1 Introduction
Grid computing is concerned with the virtualization, integration, and management of services and resources in a distributed, heterogeneous environment that supports collections of users and resources across traditional administrative and organizational domains. Grids, therefore, provide the framework for building and supporting multiple models of use such as collaborative computing, utility computing, and high-throughput computing. Grids may exist within a single enterprise, across departments, or, as in the case of academic Grids or collaborative commercial projects, they may span multiple organizations. In order to link grids in this way, it is necessary to agree on grid interoperation standards. Simple standards such as TCP and http are sufficient (and necessary) to move the bits from one grid to another; interoperation of higher level services requires semantically richer standards.

To date, Grids have been built using, for the most part, either ad hoc open source software components and protocols or proprietary technologies. While various open source and commercial solutions have been successful in their niche areas, each has its strengths and limitations, and they offer little potential as the basis for future-generation Grids, which will need to be highly scalable and interoperable to meet the needs of global enterprises.
W3C, OASIS, DMTF, IETF, and the Open Grid Forum (OGF) are among the standards bodies that are developing standards for areas such as communication, security, manageability and negotiation based on XML and Web services. The availability and use of standards makes it easier to develop high-level applications composed of simple, reusable services, and allows IT vendors to provide truly interoperable tools for activities such as system management.

The Open Grid Services Architecture (OGSA) from the OGF defines both a set of design philosophies and protocols for service interaction that define higher level service abstractions such as execution management, naming and binding, data access and querying, data transfer, authentication, delegation, and resource management. OGSA is an open architecture in two ways. First, the development of specifications and profiles occurs in a completely open process where no one group or company can define the outcomes, porttypes, schema, and interaction protocols. Instead specifications and profiles are the result of consensus and are non-proprietary. Second, there are different implementations available – some of which are available as open source, reference implementations.

In this paper we present a broad overview of OGSA: it’s motivation, structure and basic services; how those services can be composed support higher specific use cases (high throughput computing, transparent access to data, a federated data environment, a service mobility use case); the current state of adoption; and a roadmap for future development. Due to space limitations details are not provided. The full text of all OGF specifications can be found at www.ogf.org.
The Open Grid Services Architecture (OGSA)
OGSA is an open service-oriented architecture based on Web services[3]. “Open” refers to both the process to develop standards and the standards themselves. It is “service-oriented” because it delivers functionality as loosely-coupled interacting services. The “architecture” is the definition of the components, their organizations and interactions, and the design philosophy used.

Grid scenarios present a number of significant challenges to end-users, application developers, and IT managers. These challenges revolve around issues such as security (authentication, authorization, trust, and data integrity), Quality of Service (meeting service-level agreements, availability, etc.), data management, scheduling, and resource management.

Each of these challenges must be addressed either by the application developer or by Grid middleware. If application developers are forced to meet these challenges using traditional approaches, all but the best will be overwhelmed by the complexity. The result will be missed deadlines, cost-overruns, and less-than-robust software.

OGSA addresses these complex challenges by defining a set of standards that together, like the interlocking pieces of a puzzle, provide the foundation on which to build robust Grid applications and Grid management systems. Thus, OGSA defines the services, their interactions, and the design philosophy.

These services fall into seven broad areas, defined in terms of capabilities that are frequently required in Grid scenarios. These capabilities are provided by functional behaviors of services, often through interaction with other services. It is important to note, though, that while there may be interdependencies between services, not all services need be used at any given time—different use-cases may call for different subsets of services. Further, there has been an uneven development of the seven areas.
The six areas of OGSA are briefly introduced below.

· Infrastructure Services (Refer to a set of common functionalities, such as naming, typically required by higher level services. OGSA builds on Web services technologies.
· Execution Management Services (Concerned with issues such as starting and managing tasks, including placement, provisioning, and lifecycle management. Tasks may range from simple jobs to complex workflows or composite services.

· Data Management Services (Provide functionality to move data to where it is needed, maintain replicated copies, run queries and updates, and transform data into new formats. These services must handle issues such as data consistency, persistency and integrity.

· Resource Management Services (Provide management capabilities for Grid resources: management of the resources themselves, management of the resources as Grid components, and management of the OGSA infrastructure.
· Security Services (Facilitate the enforcement of security-related policy within a (virtual) organization, and support safe resource-sharing. Authentication, authorization and integrity-assurance are essential functionalities provided by these services.

