GWD-I (-00)

Authors:
ISV HTC Usage Primer
Steven Newhouse, Microsoft

Andrew Grimshaw, University of Virginia

5/31/2008
GWD-R (-00)

5/31/2008

Independent Software Vendors (ISV) High Throughput Computing (HTC) Usage Primer

Status of This Document

This document provides information to the Independent Software Vendor (ISV) community as to how specifications from the Open Grid Forum and other standard setting organizations (SSO) can be used to support High Throughput Computing scenarios. It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2008). All Rights Reserved.

Trademark

OGSA is a registered trademark and service mark of the Open Grid Forum.

Abstract

TO BE COMPLETED
Contents
41
Introduction

41.1
Actors

51.2
Additional constraints

51.3
What we are not worrying about right now

62
Specification Pool

62.1
WS-Addressing

62.2
WS-Security

62.3
Job Submission Description Language (JSDL)

62.4
JSDL Single Process Multiple Data (SPMD) Application Extension

62.5
JSDL Parameter Sweep Extension

72.6
Basic Execution Service (BES)

72.7
HPCP-Application Extension

72.8
HPC Basic Profile (HPCBP)

72.9
File Staging Extension to the HPC Basic Profile

72.10
Byte-IO

83
Scenarios

83.1
Installation and Server Configuration

83.1.1
Cluster

83.1.2
Client Workstation

83.1.3
Verification

93.2
Direct Job Submission

103.3
Direct Job Submission with interim results from the compute nodes

114
Implementation Architecture

114.1
Client Workstation

114.2
External Storage Server

114.3
Cluster’s Head Node

114.4
Application Running on the Compute Node(s)

125
Advice to ISVs

136
Advice to Platform Providers

137
Security Considerations

138
Author Information

149
Contributors & Acknowledgements

1410
Full Copyright Notice

1411
Intellectual Property Statement

1412
Normative References

1 Introduction
Many users would like to integrate their desktop ISV provided applications residing on their client workstations with ‘back-end’ compute resources in a uniform or standard manner. This may include both connected and disconnected client workstations, and may involve file movement between the client workstations, the compute back-end, and third party data servers. In addition there are issues arising from firewalls, NATS, and other networking impediments that exist in the real world. In other words, the client workstation, and/or compute backend, may not have globally addressable IP addresses.

This document shows how specifications, that have been developed within and external to the Open Grid Forum, can be used to enable desktop access to distributed computing resources. As such it provides suggestions as to how these specifications can be used, rather than a rigid prescriptive solution. We identify a typical computing environment with distributed computing and file storage resources, and the typical usage scenarios within such an environment. Specifically, the execution of an application that may include file staging to and from the computing resource to the client workstation, and which may in addition include two-way interaction with the running application from the client workstation.

The generic physical infrastructure is described below:

[image: image1.emf]`

Cluster

File

Storage

Compute nodes

Head node

License Manager

External

Storage

Server

`

Client Workstation

Submission Host

Client

Firewall

Enterprise

Firewall

Cluster

Firewall

System Manager

System Monitoring

1.1 Actors

Here we define the important characteristics of the actors/players in the diagrams.

· Client workstation: The machine used by the end-user to submit, monitor and review their results. A client machine can be considered to be mobile, frequently dis-connected from the network and not permanently sharing a file system with the enterprise network or the computing resource.

· Submission host: A workstation from which the user can submit and monitor jobs to the compute cluster. Generally a machine that is permanently connected to the enterprise network and able to access the corporate and cluster file systems.

· The back-end compute resource (the cluster), consisting of:

· Head node: This is the primary contact point for submission hosts to submit work to the cluster. Possibly the only part of the compute resource visible to other network clients.

· Compute nodes: The compute resources managed by the head node. These nodes may only be accessible from the Head node.

· A “cluster” file system that is common between the head node and compute nodes and may be accessible from the submission host, but not the client workstation.

· External Storage Server: A storage resource that is accessible through authenticable network protocols (e.g. http, scp, ftp, ..) from outside the enterprise network (the client workstation) and within the enterprise network (from the submission host) and from the cluster’s head node. This is not a global file storage system.

· Network Router: Linking the workstation, submission hosts and head nodes.

· Firewall(s): One of many protecting the head node, client workstation and submission hosts.

