OGSA F2F, London -- 23 May 2005

Attendees

Hiro Kishimoto

Jay Unger

Mark Morgan

Andrew Grimshaw

Fred Maciel

Steven Newhouse

Abdeslem Djaoui

Dave Berry

Chris Smith

Takuya Mori

Steve McGough

Mathias Dalheimer

Donal Fellows

Soonwook Hwang

Kazushige Saga

Andreas Savva

Tom McGuire on Net Meeting

Ravi Subramaniam

Dave Snelling

Jem Treadwell

Agenda Bashing

* More time for Naming on Tuesday?

- No, don't think so. Intent was only an update, not

 discussion.

EMS architecture discussion I (90 min)

* Summary of BES Yesterday

-- Ian's document raises some questions

-- Hiro's response does at well

-- Are we making a mistake trying to use WSRF for everything

 under the sun?

* Hiro would like time today to discuss Ian's document

* Are the port types that are to be used by other services in the big

 picture?

- Not sure about the questions. There are port types that will

 be called from outside -- create, kill, etc.

- Not likely to be called by the end user, probably more from

 other pieces in EMS. Likely called by Application Manager.

* Model is going to include stage-in. Does that mean copy in/copy out.

- Staging will be one mechanism, but the way that JSDL works,

 you can also specify an input file type and a file system so

 that if you had an RNS system with ByteIO file points, mapped

 in by NFS or CIFS then could you instead use JSDL to indicate

 pre-fetching, but not staging.

Resource Selection Services

* Going to form WG at next GGF. Their scope will be to the Candidate

 Set Generator and Execution Planning Service. Mathias Dalheimer and

 group doing this.

* Mathias to present

* Andrew suggests that BES should be in the related groups for RSS

* Calana

- Doesn't need an information system (except to keep auctions)

- Broker is sort of a queue

- Broker broadcasts auctions to all agents

- Agents register with the broker

- Can fan out message, but it's still a broadcast

- How do you deal with a situation of a hierarchy of schedulers

- If you have a hierarchy of schedulers, the meta scheduler

 can't bid on behalf of it's underlying cluster managers. It

 could know something about the resources underneath, but then

 the model isn't consistent.

- What about pre-reserving resources below you, then you can

 bid it up?

- Process Check -- Are we trying to design RSS now? No, we're

 just talking about a related project.

* OurGrid

- What does replication based scheduling mean?

-- They replicate jobs on a couple of resources, and

 then if one fails, they have others.

* Unicore/GS Broker

* NAREGI Super Scheduler (SS)

* OGSA-RSS charter summary

- Define interfaces and protocols for RSS, namely

-- EPS

-- CSG

-- Reservation Services (RS)

- Deliverables

-- D1: A spec doc describing the EPS and CSG protocol

-- D2: A spec doc describing the Reservation Service

 here: focus on a basic reservation service

- Reservations

-- They need it, but a complete and extensive

 reservation service is out of scope

-- Start with a "Basic Reservation Service" to satisfy

 requirements

-- Placeholder for future Reservation Service

-- Provide input to a future GGF group

-- What application scenarios require a reservation

 service. The only one shown was MPI. While it's

 interesting, not that many people need that.

 However, co-scheduling is very important

--- telemedicine, etc.

- You say you will provide specification for EPS and CSG...

 Worry that these two services are not so clear at this

 moment. We have a paragraph of the CSG, but we can't say

 that it is well defined.

- Yes, but we have talked about this quite a bit more then just

 the one paragraph that showed up. We had a much more

 involved document that was paired down, but it has been

 thought a lot more then just a single paragraph.

 Recommendation to produce a document, a few pages long, to

 review with the EMS team to see if every one agrees with it.

- Timeline

-- GGF14 BoF

-- GGF15 -- group kick off, Service Description

Milestone, discussion of D1

-- GGF16 -- First draft of D1, discussion of D2

-- GGF17 -- Revised draft of D1, first draft of D2

-- GGF18 -- D1 in public comment, revised version of D2

- What will a large scale reservation system do that is out of

 scope

-- A basic reservation will provide simple information

 that current systems would support

-- Forward, something more fluid where you have the

 basic capability, but also a general notion that I

 have 8 to 10 of this resource, but not all at once,

 or you could take bits and pieces and have stuff

 added to it as time goes on. A more rounded system

 with notifications to know when things have been

 allocated or de-allocated from your reservation. It

 supports advanced reservation, but also a more

 general one as well. A lot of functionality in a

 robust allocation system which you might only see a

 little bit of in a basic one.