· Information Services (Provide efficient production of, and access to, information about the Grid and its constituent resources. The term information refers to dynamic data or events used for status monitoring; relatively static data used for discovery; and any data that is logged.
2 Deeper Dive

2.1 Infrastructure
Infrastructure Services refer to a set of common functionalities typically required by higher level services. As OGSA builds on Web services technologies, service interfaces are defined by the Web Services Description Languages (WSDL). Infrastructure includes standards such as the Web Services Resource Framework (WSRF), WS-Management (WS-MAN), and Naming (RNS, WS-Naming, WS-Addressing).

A resource is a physical or logical entity that supports use or operation of a computing application or environment. Resources often are stateful. Resources provide a capability or capacity (e.g., servers, networks, memory, applications, and databases). Dynamic entities such as processes, print jobs, database query results and virtual organizations may also be represented and handled as resources.
Infrastructure services are concerned with resource naming, communication, and reflection. We build heavily on existing Web Services standards and augment them with two specifications that address high level service naming and binding.

Naming

Suppose we have two resources A and B, and that A wishes to interact with B. How does A refer to B? OGSA, like many distributed systems architectures before it, defines a multi-layer naming scheme of addresses, location transparent identities, and path names.
OGSA uses the WS-Addressing specification for addressing. The WS-Addressing specification defines an extensible XML data structure called the endpoint reference (EPR) that serves to encapsulate the information needed by a client to message a service. The EPR includes such data as a network protocol address, an extensible metadata section to convey arbitrary suggestions such as security policies, and an opaque section for session/resource identifiers, etc.
The WS-Naming layer is recommended in order to provide location transparent identities and name re-binding. Location transparent names are supported via an optional EPR MetaData element called an End Point Identifier (EPI). An EPI is an IRI/URI that the minter asserts is unique in space and time. Clients may compare the EPI’s contained in two or more EPR’s. If the EPI’s are the same, the EPR’s are said to refer to or point to the same entity. Sameness is defined by the semantics of the underlying service. If the EPI’s are different nothing can be inferred.
The re-binding aspects of WS-Naming EPR’s facilitate the implementation of the traditional distributed system transparencies: migration, failure, replication, etc. The basic idea is simple. Embedded inside an EPR’s MetaData element is an optional Resolver EPR. A client may call the Resolver EPR to acquire a new EPR for the service. For example suppose we have a client C, and service EPR S that contains a Resolver EPR R. Suppose S migrates. Subsequent invocations of S by C will fault – S has moved. C can then invoke the resolution function to acquire a new EPR for S, S`. i.e., S` = S.R.resolve().
While EPRs are convenient for applications to manipulate they can easily exceed hundreds of characters in length making them awkward for humans to use. Further, the EPR namespace usually does not represent relationships between EPR’s. To address these short-comings and make Grids more human friendly the Resource Namespaces Service (RNS) provides a hierarchical directory structure that maps string paths to EPRs much as a Unix directory maps string paths to inodes. For example, suppose I have the RNS path “/biology/databases/Sequences/pir21.a”. RNS can be used to map the human readable path to a WS-Addressing EPR. The EPR can be used to directly access the resource.
Reflection & Metadata
Reflection is a critical infrastructure capability. “Reflection” here refers to the ability to discover properties or attributes of Grid resources or services, e.g., the port types implemented, the security mechanisms used, the provenance of data, etc. Examples in use include WS-Resource Framework and WS-MetadataExchange. The OGSA WSRF Base Profile profiles selected WS-RF specifications.
2.2 Execution

Execution Management Services (OGSA-EMS) are concerned with the problems of instantiating and managing, to completion, units of work. Examples of units of work may include either OGSA services or legacy (non-OGSA) applications (BLAST – a common bioinformatics application, a query against a database, a servlet running in a Java application server container, etc).

More formally, EMS addresses problems with executing units of work, including their placement, “provisioning,” and lifetime management. These problems include, but are not limited to:

· Finding execution candidate locations. What are the locations at which a unit of work can execute?

· Selecting execution location. Once it is known where a unit of work can execute, the question is where should it execute?
· Preparing for execution. This can include deployment and configuration of binaries and libraries, staging data, or other operations to prepare the local execution environment.

· Initiating the execution. Once everything is ready, actually starting the execution and carrying out other related actions such as registering it in the appropriate places.