1.2 Additional constraints

The goal in this scenario is to provide a ‘good’ user experience when the client workstation is in ‘difficult’ networking environments. Specifically:

· There is no shared file system between the client workstation and the cluster’s head node. Depending on the scheduling system this may make it impossible for the client workstation to act as a submission host to the scheduler, and for the computational task to access the files located on the client workstation.

· There may be a cluster file system between the cluster’s head node and the compute nodes.

· Many computational applications have an element of interaction with the compute nodes. In such a scenario the compute nodes need to be able to ‘connect back’ to the client workstation to provide interim results.

· Disconnected operation. It cannot be assumed that an application on the client will always be connected to the network during the complete life-cycle of any batch job. This of particular concern for long running analysis.

· Any solution must leverage the existing security mechanisms available on the client workstation and available within the enterprise. Bespoke security solutions should not be embedded within the ISV application.

1.3 What we are not worrying about right now

In these scenarios we are making realistic simplifications to provide a still useful solution. In particular:

· We are not concerning ourselves with the process by which a client application running no the client workstation finds a compute resource. We assume that such a resource is ‘well known’ within an organization and such a resource may encapsulate other resources… but if it does such behavior is not visible to the client application.

· We are not concerned about accounting for use of the application within the scenario. The cluster’s management system will frequently have an accounting capability but this is not exposed in these scenarios.

· We are not concerned about License Managers. An application will frequently require the presence of a License Manager and its execution on the cluster may be delayed until appropriate licenses are available. In such situations this can be reflected in the state exposed by the cluster management system.
2 Specification Pool

In enabling the interaction between the client and the application installed on the cluster we will use web service and related specifications developed within the Open Grid Forum and other standards bodies. These are described briefly below – further information and technical details of the specification can be found elsewhere.

2.1 WS-Addressing

The WS-Addressing specification defines an extensible XML data structure called the endpoint reference (EPR) that serves to encapsulate the information needed by a client to message a service. The EPR includes such data as a network protocol address, an extensible metadata section to convey arbitrary suggestions such as security policies, and an opaque section for session/resource identifiers, etc.

2.2 WS-Security

The Web Services Security (WS-Security) family of specifications defines a general-purpose mechanism for associating security credentials with message content which is then used to construct a set of specific profiles for encoding popular token types (e.g., X.509, Kerberos, SAML, and Username-token credentials). The WS-Security Core specification also defines the application of XML Encryption and XML Digital Signature to provide end-to-end messaging integrity and confidentiality without the support of the underlying communication protocol. In order to achieve real-world interoperability, the WS-I BSP (Basic Security Profile) provides guidance on the use of WS-Security and its associated security token formats to resolve nuances and ambiguities between communicating implementations intending to leverage common security mechanisms.

Add OGSA BSP 2.0 Outline
2.3 Job Submission Description Language (JSDL)

JSDL is an XML-based schema for describing applications, the resources required for the application (e.g., memory, number and sped of CPU’s, etc.), files to stage-in before the application executes, files to stage-out upon completion, the command line string to be executed, etc. JSDL defines terms in the job description space and encourages definition of new terms.

2.4 JSDL Single Process Multiple Data (SPMD) Application Extension

The SPMD Application extension defines a number of additions to the JSDL Application element to support the definition of parallel applications. It re-uses a number of elements already defined by other Application extensions, for example, to specify the path to the executable, the working directory and so on. It adds support for specifying the number of processes, the number of threads per process and also how many processes to execute per host. The type of parallel environment that the application requires can also be identified, for example, the type of MPI required for execution.

2.5 JSDL Parameter Sweep Extension

The Parameter Sweep extension defines how the values of one or more of the elements (parameters) in a JSDL document may be changed to produce a new JSDL document. This extension therefore defines a collection of jobs in a single document made up of a base JSDL document and a sweep definition.

The sweep definition allows for changing a single or multiple parameters at the same time and supports arrays of values for each parameter. Loops can be defined and nesting of sweep loops is supported. Therefore a potentially huge number of jobs can be encoded in a single document.

This specification is still in progress within the JSDL-WG and it is expected to be finalized during the summer of 2008.

