.

� Note that the term resource here refers to a stateful entity being managed/fronted by a Web service, not a resource in the job submission sense that the term is used for throughout the rest of this paper.

� Although shown as C-style array parameters and return values, in a real interface one would instead probably employ an XML infoset consisting of a sequence of parameter, respectively, return elements.

� If a distributed/network file system is available then staging may be to and from that file system instead of the local file systems of compute nodes.

� One might ask why the running state is being extended instead of the pending state. The pending state does not yet associate a job with a given (set of) compute node(s). Provisioning, on the other hand, is associated with the specific (set of) compute node(s) that a job will execute on.

PAGE
1

_1170073196.vsd
Job

Task

Serial Application

Proc

Task

Proc

Proc

MPI Application

Parametric Sweep
Application

Task

Task

Task

Task

Task

Task

Task

Task

Task

Proc

Task flow

Task

Task

Task

Task

Task

One Job
One Task

One Job
Multiple Tasks

Job

Serial Application

MPI Application

Parametric

Sweep

Application

Task

Task

Proc

Proc

...

Task

Task

Task

Task

Task

Task

Task

Task

Task

One processing step in a

Workflow Application

One Job

One Task

One Job

 Multiple Tasks

Multiple Jobs

Multiple Tasks

Proc

Proc