· Managing the execution. Once the execution is started it must be managed and monitored to completion. What if it fails? Should it be restarted in another location? What about state? Should there be periodic checkpoints to enable restarts?

These are the major issues to be addressed by EMS. As one can see, it covers the gamut of tasks, and involves interactions with many other OGSA services (e.g., provisioning, logging, registries, and security) that are expected to be defined by other OGSA capabilities.
To date there are four specification documents of interest: JSDL (Job Submission Description Language), OGSA Basic Execution Services, OGSA Resource Selection Services, and the HPC Basic Profile.
JSDL is an XML-based schema for describing applications, the resources required for the application (e.g., memory, number and sped of CPU’s, etc.), files to stage-in before the application executes, files to stage-out upon completion, the command line string to be executed, etc. JSDL defines terms in the job description space and encourages definition of new terms.
The OGSA-BES specification defines interfaces for creating, monitoring, and controlling computational entities such as UNIX or Windows processes, or parallel programs—what we call activities. Clients define activities using JSDL. A BES implementation executes each activity that it accepts. A BES resource may represent a single computer; a cluster managed through a resource manager such as Load Leveler, Sun Grid Engine, Portable Batch System, or Condor; or even another BES implementation.

The HPC Basic Profile is a profile on OGSA-BES and JSDL that supports a minimal set of capabilities to satisfy a particular use case. The set of operations does not include data staging, delegation or application deployment. Because there was not an agreed upon security model at the time the document was developed, the profile includes username/token and X.509 token credential profiles from WS-I for authentication. The profile was written during the summer and early Fall of 2006, with an interoperability demonstration at SC’06 in Tampa with a dozen different implementations from around the world.
The OGSA® Resource Selection Services specification defines an abstract interface for performing queries used to select resources for any purpose. The specification also narrows the abstract interface for the specific purpose of selecting a Basic Execution Service on which to instantiate an activity based upon a JSDL document, and defines renderings for such services based on both the WS-Resource Framework and the WS-Transfer draft.
2.3 Data Management Services
Data is the Yin to the execution services Yang. The basic problem is how to describe, store, access, transfer and manage data resources. The OGSA Data architecture presents a “toolkit” of data services and interfaces that can be composed in a variety of ways to address multiple scenarios. These services and interfaces include data access, data transfer, storage management, data replication, data caching, and data federation.
There are three types of data for which there are specifications today: A sequence of bytes, without name or interpretation of structure; Files or sets of files, without interpretation of their contents; and structured data, which may be contained within files, streams or database management systems.

Resource instances of these types (and many others) may be placed into an RNS name space for easy referral.

Data Description

Effective discovery, interpretation and association of data in an OGSA environment rely on the availability of suitable descriptive information. It is necessary to describe the data itself, such as its format, encoding, schemas, and provenance, and also the resources that contain data, e.g. their status information or query languages that they support.
Resource description properties include: ownership and version information; capabilities, e.g. max capacity, query languages supported, behavior; structure of data within the resource, e.g. a database schema or XML Schema or state, e.g. lifetime, used and free capacity.
Data Transfer

The transfer of data is a key aspect of the data architecture. Data transfer is the movement of data from a source of data to a consumer of that data (a data sink) – ultimately, the movement of bytes of data from one computer to another over a network. Data transfer can happen when a data access interface returns a result to a third party, when data is staged to an execution server, when a data replication service copies data to a replica and in general whenever multiple data services need to exchange data.

Data Access

Data access defines a generic set of service interfaces through which a client can extract data from, or send data to, some underlying resource via that service. There are two principle cases: structured data, for which access is specified by the WS-DAI family of specifications; and sequences of bytes, for which access is specified by OGSA ByteIO.

The WS-DAI family of specifications provides the ability to submit queries against structured data. Each class of resource, e.g. RDBMSs. XML databases, flat files, RDF triple stores) is covered by one specification in the family. The client sets up a query and invokes it against a WS-DAI resource. The WS-DAI resource parses and executes the query, creates a new WS-DAI resource that is the result, and returns the EPR of the new resource. That returned resource implements a suitable interface for accessing data, which may be another WS-DAI interface, or alternatively the ByteIO interface, in which case the client can simply read the bytes out.