2.6 Basic Execution Service (BES)

The BES specification defines interfaces for creating, monitoring, and controlling computational entities such as UNIX or Windows processes, or parallel programs—what we call activities. Clients define activities using JSDL. A BES implementation executes each activity that it accepts. A BES resource may represent a single computer; a cluster managed through a resource manager such as Load Sharing Facility (LSF), Sun Grid Engine (SGE), Portable Batch System (PBS), Windows HPC Server 2008 (HPCS 2008) or Condor; or even another BES implementation.

2.7 HPCP-Application Extension

The HPC Profile Application Extension specification describes additions to the JSDL’s Application element to support the definition of applications for execution on HPC resources. Specifically, it allows an execution task to be given a name, to specify the path to the executable and any specific working directory, any arguments that need to be passed to the executable, any environment variables needed for the executable, to specify the standard input/error/output file paths, and to specify the user identity the task should be run under if it is different from the user identity of the user submitting the task.

2.8 HPC Basic Profile (HPCBP)

The HPCBP is a profile on BES and JSDL which uses the HPCP Application Extension to support a minimal set of capabilities to satisfy particular use cases around the submission of HPC applications to a cluster resource. The set of operations does not include data staging, delegation or application deployment. As there was not an agreed upon security model at the time the document was developed, the profile includes username/token and X.509 token credential profiles from WS-I BSP (WS-I Basic Security Profile) for authentication. The profile was written during the summer and early Fall of 2006, with an interoperability demonstration at SC’06 in Tampa with a dozen different implementations from around the world.

2.9 File Staging Extension to the HPC Basic Profile

The JSDL specification supports a ‘DataStaging’ element that allows a remote source or target data to be mapped to a local copy. If a source data URI is specified the data is copied from the remote source to the local destination before the execution task commences. If a target data URI is specified the data is copied from the local source to the remote destination after the task has been executed. The user is able to define the behavior if the data already exists locally on the machine and if the data is to be removed once the activity is over.

The HPCBP File Staging Extension uses the JSDL model and defines its behavior for common file movement protocols – http(s), ftp(s) and scp – and specifies how credentials specific to each data action can be provided to enable access to secured resources. These credentials can be different for each data source/sink and different from the credentials used to access the computational resource. A compliant implementation must support one of WS-Security’s Username Token element or the X.509 Certificate Token element encodings.
The state model used within the HPCBP Service can be extended by the implementation to reflect if the task is staging data in or out as part of its execution phase.

Although the HPCBP File Staging Extension only defines a small core set of protocols an implementation can support additional mechanisms such as GridFTP, DMI (Data Movement Interface), e-mail, RNS (Resource Namespace Service) for data movement and naming.
2.10 Byte-IO

ByteIO provides POSIX-like read and write operations on sequences of bytes, there are two variations of this interface. In the RandomByteIO interface, the offset, number of bytes, and data buffers are passed to the operations. In the Streamable ByteIO interface, the operations do not take the offset.

3 Scenarios

In this section we will describe the two main motivating scenarios driving ISVs in the HTC scenarios:

· Direct job submission from a client workstation to a back-end compute cluster.

· Direct job submission from a client workstation to a back-end in which the client and the compute nodes need to exchange messages during the computation, e.g. to deliver interim results or control the application.

In these scenarios we will assume:

· There is no shared file system between the client workstation and the compute cluster thereby requiring some form of file staging to take place both of input data and the final results.

· The client workstation may not have an IP address that can be accessed by the compute cluster, thereby making it impossible for the computer cluster to access a service running the client workstation that can provide/receive files from the compute cluster.

· The client workstation may not be available throughout the job’s complete life-cycle (i.e. submission, queuing and execution) as it has disconnected.

The software infrastructure to support these scenarios includes:

· Client operating system

· Cluster operating system

· Cluster’s job scheduling software (e.g. LSF, PBS, HPCS 2008, SGE)

· Application – client component

· Application – cluster component

· Client middleware – installed or incorporated into the application’s client component

· Cluster middleware – installed or incorporated into the software running on the head node

· File staging software – the network protocol(s) needed to put/get bits on the external storage (e.g. HTTP, HTTPS, FTP, GridFTP, etc.)

