An Open Grid Services Architecture Primer
Andrew Grimshaw, University of Virginia

Anyone else care to participate – meaning really do work
Notes: Target publications include IEEE Computer, IEEE Internet computing, ACM Communications, or InfoWorld ?? I think Internet computing is best match – but may not have the readership we want. One option is to do two slightly different versions for IEEE IC and InfoWorld.

Abstract:

Grids are about secure, transparent access to resources on a wide-area, multi-organizational scale. This is accomplished via resource virtualization and the adoption of standard protocols for interaction. Rather than one single monolithic “Grid”, it is expected that grids-of-grids will constructed. In order to construct grid-of-grids it is necessary to agree on grid interoperation standards. While simple standards such as TCP and http are sufficient (and necessary) to move the bits from one grid to another, they lack the semantic richness of higher level services.

The Open Grid Services Architecture defines both a set of design philosophies and protocols for service interaction that define higher level service abstractions such execution management, naming and binding, data access and querying, authentication, delegation, and self-management. In this paper we present a broad overview of OGSA, its’ motivation, structure, basic services, how those services can be composed to provide higher level services, and a road-map going forward.
1 Introduction
Grid computing is concerned with the virtualization, integration, and management of services and resources in a distributed, heterogeneous environment that supports collections of users and resources across traditional administrative and organizational domains. Grids, therefore, provide the framework for building and supporting multiple models of use such as adaptive computing, utility computing, and high-performance computing. Grids may exist within a single enterprise, across departments, or, as in the case of academic Grids or collaborative commercial projects, they may span multiple organizations.
Grid technology has been the “secret weapon” of many early adopters, and its use is expected to grow significantly over the next few years as enterprises of all types and sizes take advantage of it to automate and optimize their use and management of resources, in an effort to meet objectives such as minimized cost and increased agility and collaboration.

While the precise definition of Grid is debated, common characteristics are that Grids tend to be large-scale and widely distributed, to require decentralized management, to comprise numerous heterogeneous resources, and to have a transient user population. Hence Grids exemplify the need for a highly-scalable, reliable, platform-independent architecture that supports secure operation and standardized interfaces for common functions.
To date, Grids have been built using, for the most part, either ad hoc public software components and protocols or proprietary technologies. While various public and commercial solutions have been successful in their niche areas, each has its strengths and limitations, and they offer little potential as the basis for future-generation Grids, which will need to be highly scalable and interoperable to meet the needs of global enterprises.
Service Orientation and Web Services

In recent years, the increasing use of Web-based applications such as retail sales and travel reservation systems has fostered a move toward a service-oriented style of design for distributed systems, implemented using Web services. Applications designed in this way are assembled from well-defined, modular “services” which interoperate by exchanging messages, without regard to each other’s implementation language or operating environment. Copies of a service can be distributed across multiple servers, and their numbers can be adjusted as demand fluctuates, to balance resource usage against required performance levels. Thus, IT managers can at once optimize the use of valuable resources and improve reliability, since services can be distributed across geographically-separated networks and servers.

Web services also offer a way to “virtualize” disparate resources or to enable legacy applications to participate in a service-oriented environment, as simple proxy services can be written to “represent” the resources or applications, allowing them to interoperate with other services through well-known interfaces.

W3C, OASIS, DMTF, IETF, and GGF are among the standards bodies that, often in partnership, are developing standards for areas such as communication, security, manageability and negotiation. The availability and use of standards makes it easier to develop high-level applications composed of simple, reusable services, and allows IT vendors to provide truly interoperable tools for activities such as system management.

Grids and Web Services
There is considerable overlap between the goals of Grid computing and the clear benefits of a service-oriented architecture (SOA) based on Web services. Rapid progress has been made in evolving Web services technology and standards, and there is now a natural evolutionary path from the “stovepipe” architecture of current Grids to the standardized, service-oriented, enterprise-class Grid of the future.

The GGF is now leading the convergence of Grid computing and SOA with the introduction of the Open Grid Services Architecture.
The Open Grid Services Architecture (OGSA)
OGSA is an “open, service-oriented architecture,” based on Web services, for realizing Grid scenarios. “Open” refers to both the process to develop standards and the standards themselves. It is “service-oriented” because it delivers functionality as loosely-coupled interacting services. The “architecture” is the definition of the components, their organizations and interactions, and the design philosophy used.

Grid scenarios present a number of significant challenges to end-users, application developers, and IT managers. These challenges revolve around issues such as security (authentication, authorization, trust, and data integrity), fault-tolerance (meeting service-level agreements, availability, etc.), scheduling and resource management, and data management. They are exacerbated by bandwidth and latency constraints, and the scope and scale that Grids need to achieve.