ByteIO provides POSIX-like read and write operations on sequences of bytes,. There are two variations of this interface. In the RandomByteIO interface, the offset, number of bytes, and data buffers are passed to the operations. In the Streamable ByteIO interface, the operations do not take the offset.
Storage Management

Along with computing and networking resources, data storage resources are one of the basic building blocks of a distributed computing infrastructure. There are many kinds of storage resources to consider, ranging from a memory stick to a multi-petabyte tape silo. Different storage resources offer different levels of Quality of Service.

The operations described in the OGSA Data Architecture are based on SRM. The storage resource provides space to store data. That space may be used for storing files or it may be used as a raw device that can be formatted and mounted or used as a block device. The basic ‘resource’ that storage has to offer is therefore storage space. The space is managed through the management interface provided by the storage service.

2.4 Security

The subject of computer and information security is complex and far-reaching. Simply put, the notion of “security” is a system’s ability to protect the assets of its users and those of its resource providers. At the most fundamental level, the assets within a services-oriented Grid architecture are the resources exposed by service clients and endpoints. Such resources may exist in the form of information and data, communication and data processing services, controls for equipment and facilities, etc.
Following the OSI thread model the types of security threat
 to which Grid resources are vulnerable are: disclosure or theft of resources, modification (including destruction) of resources, and resource service interruption.
Because of these and other threats an effective security model is paramount to the adoption of the OGSA. Without a commitment to meaningful security, many potential adopters would be unable to participate because of undue risk and/or legal restrictions.
The biggest challenges of architecting a practical Grid security model arise from the fact that often the users and resources participating within a Grid will already be equipped with security policy and mechanism for authorized behavior. The OGSA’s site autonomy theme posits that organizational domains will retain control over these security policies, even as they may need adjustment to accommodate new vulnerabilities arising from exposure through Grid service interfaces.

The Web Services Security (WS-Security) family of specifications defines a general-purpose mechanism for associating security credentials with message content which is then used to construct a set of specific profiles for encoding popular token types (e.g., X.509, Kerberos, SAML, and Username-token credentials). The WS-Security Core specification also defines the application of XML-Encryption and XML Digital Signature to provide end-to-end messaging integrity and confidentiality without the support of the underlying communication protocol. In order to achieve real-world interoperability, the WS-I Basic Security Profile (WS-I BSP) provides guidance on the use of WS-Security and its associated security token formats to resolve nuances and ambiguities between communicating implementations intending to leverage common security mechanisms.
The OGSA Security Profile 2.0 (OGSA-SP) profiles security mechanisms suitable for use within Grid communication. These profile is architected in such a way to facilitate the composition of profiled mechanisms in meaningful ways to suite the particular needs of a given service endpoint. The mechanism profiles defined within the OGSA-SP documents are primarily transparent references to de-facto profiles published within WS-Security and the WS-I BSP.

The main contribution of the OGSA-SP documents, however, is that they are a profile on the WS-Addressing specification. The WS-Addressing endpoint reference (EPR) data structure is a useful construct because it provides the “invocation context” for a service endpoint: the necessary information required by a client to establish meaningful communication. As defined by WS-Addressing, the EPR is not capable of conveying the security requirements of the service endpoint. The OGSA-SP documents remedy this deficiency by describing the mechanism by which WS-SecurityPolicy policies should be included within an EPR to describe the communication requirements of the referenced endpoint.

2.5

3 Putting the Pieces together
The specifications described above are sufficient to realize a number of different grid use cases. Four of these use cases are described below: high throughput computing, a federated data environment, transparent access to data, and a service mobility use case. For each we will briefly describe the problem the use case is designed to solve and how the OGSA services are composed to provide the required capability.
3.1 High-throughput computing use case

High throughput computing is one of the most common uses cases in grids today. The problem to be solved is to distribute a large number of jobs onto a set of computational resources that may span administrative domains and file systems. For example, a researcher may want to screen a potential new cancer drug against a large number of targets. For each potential target an application must be run. In total there may be tens of thousands of application instances to be run.
The most basic OGSA specification for this use case is OGSA-BES. Compute resources are represented by BES resources that can run the applications. A simple “run” command can be used that generates an appropriate JSDL document for the needed execution, and sends the JSDL document in a round-robin fashion to one of a number of pre-configured BES resources. The BES resources could wrap a Globus Gram, gLite Compute Element, Unicore gateway, or a PBS, SGE, or LSF queue. Note that “run” is out of scope of the OGSA specifications. However, implementations of “run” tools exist, for example in Genesis II [5]. The JSDL document can contain data staging elements – specifying from where to fetch input files, and where to place the results.