3.1 Installation and Server Configuration
3.1.1 Cluster

The cluster administrator needs to perform a one off installation and configuration of the ‘middleware’ software – the bits that glue the application, the operating system and the cluster management software together. It is assumed that the base operating system and cluster management software (e.g. PBS, LSF, HPCS 2008, SGE, etc) are already installed and working – administrators will resist having to change this infrastructure. The middleware is the non-application specific software necessary to connect the client to the cluster scheduler and the application. Software from different applications will also need to be installed on cluster.
3.1.2 Client Workstation
The administrator of the client machine will need to install the client components of the application software and any middleware software need to support the client interactions. This software needs to install on top of the existing operating system components.

3.1.3 Verification

Several verification steps can be identified on both the cluster and the client machine before any of these scenarios should be attempted:

· Run the application on the cluster from the head node or submission host (without any use of the ‘middleware’):

· On a single processor.

· On multiple processors as part of a parallel (MPI) job.

· Upload a file from the head node to the external storage server.

· Download a file from the external storage server to the head node.

· Upload a file from a compute node to the external storage server.

· This may not be supported by the cluster if compute nodes have no external network visibility.

· Download a file from the external storage server to a compute node.

· This may not be supported by the cluster if compute nodes have no external network visibility.

· Upload a file from the client machine to the external storage server.

· Download a file from the external storage server to the client machine.

· That there is network connectivity from the client machine to the cluster.

· Upload a file from the client machine to the cluster’s head node.

· Download a file from the cluster’s head node to the client machine.

· The credentials provided by the user on the client machine can access the middleware services on the head node.

· The credentials provided by the user on the client machine can access and submit a job through the service on the head node to the cluster.

Running through these tests, both on installation and during use, provides the means to self-configure the client to adapt to its current network environment, and the means to trouble shoot any failures.

3.2 Direct Job Submission

With the middleware and application software installed on the client workstation and the cluster and the connectivity between the components verified, the remote execution of the application can be initiated:

1. Interaction between the local user with the client application to formulate the problem that needs to be solved on the cluster resource.

2. Identification and generation of any configuration or data files needed by the application when it is executed on the remote resource.

3. Selection of a cluster that is to be used to solve the problem:

a. The required application needs to be installed on the selected cluster

b. The user has the credentials to access the required application on a cluster

c. The client workstation is able to contact the cluster

d. The client workstation and the cluster are able to transfer files between each other or through an external storage server if required by the analysis.

4. Formulation of the JSDL document using:

a. HPC Profile Application extension if a single processor job

b. JSDL-SPMD if a multi-processor job

c. JSDL-Parameter Sweep specification if a parameter sweep job

5. Uploading of the files to the designated external storage server if required.

6. Submission of the JSDL document to the cluster’s HPCBP endpoint.

The client workstation may disconnect from the network at this point with the next steps taking place asynchronously on the cluster. These are driven by the middleware on the cluster’s head node and through the underlying file system.

7. Downloading of the files to the cluster from the external storage server.

8. Execution of the application.

9. Uploading of any output files to the designated external storage server.

The client workstation either:

a) Has remained connected to the network and recognizes through polling that the activity is complete.

b) Reconnects to the network and realizes that the activities it has dispatched are complete.

Execution on the client workstation continues:

10. Retrieval of the output files from the designated external storage server to the client workstation.

11. Notification (locally) to the user that the job is complete.

There is no requirement that the client workstation is directly addressable by the cluster or a need for a shared file system.

3.3 Direct Job Submission with interim results from the compute nodes

With the middleware and application software installed on the client workstation and the cluster and the connectivity between the components verified, the remote execution of the application can be initiated. In this scenario the client workstation needs to remain connected to receive interim results from the application and to control the application.

1. Interaction between the local user with the client application to formulate the problem that needs to be solved on the cluster resource.

2. Identification and generation of any configuration or data files needed by the application when it is executed on the remote resource.

3. Selection of a cluster that is to be used to solve the problem:

a. The required application needs to be installed on the selected cluster

b. The user has the credentials to access the required application on a cluster

c. The client workstation is able to contact the cluster

d. The client workstation and the cluster are able to transfer files between each other or through an external storage server if required by the analysis.