-- What about reserving other forms of reservations

 then just cpu -- network, disk storage, access to

 filesystems, etc...

-- Could you use WS-Agreement for reservation -- well,

 you probably could, but they haven't talked about

 specific terms for reservations yet.

--- WS Agreement seems to have gotten a little

 too out of control

-- Possible solution to WS-Agreement is to break it up

 into smaller pieces.

-- Some people have only implemented small pieces of

 WS-Agreement.

-- In order to get somewhere with this, we probably

 need to get some people to go actually participate

 in the working group.

-- Think that EPS and CSG into one spec is too big.

 But can they all be done in one group. Also, the

 milestones might be too aggressive.

-- Yeah, but defining the interfaces isn't nearly as

 hard as implementing it. Especially in EPS.

-- But they can focus on port type, and let BES worry

 about meta-data stuff.

-- The reason why CSG and EPS are together as one

 deliverable is because they are closely related in

 implementations.

-- One of the reasons we said we'd do it later was

 because we didn't have the bandwidth.

-- NAREGI has already done this so maybe this isn't bad

-- No one involved from EGEE or Globus

--- EGEE has gotten pushed recently to put more

 efforts into standards efforts.

-- Do we think that Reservation Service should be

 dropped completely or should it be moved to another

 group

--- GRAAP should be doing

--- If other groups are doing something,

 sometimes we can encourage them to go in a

 specific direction that will fit in with

 the general needs.

--- If GRAAP can be convinced of the importance

 of this, then perhaps they can be sped up.

--- GRAAP probably doesn't have too much

 bandwidth

--- What will GFSG will think about a group

 have three specifications in it's charters

--- You could drop reservation interface from

 charter, it doesn't mean that you can't do

 it later.

--- Dalheimer to talk with GRAAP people

Refactoring of EMS and Data

--

* Want to raise the fact that given the resource model that we have

 with WSRF, how can we begin modelling data as a resource just as we

 model jobs as a resource. When you come to things like CSG where

 data can become another resource -- we talk about staging in and

 staging out, but there is other provisioning.

* If we manage to come up with a better meta-model for resource set,

 and somehow extend notion of resource monitoring so it becomes

 possible for an arbitrary service to advertise a capability, it would

 be nice if you can advertise abilities, access to various data

 virtualizations, etc. Notion of extensible, abstract model, will

 help a lot integrating data into the overall scheduling domain.

* Think we have been working down this path. Originally EMS was not

 just legacy jobs, etc. Dave Berry and OGSA-D-WG have been working on

 an architecture that has a base type model and how to fit in query

 result sets, etc.

* Worry is, if you have abstract resource model, and you think of it as

 applying to relatively concrete resources such as processors, cluster

 components, software license, etc., then it's pretty easy to imagine

 the information granularity and capacity of such a system. But, if

 you also open it up to abstract items like files, etc. broadly, it

 explodes. What happens if the resource modeling space explodes and

 you suddenly have in some domain, 100s of thousands of point

 resources that are relatively small granularity. What constraints

 does that put on things. We aren't saying that it isn't tractable,

 but we have to think about it.

* If a file is a resource, there is going to be millions of those, but

 that doesn't mean that you use that all the time. An abstract

 resource is a dependency node between a supplier and a user. It

 might be the case that the way that you manage this is that a

 supplier could advertise a capability that no one cares about, then

 you may only remember minimal information about it.

* In distributed systems, there are two ways to name things -- you can

 advertise attributes, but another common way is like directory

 services. In RNS, there will be some path, and there will be a tree

 structure. We aren't going to broadcast this to the world though.

 The amount of logical resources is going to grow tremendously. Given

 that, we have to make it a formal aspect that meta data management

 will have to factor this.

* The auction model that was discussed in Calana may be a good thing

 for scalability. We are going to have to mix and match push and

 pull.