Each of these challenges must be addressed either by the application developer or by Grid middleware. If application developers are forced to meet these challenges using traditional approaches, all but the best will be overwhelmed by the complexity. The result will be missed deadlines, cost-overruns, and less-than-robust software.

OGSA will address these complex challenges by defining a set of standards that together, like the interlocking pieces of a puzzle, provide the foundation on which to build robust Grid applications and Grid management systems. Thus, OGSA will define the services, their interactions, and the design philosophy.

These services fall into seven broad areas, defined in terms of capabilities that are frequently required in Grid scenarios. These capabilities are provided by functional behaviors of services, often through interaction with other services. It is important to note, though, that while there may be interdependencies between services, not all services need be used at any given time—different use-cases may call for different subsets of services.
The seven areas of OGSA are briefly introduced below.

· Infrastructure Services (Refer to a set of common functionalities typically required by higher level services. As OGSA builds on Web services technologies, service interfaces are defined by the Web Services Description Languages (WSDL). Infrastructure includes emerging standards such as the Web Services Resource Framework (WSRF), WS-Notification (WSN), Web Services Distributed Management (WSDM), and Naming.
· Execution Management Services (Concerned with issues such as starting and managing tasks, including placement, provisioning, and lifecycle management. Tasks may range from simple jobs to complex workflows or composite services.

· Data Services (Provide functionality to move data to where it is needed, manage replicated copies, run queries and updates, and transform data into new formats. Data consistency, persistency and integrity are key requirements satisfied by these services.

· Resource Management Services (Provide management capabilities for Grid resources: management of the resources themselves, management of the resources as Grid components, and management of the OGSA infrastructure. For example, resources can be monitored, reserved, deployed and configured as needed to meet application quality-of-service requirements.
· Security Services (Facilitate the enforcement of security-related policy within a (virtual) organization, and support safe resource-sharing. Authentication, authorization and integrity-assurance are essential functionalities provided by these services.

· Self-Management Services (Support service-level attainment for a set of services (or resources) – with as much automation as possible, to reduce the costs and complexity of managing the system. These services are essential in addressing the increasing complexity of owning and operating an IT infrastructure.

· Information Services (Provide efficient production of, and access to, information about the Grid and its constituent resources. The term information refers to dynamic data or events used for status monitoring; relatively static data used for discovery; and any data that is logged. Troubleshooting is just one of the possible uses for information provided by these services.
The remainder of this paper is structured as follows. We begin with a discussion of the architectural philosophies and design goals that underlie and frame OGSA. We then examine in more detail each of the eight OGSA service areas introduced above. For each we describe the problem, objectives, and relevant specifications and profiles. Next we illustrate how the pieces can be combined to realize three simple, illustrative, use cases. We conclude with a discussion of implementations, interoperability status, and the road-map going forward.

2 Architectural Philosophy and Design Goals
What is an architecture? In the computer systems world an architecture is the definition of the components, their interactions, and the design philosophy used in the development of the whole system. In a grid, high-performance secure, shared, collaboration distributed system, the architecture will define the services, their interactions, and the design philosophy. In other words, what are the pieces of the puzzle, how do they fit together, and what does the puzzle look like when complete.

While there are many themes at work in OGSA – several deserve special attention.

We cannot design a system that will satisfy every user’s needs. We must design OGSA to allow users and implementers the greatest flexibility in the semantics of their applications: We must, therefore, resist the temptation to provide “the solution” to a wide range of system functions. Users should be able, whenever possible, to select both the kind and the level of functionality, and make their own trade-offs between function and cost.

No play no pay. Neither the “kind” nor the “level” of functionality are linearly ordered, but a simplistic model is that of a multi-dimensional space. The needs of users will dictate where they need to be and/or can afford to be in this space; we, the designers of the supporting conceptual system have no way of knowing what those needs are, or what they will evolve to be in the future. Indeed, if we were to dictate a system-wide “solution” to almost any of the issues raised in our list of objectives we would preclude large classes of potential users and uses. Consider security with respect to both kind and level of functionality. Some users are mostly concerned with privacy, while others are more concerned with the integrity of their data — both banks and hospitals are in the later category for example. Some users are content with password authentication, while others might feel the need for stronger user identification — signature analysis, fingerprint verification, or whatever. Both of these are examples of differences in the kind of security functionality. The size of cryptographic key, on the other hand, is an issue of the degree, or level, of security. Without changing the basic nature of the security provided, users can get a greater degree of security by paying the higher cost of using a longer key or a stronger algorithm.