4. Initialization of a ByteIO endpoint on the cluster’s head node.

5. Formulation of the JSDL document with the ByteIO endpoint:

a. HPC Profile Application Extension if a single processor job

b. JSDL-SPMD if a multi-processor job

c. JSDL-Parameter Sweep specification if a parameter sweep job

6. Uploading of the files to the designated external storage server if required.

7. Submission of the JSDL document to the cluster’s HPCBP endpoint.

Activity on the cluster and on the client workstation takes place concurrently. A two-way channel is established between the client and the running application (through the cluster’s head node) allowing the client workstation to ‘steer’ the application and the application to deliver intermediate results back to the client.

	On the cluster
	On the client workstation

	8. Downloading of the files to the cluster from the file server.
	Retrieve interim results from the ByteIO endpoint and act on them.

	9. Initialization of the application.
	

	10. Delivery of interim results to the ByteIO endpoint on the head node.
	

	11. Completion of the application.
	

	12. Uploading of any output files to the designated file server.
	Poll the activity until it is complete.

Execution on the client workstation continues:

13. Retrieval of the output files from the designated file server to the client workstation.

14. Notification (locally) to the user that the job is complete.

There is no requirement that the client workstation is directly addressable by the cluster or a need for a shared file system. The application needs to be modified to deliver interim output to the ByteIO endpoint.

4 Implementation Architecture

4.1 Client Workstation

The component of the application deployed on the client workstation needs to implement the client components of the protocols used within this model and the supporting schemas. These will include:

· JSDL & HPC Profile Application Extension – the schema for defining the job (execution task and any data movement) to be executed remotely.

· HPC Basic Profile – the web service client protocol communicating with the remote cluster resource.

· Data Movement – the client protocol(s) that will be used to move any files/data to/from the client to the External Storage service.

· Byte-IO – the web service client protocol needed to send/receive information to/from the Byte-IO service on the head node.

In addition, the client workstation environment will need to identify the local credentials that will be used by the client to identify themselves to the cluster resource. If no local credential is available that can be used to identify the client with the cluster’s head node than an alternative credential will have to be obtained. Once the credential has been identified it will be passed through the WS-Security protocol to the remote services.
4.2 External Storage Server

The external storage server provides a location, accessible to both the client workstation and the compute nodes for the exchange of data – primarily files in these scenarios. It will need to support at least one of the Data Movement services supported by both the client workstation and application (compute node) environments.
4.3 Cluster’s Head Node

The services on the head node (in addition to those needed by the local resource manager) will need to:

· HPC Basic Profile Service – a web service to submit and manage jobs on the cluster which will include parsing the JSDL document submitted to the service.

· Byte-IO Service – a web service that provides a ‘rendezvous’ point for the client workstation and the application to exchange data while the application is running. This is ONLY needed if the application has to deliver interim results to the client workstation and the compute nodes are not able to access the client workstation directly.
4.4 Application Running on the Compute Node(s)

The application will need to support:

· Byte-IO – the web service client protocol needed to send/receive information from the application during its execution. This is ONLY needed if the application has to deliver interim results to the client workstation. If the running application is not able to access the client workstation directly, it can use the Byte-IO service on the head node as a rendezvous’ point.

· Data Movement – the client protocol necessary to move the data from/to the External Storage server. This may be embedded in the application or implemented as part of the cluster’s execution infrastructure.
5 Advice to ISVs

This document provides a systematic approach, using established and emerging web service standards, to common usage scenarios in a distributed computing environment. The availability of this infrastructure (from platform providers) would allow ISVs to concentrate on the domain specific functionality that they provide through the application, rather than the inherent complexity of moving bytes around complicated firewalled networks.

Implementing the client aspects of these web service standards is relatively straightforward – through the availability of open-source toolkits or commercially supported sample code and frameworks.

The projects/products in the following table use a variety of open and closed source toolkits across several different operating systems (e.g. Java & C Apache Axis, Windows Communication Framework, gSOAP, etc.) and with either community or commercial support. The interoperability experience gained by the OGF community with these varied technologies has already been established through the experience documents provided in support of these standards and integrated into the software provided by each product or project.

OPEN ISSUE FOR DISCUSSION & FEEDBACK: How to access these services? By directly consuming the endpoint and generating the web service client or through a 3rd party client toolkit that provides an API around the web service protocols?

The following table records the support (as of May 2008) of the specifications discussed in this document. All of these projects use WS-Addressing when required and elements of WS-Security for authentication, transport or message level security. The JSDL extensions for SPMD and Parameter Sweep applications are in their early stages of adoption. The HPC Basic Profile includes support for the HPC Profile Application extension.
	