[image: image1]
Round-robin job placement on a pre-selected set of BES resources is rigid and may not reflect different application requirements or organizational policies. We can make this more interesting by implementing a BES resource that rather than directly executing JSDL documents, itself proxies for a large number of other BES resources and schedules jobs on those containers in FIFO order. The run command now simply sends the JSDL document to the queue-like BES resources, and the queue-like resource takes over from there.
Alternatively, a matchmaking or meta-scheduling BES resource might match the job requirements in the JSDL document such as CPU architecture against the resource properties of the BES resources. Of course the BES resources used by a queue-like or matchmaking BES resource may themselves proxy a number of different resources. It is important to note that the compute resources may be desktops or high-end supercomputers, that they may have disjoint file systems, and may be in different countries.
Security is woven into this example from the beginning. User principals log into their local-domain’s identity provider, as per WS-Trust, to obtain credential tokens. Alternatively, they may already have their own tokens locally, such as an X.509 certificate and corresponding private key on a smartcard device. When user selects a BES resource and obtains an EPR for it, the EPR contains within its metadata a WS-SecurityPolicy section (as profiled by the OGSA Security Profiles) that contains secure communication information such as the cryptographic identity (e.g., an X.509 certificate), the types of security tokens required (e.g., X.509, SAML, UsernameToken, etc.), and the secure communication actions (e.g., any transport and message level cryptographic algorithms to be used).

With credential types suitable for delegation, the meta-scheduling BES can participate in the further brokering of identity in the event that its resources are located within yet another administrative domain.
3.2 Enterprise Data Federation use case
Often data within an organization is stored and managed in a number of different locations. It may not be possible to directly access the data using standard operating environments such as Unix or Windows due to disjoint administrative domains or unwillingness to provide accounts between sub-organizations. Further it may not be practical to simply copy all of the data to a single data warehouse. First because it may be too large, second because only a subset may actually be used – but which subset is unknown ahead of time, third because the data may become stale very rapidly requiring access to up-to-date data, and fourth, perhaps due to lack of trust between the different business units. Whatever the reason a mechanism is required to directly access data.

To realize this use case we start by assuming the data to be accessed is flat file, unstructured data, located in a rooted directory tree stored in a Windows or Unix file system. The first step is to create by some means (not part of the OGSA specification) a set of ByteIO EPRs that correspond to the files and RNS EPRs that correspond to the directories in the rooted tree. This set of ByteIO and RNS endpoints represent an RNS namespace in which the leaves are ByteIO files. We will call this step “exporting” a directory structure. The exported directory structure can then be linked into an already existing RNS name space in a manner similar a Unix link. ExportDir in Genesis II is just such a tool. Client applications can then directly access data regardless of physical location by issuing the appropriate ByteIO read and write calls.
Structured relational data can be added by including WS-DAI EPRs into our RNS name space. Each WS-DAI EPR may refer to a different table or set of tables. SQL queries can be executed against each WS-DAI endpoint. The result is another WS-DAI EPR that represents the result of executing the query. Thus, RNS could be used to find an EPR for a particular data set, a WS-DAI query is issued, and the result EPR might be stored in yet another RNS directory where it can be subsequently used. If the returned WS-DAI resource also implemented the OGSA-ByteIO porttype, the result set could then be read as a file.

The security aspects for this use-case are analogous to those of the high-throughput computing use-case described above. EPRs to data sources will advertise the security token requirements, cryptographic actions, claims, and references to inter-domain security token services for credential brokering. Authorization policies in place at the services endpoints determine which actions are allowed to proceed.
3.3 Transparent data access use case

In the above data federation example we made no assumptions about how the client actually accessed the data – whether through a C library call, a user-defined Web Services call, or via some other mechanism. While a special Grid API could be used, the problem is that many users do not want to, or cannot, change their applications to access the data grid resources via a new API. Instead, we must hide the grid from users and applications so that they could access data without application modification. This can be achieved via a variety of mechanisms, two of which we will describe below.
Grid aware mountable file systems