* Our point of view right now is that data is available if someone

 needs it. It's highly visible. We're going to have to start doing

 duplication of data for performance a-priori. But, maybe instead of

 doing data sharing, we should start doing data management. Because

 we know the work that is coming in, we can use that to our advantage

 to manage the way that the data is being driven. Current models

 don't tell us much about what we know about the use of the data.

* We've been talking about data virtualization for three years now -- I

 have one or more sources in some format and I want to federate and

 expose through some interface that data. I have a relational table,

 an XML file, and a flat file....who's responsible (what person) for

 designing the virtualization. In lots of cases, it's geeky enough

 that if the scientist who's doing siesmic stuff wants this

 virtualization, he'll have to find some smart person to help him

 write the DFDL file, or whatever. Scientist will say fine, do that,

 give me the WS-Name and he'll be happy. We're going to need tooling

 over time to regular people to do the same thing.

* To do the semantic piece is often very application specific. To

 build a generic grid tool to do that seems out of scope for us. The

 data community has been trying to do this for year with very few

 results.

* This is bad because it means that data virtualization will have a

 slow growth.

* The growth is going to be fast because there are standard formats in

 many of the areas (life sciences, etc.) and so there is tooling for

 that.

* In bioinformatics seem to have target types enumerated, but sources

 grow exponentially.

* The biggest hole that we have in data virtualization is that probably

 better then 50% of the apps we talk about access flat files.

* We really need a good schema language for record and byte oriented

 data.

* The schema language might be out of scope, but how to implement that

 doesn't seem to be out of scope.

* The transform itself is a first class object. The transform is a

 computational function with input and output types. That's a way to

 represent the operation model to the system.

* From the point of view of the user, the user would never schedule the

 transform -- he want simply want the WS-Name.

* That's why the data products are first class data objects. They may

 not be materialized, but the user doesn't know that.

* And it might not be a static wholesale transform. If the source is

 asynchronous, a stream, or you choose not to materialize a physical

 replica, it may happen as the cursor moves.

* This is what the data group has been working on. The process has

 gone from very specific data to the more general.

* Data has the notion of a federation service.

* Why is federation hard? Different groups define federate differently.

* When we talk about containers, we need to talk about data as well as

 jobs.

* What should be the operations be on a database container, and a job

 container, and are they unified.

* Ultimately, when you go to talk to a data source, you are going to

 talk to something with a service oriented API, but that isn't

 associated with a container, it's just materialized as an attribute

 on the container.

* The name BES implies something that constrains what it does.

* Container as data or compute

* What are the operations that we want on a container when the

 container is a DBMS and how does that map to the container for BES?

 To other containers?

* At what level can we see some commonality

* Two issues associated with the instance of a data object in the grid

-- How do I access it

-- How do I understand it's characteristics from a scheduling

 perspective.

* There is so much data and so we have to have some way of keeping list

 of abstract resources that we have to deal with bounded. What we

 want to do is wait in many cases for someone to say, I need this

 thing, then we'll go and try to get inventory of information about

 the thing. We'll wait for the concordance between the source and

 the user. Until that happens, I'll remember maybe nothing about the

 source.

* When you are scheduling, what do you need?

-- Is it shareable

-- Does it have a locale

* Scheduling is meta data driven. Can this data be shared, where?

 How many hops?

* You actually will have multiple scheduling algorithms that will

 cooperate to schedule jobs, data, etc.

* Data and workload are two aspects of scheduling, but there's more.

* Data scheduler is just another instance of a function that is trying

 to adjust configuration to match some constraints.

* What are the ways that we can virtualize compute and data so that the

 exhibit the same handles

* This is why meta model is important

* Assertion that we need to start documenting the similarities and

 unification of resources. We need to identify commonality between

 all resources.

* Most often, when an entity creates a resource, it's not creating it

 in a container, or on a CPU, it's creating it in some abstract space

 which may actually have common locales, but it's not like that

 resource is in the same container.

* Do we have a general consensus about this?