	Specifications

	Project

or

Product
	OGSA-BSP 2.0
	JSDL

	JSDL

SPMD & PS
	OGSA-BES
	HPCBP

	File

Staging
	OGSA-ByteIO

	Globus
	No
	Yes
	
	Yes
	Yes
	No
	No

	UNICORE 6
	No
	Yes
	
	Yes
	Yes
	No
	Yes

	USMT

(Fujitsu)
	Will
	Yes
	
	Yes
	Yes
	No
	Yes

	HPCS 2008

(Microsoft)
	No
	Yes
	
	Yes
	Yes
	Yes
	No

	Genesis II
	Will
	Yes
	
	Yes
	Yes
	?
	Yes

	GridSAM

(OMII-UK)
	No
	Yes
	
	Yes
	Yes
	Yes
	No

	Crown
	No
	Yes
	
	Yes
	Yes
	No
	No

	BES++

(Platform)
	No
	Yes
	
	Yes
	Yes
	Yes
	No

	NAREGI
	No
	Yes
	
	Yes
	No
	No
	No

	Gfarm
	No
	No
	
	No
	No
	No
	Will

	gLite
	No
	Yes
	
	Yes
	Yes
	No
	Will

6 Advice to Platform Providers

A platform provider in this context is a supplier of the middleware that will be utilized by the ISV application to initiate work on the cluster resource. The platform provider may be a an open source platform provider that integrates with the cluster’s job scheduling software, or provider of job scheduling software that also supports these middleware specifications.

Support of these specifications enables the use by an ISV application of distributed computing infrastructure in a systematic, standardized and interoperable manner that is not currently possible within many common network environments.
7 Security Considerations
The scenarios described in this document provide some significant security challenges – mobile clients, high value computing resources, and simulation data with potentially high commercial value. In addition, the middleware that needs to be deployed to enable these scenarios MUSTintegrate with the existing security (and software) infrastructures.

Many of the web service toolkits mentioned in this document utilize elements of the WS-Security specification. The use of this specification is further qualified by the broader web service community by the WS-I BSP (Basic Security Profile) and the grid community by the OGSA-BSP 2.0. Individual specifications in this document have been very specific in defining their supported security models. The HPC Basic Profile and File Staging Extension uses WS-Security’s Username and Password token and X.509 Certificate token profiles.
OPEN ISSUE AND DISCUSSION POINT: What are the ‘native’ security mechanisms are currently being seen by ISV’s in deployed environments? How and where are they stored and how can they be discovered transparently by the web service frameworks? How can they be accessed for authentication and authorization checks on the compute resource? Are these tokens available for use by the external storage server and are they integrated into the file transfer protocols (e.g. ftp/scp/http/…) and the server implementations? Or to use one time passwords? Or streaming sockets?
8 Author Information
Steven Newhouse

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

USA

steven.newhouse@microsoft.com
Andrew Grimshaw
University of Virginia
Charlottesville, VA

USA

grimshaw@virginia.edu
9 Contributors & Acknowledgements
We gratefully acknowledge the contributions and discussions made to this specification by Narfi Stefansson [OTHERS] and other members of the UVA Workshop and the OGSA Working Group.

We would like to thank the people who took the time to read and comment on earlier drafts. Their comments were valuable in helping us improve the readability and accuracy of this document.
10 Full Copyright Notice
Copyright © Open Grid Forum (2008). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the OGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the OGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

11 Intellectual Property Statement
The OGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the OGF Executive Director (see contact information at OGF website).

12 Normative References

�If we put RNS into section 2 add it in here. If using RNS EPRs need to have RNS enabled infrastructure.

1

14

Cluster

File

Storage

Compute nodes

Head node

License Manager

External

Storage

Server

Client Workstation

Submission Host

Client

Firewall

Enterprise

Firewall

Cluster

Firewall

System Manager

System Monitoring

image1.emf

`

image2.emf

image3.emf

oleObject8.bin

oleObject9.bin

oleObject10.bin

`

oleObject1.bin

`

oleObject2.bin

oleObject3.bin

oleObject4.bin

oleObject5.bin

oleObject6.bin

oleObject7.bin