Less is more. This is the old engineering maxim KISS. We have, as much as possible been guided by the famous quote from Antoine de Saint-Exupery, “Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away.”
Composition. Services and protocols must be designed so that they can be readily composed with other services and protocols without breaking. This, combined with “less is more”, leads to an architectural style with a large number of simple services and abstractions that can be combined in myriad ways to produce a large number of different behaviors.
Don’t re-invent the wheel. Work when possible with other proven standards. For example, OGSA relies heavily on existing Web Services standards and profiles such as WSDL, JSDL, WS-Security, WS-I, and others.
Architecture should be rendering neutral. An architecture should not depend on the particular implementation mechanism. Thus, while existing implementations use have a Web Services underpinning, OGSA components could be realized using Java RMI, CORBA, or a home-grown RPC.
Site autonomy: An OGSA-based grid will not be a monolithic system. It will be composed of resources owned and controlled by an array of organizations. There is simply no way that thousands of organizations and millions of users will subject themselves to the dictates of a “big brother” centralized control mechanism or subject their resources and data to external management. Organizations, quite properly, will insist on having control over their own resources, e.g., specifying how much resource can be used, when it can be used, and who can and cannot use the resource.

Another aspect of site autonomy is autonomy of implementation. Sites must be able to choose which implementations of OGSA components to use, either because they “trust” one implementation over another, for performance, or for whatever reason they may have to choose one implementation over another.

Extensible core: We cannot know the future or all of the many and varied needs of users. Therefore, mechanism and policy must be realized via extensible, replaceable, components. This will permit OGSA to evolve over time and will allow users to construct their own mechanisms and policies to meet specific needs.

Further, consistent with our site autonomy objective, the core system components themselves must be extensible and replaceable. This will allow third party (or site local) implementations which provide value added services to be developed and used.

Namespaces (Single, persistent name space deprecated): One of the most significant obstacles to wide area distributed system is the lack of a single name space for data and resource access. The existing multitude of disjoint name spaces makes writing applications that span sites extremely difficult. Any OGSA entity should be able to transparently access (subject to security constraints) any other OGSA entity without regard to location or replication.

Security for users and resource owners: We believe very firmly that security must be built firmly into the core from the very beginning. To try to patch security on as an afterthought, as is being attempted today in many contexts, is fundamentally flawed. We also believe that there is no one security policy that is perfect for all users.

Because we cannot replace existing host operating systems, we cannot significantly strengthen existing operating system protection and security mechanisms. However, we must ensure that existing mechanisms are not weakened by OGSA. Therefore, we must provide mechanism for users to select policies that fit their needs; OGSA should not define the security policy or require a “trusted” OGSA.

Fault-tolerance: In a system as large as OGSA, it is certain that at any given instant, several hosts, communication links, and disks will have failed. Thus, hooks for dealing with failure and dynamic re-configuration is a necessity — both for OGSA components themselves, and for applications.

Separation of policy and mechanism. Mechanism is concerned with how things are done, policy with what should be done. The focus in OGSA is on mechanism, and ensuring that adequate mechanism is available to support a wide variety of policies.
3 Deeper Dive

3.1 Infrastructure
Problem, solution, specs

WS-Addressing, WS-Naming, RNS
3.2 Execution

Problem, solution, specs

OGSA-BES, HPC-Profile
3.3 Data

Problem, solution, specs

RNS, OGSA-DIAS, ByteIO
3.4 Resource Management

3.5 Security

Problem, solution, specs

WS-Security, WS-I, OGSA-BSP, OGSA Secure Channel
3.6 Self management

Problem, solution, specs

CDDLM?, ACS?
3.7 Information Services

Problem, solution, specs

4 Putting the Pieces together
Several pieces are done – here is how they can be used today.

4.1 High-throughput computing use case

4.2 Transparent data access use case

4.3 Enterprise Data Federation use case
4.4 Service mobility

5 Roadmap going forward

What’s next, e.g., simple authentication, workflows, service level terms, ….
6 Related Work

Blah blah blah – what should we consider related work? Existing architectures, e.g., Globus, Legion, Unicore, Genesis II, Condor? Or related specifications? What?
7 Summary

Blah blah blah
Acknowledgements: The whole OGSA regular team: Hiro Kishimoto, Andreas Savas, Mark Morgan, Fred Maciel, Jay Unger, Ellen Stokes, Jem Tredwell, Steve Newhouse, Dave Berry, Allen Lueneski, Stephen Mcgough, Chris Kantarjiev, Tom Mcguire, Ian Foster, Ravi Subramanian, Dave Snelling, Donal Fellows, Michel Drescher, Mike Behrens, Chris Jordan.