* The thing that is scariest about these problem of resource modeling,

 is how much has been done in the real world (CIM, WSDM, GLUE) that

 doesn't take into consideration any of these abstract properties, or

 very little of them. If I go look at CIM, it models data centers

 very well, but no notion of abstract locale. How do you tell that a

 processor and a disk are close together in CIM -- there is no way.

 It's very hard. There is a lot of work to do here.

* We need to define a resource management service, and then people can

 use whatever model they want....Yes, but what is OGSA unifying? If

 you are saying we are going to add yet another.

* Are the common bits the meta-model. We can map the meta-model to

 these different things.

* What do we mean my meta-model. Every modeling system has a meta

 model. Base classes that everything is built up from.

* What we are talking about is how to express the value of something so

 you can evaluate it.

* Yesterday we had a very concretized and tightly bound set of

 attributes (JSDL). There was no dependency on any type or class.

* Why aren't we doing this as a subspace of dimension? Well, we're not

 sure yet.

* We came about this backwards, but the goal is to have a flexible

 requirements specification, and a flexible resource specifications.

 The base classes are simply the cases in a switch statement.

* The meta-model, and BES should be applied to everything. Should we

 have three months -- yes, but we are being pressed into doing this

 quickly.

* We want to build a first order logic language in XML? Because the

 realm here is huge. Part of us says we should have been doing this

 all along. This is why Class Ads pop to mind.

* Maybe, in the process of stealing, we'll modify this stuff a little

 bit.

* What about semantic web technologies? Too early, no tools, etc.

* What are the attributes that we need to unify resources in scheduling.

* How are the people who should come together to discuss this? The

 people in OGSA-D? Possibly, possibly not. What's important from a

 scheduling perspective to other resources, to understand.

* Some sort of expression associated with closeness is necessary. It's

 going to take people from both base scheduling decisions and data

 decisions to get this right. Having said that, we are going to have

 to punt a little bit because it's hard enough to meet the JSDL

 requirements in 3 weeks. We'll take as an additional objective to

 make sure that the base classes are open enough to extend. This is a

 pretty big job end to end, it's unfortunate that we got to this point

 without doing that job, but that's where we are and we have to go

 forward given the constraints that we have.

* In the long term, does this mean that we are creating the OGSA

 Resource Requirement Language.

* The Meta Model thing came as an "Aha" reaction to something in BES.

 Some people think that we need to be having these discussions in ogsa

 at large. We need to be precipitating this down to the working

 groups rather then having these "aha's" coming up from the bottom.

 Ravi is talking about the underlying framework. What is the common

 framework for all of this.

Basic Profile

* Start with template.

* Rather stable for some time

* Suggest we go through it briefly

* See if we need to raise issues.

* None currently in trackers

* WS-I said you couldn't cut and paste the WS-I definition document, but

 you can reference it.

* Need to add discussion of appendices as normative extension for

 conformance requirements. Basic Profile is different from WS-I

 profile. The explanation should be in there.

* Where comments not accepted, need tracker on GridForge

* On page 4, Draft Specification -- comment to add a discussion on

 non-exclusivity.

-- Everything that is implemented is greater then unimplemented

-- in other words, a specification that is a community

 specification, is also interoperable as well as implemented.

-- There is two ways to understand interop. One is to say that

 there is an impl. that is interop. Another is when there

 are specs that are interop so that you can do some sort of

 test without having an impl.

-- A spec. that is included in a profile must have it's

 adoption level specified.

* Status of a specification

-- We have grades of "standard". How much of a standard is a

 standard.

* Defacto doesn't really require a specification as long as it is

 commonly available to everyone.

* Something doesn't have to be released to the public for it to be a

 Consortium Specification.

* Another important dimension is the level of adoption

* We need to clarify that all states of adoption apply to the bits of

 the target specs that are being referred to, not the entire specs.

* Are we going to add a discussion of what it means to be implemented

 with respect to the profile.

* Is SNiA a consortium? We should pick up only the various obvious

 examples.

* SNIA is a rather institution. Leave SNIA out.

* Also, in the doc, it would be nice to point out that the names in the

 doc are examples (WSRF, WSDL, etc.)

* Notion of community level of adoption was defined vaguely, but leave

 it vague intentionally. It's a vague thing.

* Our only way of determining implemented is to look at claims. There

 isn't a test.