The basic idea is simple. Create a Grid aware Windows Installable File System (IFS), NFS, CIFS or FUSE file service and “map” the Grid into the local file system. The advantage of this approach is that user applications and shell scripts can execute without any modifications. This is critical for user acceptance of Grids.
One of the challenges using legacy back-ends such as NFS and CIFS is that their interfaces lack mechanism for conveying identities that can be used in the Grid [8]. For example, NFS requests contain the Unix UID and GID of the client. The UID and GID by themselves are generally insufficient for authorization to access grid resources. The file server may need to maintain a host map file that maps local user identities to and from grid identities and their associated credentials. Similarly, generating Unix file protection bits that are meaningful to the host operating system may be a challenge, as there may be no corresponding local user or group. This is not a problem with Windows IFS as each user in Windows has their own mounts – and can use their own credentials. To avoid the identity and permission mapping problem in Unix systems a shim can be used.
Grid aware file system shims

The basic idea is simple. Interpose a software shim between the application code and the file system [4, 6]. Then trap all IO calls and determine whether they are calls to the local file system name space or the grid name space. If they are local, pass them through. If they are to the grid, make the appropriate outcalls using the users Grid credentials after first checking the optional cache. A similar approach has been used in Condor [7] to route I/O requests from Condor jobs back to the initiating host. This mechanism is also used in an OGSA context by Genesis II to provide transparent access to grid resources for Linux applications. The grid proxy (OGRSH) is a user level process and does not require root permission to install and run.

3.4 Resource mobility

While existing Web Services best practices support heterogeneity, concurrency and behavioral transparency, the use of name rebinding mechanisms as defined in WS-Naming can provide a framework for realizing several additional important transparencies – in particular migration, location, replication, and failure transparency. Here we describe four real world use cases that highlight the importance of supporting these additional transparencies.

Migrate closer to active users. Suppose that a client application is making intense use of a resource that is physically located far away – for example an application in California that reads and modifies a shared file (ByteIO) resource currently residing in New York. In this configuration, the application may be unnecessarily suffering from poor performance due to high network latency. One would like to be able to migrate the file resource from New York to California without any service interruption to other users that need access to the shared file. Thus, migration provides a mechanism for meeting performance SLTs.

Migrate away from failing or overloaded systems. Consider a service or resource executing on a host that is heavily loaded in some way – for example, the host CPU is overloaded or the network into the host is flooded. One would like to migrate the service to another host without interrupting the service and without disrupting on-going interactions with this and other services and resources. Similarly, it may be known that a host is going to “go down” soon, perhaps because of maintenance, or maybe problems with the physical environment (power shortage, air conditioning failure, etc.). Once again, we want to migrate the service to another location without interrupting on-going interactions. Thus, migration can be used to meet performance, availability and reliability SLTs.
Recovery from a failed resource. Consider a stateful resource that has failed (due to a hardware failure, a software failure, etc.) and needs to be restarted – possibly on a different physical resource. One wants to be able to “migrate” the resource instance to a different location or machine while minimizing interruptions for accessing the resource .
 Thus, migration can support failure masking and be used to meet reliability SLTs.

Replica management and usage. A resource may have multiple “back-end” endpoints that can each perform its services and one would like to dynamically select which replica to use. For example, one replica may be closer to the end-user than another (in network terms) or one replica may offer better QoS in some dimension (e.g., performance). Replication can be used to meet performance, reliability, and availability SLTs.

Each of these use-cases can be realized using the rebinding services of WS-Naming.
4 Adoption

OGF/OGSA specification and profile authors come from a variety of organizations around the world. Projects and products that incorporate OGSA and OGF specifications come from an equally diverse set that includes industry, government, and academia from all over the world. In Table 1 we’ve captured the state of the adoption in late 2007. Each project may be found on-line by searching for the project name and the keywords “Grid” and OGF.
Table 1 - Adoption of Grid Standards

	Project/Spec
	WS-Naming
	RNS
	OGSA-BES
	OGSA-ByteIO
	WS-DAI
	OGSA-BSP 2.0
	JSDL
	OGSA

Basic

Profile
	HPC Basic Profile

	Globus
	yes
	
	yes
	
	yes
	
	yes
	yes
	

	Unicore 6
	
	
	no
	yes
	
	
	yes
	yes
	

	Fujitsu USMT
	will
	
	yes
	yes
	
	
	yes
	yes
	

	Microsoft CCS
	
	
	yes
	
	
	
	yes
	
	yes

	Genesis II
	yes
	yes
	yes
	yes
	no
	will
	yes
	yes
	yes

	Marty
	
	
	yes
	
	
	
	yes
	
	yes

	OMII-UK
	
	
	yes
	yes
	
	
	yes
	
	yes

	GridSAM
	
	
	yes
	
	
	
	yes
	
	yes

	Crown
	
	
	yes
	
	
	
	yes
	
	yes

	Platform
	
	
	yes
	
	
	
	yes
	
	yes

	OGSA-DAI
	
	
	
	yes
	yes
	
	
	