* Must you list all points of extensibility? Is that in this

 document? No, but should it be? The intention is to capture

 everything.

* What about stylistic things? Yes, that information is referenced in

 the WS-I profile. If some of things are already there, why

 reproduce them here? Some of them are not. If there is a delta

 being captured here, shouldn't there be a delta in the styling? No,

 not really....not that kind of delta.

* Types of profile:

- Informational Profile

- Recommended Profile as Proposed Recommendation

- Recommended Profile as Grid Recommendation

* Can other working groups create profiles? Yes, any group can create

 a profile.

* Who talks about when a profile is necessary as opposed to a spec?

 Not this one -- what about WS-I? No, they only talk about profiles.

- In our profiles, you can have an appendix with mini-specs (

 little bits of schema). In some ways, the distinction is

 orthogonal to this process itself.

- What's important here is that they are both normative

 documents. The distinction between them is not relevant

 here.

* Profiles are hear because of existing specifications which aren't

 necessarily well written.

* Evolving Standard is included to allow us to run in parallel with

 something that is not quite a standard.

* All profiles/specs referenced in Base profile are on schedule to be

 standard within 6 months and so base profile will move from Proposed

 Recommendation to Grid Recommendation.

* We don't want to have the same problem that WSDM had -- they

 reference the multiple different versions of WS-Addressing. What we are proposing

 here it to avoid that problem. As a proposed rec. People can go

 away and start experimenting with. Doesn't get full GGF status until

 all specs are stable.

* You can only submit after a reference spec has at least a first draft.

* Do we have profile versioning.

* Removing evolving standard from Proposed Recommendation is very hard.

 Is it possible to add more restriction to the criteria.

* Definition of proposed recommendation is -- here is a spec ready for

 people to go and implement.

* Should we add versions? We can have that anyways.

* Should we say Evolving standards that have a stable implementation to

 use. Something that is releasing concrete snapshots.

* Why is Appendix an appendix. Move it into the document.

* Do we have a plan to update basic profile 1.0 soon? No, we don’t think so.
Basic Profile

* XPath

- What about query serialization. XPath defines several types

 for it's evaluation result. As Tom said in the call, there

 is Boolean value, string value, number value, and also node

 est. We need some set of structured result for response

 method. It is also a problem for result type of this

 message.

- Even if we can serialize node set, the serialized

 representation may not be well formed XML Document. This is

 for the digital signatures one. You can't parse the result

 set as a well formed XML Document. We can develop a

 structured message response for this operation, but not sure

 if we can reach a consensus for the requirements for this

 thing.

- Can we drop QueryResourceProperties from the basic profile.

 Why do we need these? Basically, in order to do discovery.

- Some of the namespace in an XPath, which ones do you use

 when you serialize it. Also need a structured response type

 format. In order to profile it, we'd need to define the

 structured return type. Second one is if we serialize a

 node set by using XML Canonicalized specifications, would it

 be useful to requester. If you select a namespace, you get a

 namespace node, not a well formed XML instance.

- If we had an XML serialization of a Node set, then there is

 less of a problem.

- Are we talking one schema, or one per resource property for

 every possible node set.

- We need a generic schema for a node set.

- What can we do to profile the request side to make sure we

 have a meaningful query.

- Picking a canonicalization and picking a schema for the node

 set response would allow us to deal with this in the profile

 correctly.

- Decision -- Canonicalize, add structure for result set, and

 schema for node set serialization. No, we still don't have a

 solution for interoperability. It doesn't deal with prefix

 problems in namespaces.

- We need to have some way to agree on the prefix on both

 requester and service side.

-- The client and server have to agree at run time what

 the prefix to namespace mapping is.

- Can we profile a namespace query which isn't bad.

- Prefixes are part of the query if you make them that way. So

 to profile this, we say you have no prefixes on request, this

 provided structure on response, canonicalize the response

 with this XML Digital Signature.

- What's the use case where you want to do something dumb. We

 don't want define that people HAVE to use full namespaces.

- Decision

-- Put in warning about prefixes on request

-- Provide Schema for nodeset

-- Provide data structure for results including a

 choice for the different response types

- Do we need canonicalization? Not sure that we do.