	

	NAREGI
	No
	May
	Yes
	May
	Yes
	
	yes
	
	

	Osamu
	
	yes
	
	
	
	
	
	
	

	gLite
	
	
	yes
	
	
	
	yes
	
	yes

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

5 Roadmap going forward

OGSA is by no means complete. While it addresses key core services it does not currently address many critical services such as auditing, transactions, service level agreements, resource discovery and information services, workflows, etc. It is not the intent of the OGSA WG to define all of these, rather to adopt and profile existing specifications as appropriate, and when necessary to develop new specifications and schema. The OGSA Roadmap document describes the timetable and dependencies of each specification, profile, and informational document.
6 Summary

After several years of development, consensus building, and experimentation the Open Grid Services Architecture is emerging from its chrysalis. OGSA has reached the state where there are sufficient specifications and profiles to enable the construction of interoperable grids. The specifications cover a range of use cases and requirements, from basic infrastructure services such as naming and binding, to execution management, data management, and security. The specifications can be used to construct secure interoperable compute and data grids that meet a wide variety of real-world use cases in the pharmaceutical, financial services, EDA, manufacturing, and aerospace industries, as well as a large number of use cases in the sciences and engineering.
Not only are the specifications sufficient for the uses cases, they are being adopted and used by a number of organizations. These organizations, from the commercial, academic, government, and open-source communities, have developed, and are developing OGF and OGSA specifications.

1.
CIM- Common Information Model, Distributed Management Task Force, 2007.

2.
Chapin, J., Wang, C., Wulf, W.A., Knabe, F.C. and Grimshaw, A.S. A New Model of Security for Metasystems. Journal of Future Generation Computing Systems, 15. 713-722.

3.
Foster, I., Kesselman, C., Nick, J. and Tuecke, S., The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration. in, (2002).

4.
Hunt, G. and Brubacher, D., Detours: Binary interception of Win32 functions. in Proceedings of the 3rd USENIX Windows NT Symposium, (Seattle, 1999), 135-143.

5.
Morgan, M. and Grimshaw, A., Genesis II - Standards Based Grid Computing. in Seventh IEEE International Symposium on Cluster Computing and the Grid, (Rio de Janario, Brazil, 2007), IEEE Computer Society, 611-618.

6.
Myers, D.S. and Bazinet, A.L. Intercepting Arbitrary Functions on Windows, UNIX, and Macintosh OS X Platforms, University of Maryland, 2004.

7.
Thain, D., Tannenbaum, T. and Livny, M. Condor and the Grid. in Berman, F., Hey, A.J.G. and Fox, G. eds. Grid Computing: Making The Global Infrastructure a Reality, John Wiley, 2003, 299-332.

8.
White, B., Walker, M., Humphrey, M. and Grimshaw, A., LegionFS: A Secure and Scalable File System Supporting Cross-Domain High-Performance Applications. in SC 01, (Denver, CO, 2001).

9.
Zhang, X., Freschl, J. and Schopf, J., A Performance Study of Monitoring and Information Services for Distributed Systems. in High Performance Distributed Computing (HPDC-12), (2003), IEEE, 270–282.

A simple “run” command (not defined by OGSA) generates a JSDL document describing the application to be run, its resource requirements, file inputs and outputs, etc. It interacts securely with a set of predefined BES resources using the OGSA Basic Security Profile 2.0, authenticating the client to the BES resources and the BES resources to the client.

run myjob

BES resource0

BES resource1

BES resource2

Figure XY. A conceptual view of grid-aware shim. The shim traps calls to the grid and interacts directly with the proxy. The proxy uses the user identity, perhaps contained in a local certificate store. Legacy applications work without modification.

User certificate

Grid-proxy

RNS name space with references to OGSA-ByteIO and WS-DAI resources

Legacy application

Grid aware shim

� We use the terms threat, attack, threat assessment, and security policy as defined in the OSI security framework.

� How the state management between the failed instance is kept synchronized with the replica is not the issue here. There are many well-known techniques including, periodic checkpoints, message logging, etc. The important fact is that naming facilitates this process.

8