* Use of proxy certificates

- Proxy certificates generated by MyProxy -- no web service

 interface.

- Don't think there is enough infrastructure on proxy

 certificates to profile it.

- seems like development of standards in this area are too

 premature for profiling. Omit them from the profile.

- There is an X509 Proxy Certificate specification in IETF right now.

* Communication of Assertions

- Profiles for common assertions in headers or proxy

 certificates.

- Probably shouldn't put them in proxy certs, but we don't have

 proxies now, so that's OK

- SAML Token Profile is defined by WS-Security as a part of

 WS-Security spec. by OASIS. WS-I also specifies their

 profile for how to use the OASIS's SAML token profile. Let's

 refer to WS-I's SAML Token Profile.

- This is in order to pass general purpose assertions in SOAP

 headers. Or is it more general then that? Also, how to

 refer to the assertion in the header. Also, some various

 functionality in that profile -- e.g. if the assertion

 carries keying material to attest that the message sender is,

 it defines some vocabulary for how to attest the sender...how

 to bind keying material of sender using SAML assertions.

- There are several ways to expression assertions -- SAML

 assertions, other is X509 attribute certificates. Let's

 make this the recommended additional text for the profile.

- Are both mechanisms equiv? No, SAML is richer, but they are

 both profiled.

* Basic Discovery Properties

- Currently in the profile, we list resource properties for the

 qnames for the other resource properties. What about adding

 a couple more for basic discovery

-- A final resource interface -- QName of the most

 derived portType of the resource 0..1

- Resource Interface - QName of a portTypes mixed into the

 Final Resource Interface 0..n

-- Why make this a resource property.

-- If I'm running a dynamic management environment, it

 would be nice

-- This information is useful in service groups.

- ResourceEndPointReference - An EPR to this Resource 0..n

* Notification of death required?

- No

* Why require a separate element for KeyInfo in digital signature.

- Tooling supports the KeyInfoElement, that's why change to

 our namespace to clarify the use.

- ds:KeyInfo defines an element for signature key and

 encryption key the endpoint reference key info represents

 which is for the endpoint reference that includes endpoint

 key info.

- Semantics is that the key info is not generic in EPR, but for

 that specific EPR.

- How is that different ?

- If you saw a ds:KeyInfo element, it would be different from

 the one for the EPR?

- Decision -- let's put this KeyInfo in the OGSA basic profile

 namespace. In other words, resolve not to do anything and

 close the tracker.

* Resilient References

- Wanted to put endpoint reference resiliency back in the

 basic profile.

- What meant by uncomfortable with something going on in naming

- What they mean was they didn't like the linkage between an

 abstract name and the ability to renew it.

- You might want to have the ability to renew an EPR that

 doesn't have an abstract name.

- If you have a reference, what are you renewing the reference

 to?

- We don't want to have two ways of doing renewal and resolution

- WS-Naming is in multiple pieces....there's the piece about

 how you get the resolution bit, and then there is the thing

 about the revolver protocol.

- Where does this belong?

-- Andrew and Mark to write down a way to solve this

 issue of not having to have an abstract name to do

 resolution, but would be ok for everyone involved

- Maybe the right thing to do is to push resolution piece down

 into basic profile.

- We can't mark this as resolved yet, but we'd like to have the

 opportunity to fix this up in a way that would make everyone

 happy.

- GGF14 document submission Date is May 27th. We can submit a latest draft at that time.

 After that, we can make changes afterward.

- Change status of this to resolved, WS-Naming to decouple

 abstract name from resolution and take RR away from BP 1.0.

Document from Ian

* These are the same operations that we have, or are explicitly out of

 scope.

* BES -- can we force state changes.

* From the Job Manager point of view, doesn't it have to know the

 interface of the job?

* Ians' model has two interfaces -- job manager and job. In OGSA we

 have three, but do we factor them differently in a bad way? Ian's

 interface has factory and activity.

* What is the concern here?

* What about the list operation on grid servies. BES handles this in

 the container. Do we want a general mechanism? Seems like a bad

 idea in general unless you adopt something like Service Groups.

�Job Manager?

�I remember this way, right?

