

2

How Do I Model State? Let Me Count the Ways

Ian Foster
Argonne National Laboratory & The University of Chicago

foster@mcs.anl.gov

Draft of March 28, 2005

Abstract

We must sometimes define Web service interfaces that support operations on state, i.e., data values associated with a service that persist across operations, so that the result of one operation can depend on prior operations. We describe four different approaches to modeling state in Web service interfaces, based on the use of WSRF mechanisms, WS-Transfer mechanisms, distinct state identifiers, and simple HTTP, respectively. We show how each approach can be used to define an interface to a simple job management system, and summarize arguments that have been made for and against each approach.
Table of Contents

21
Introduction

22
Four Approaches to Modeling State

43
Example: Job Management

53.1
WSRF Interface

63.2
WS-Transfer Interface

63.3
State Id Interface

73.4
REST Interface

74
Discussion

84.1
Implementation Architecture as a Nonissue

84.2
WSRF and WS-Transfer vs. State Id: Is Convention Valuable?

94.3
WSRF and WS-Transfer vs. State Id: Expressivity Issues

94.4
WSRF and WS-Transfer vs. State Id: Use of WS-Addressing

94.5
WSRF vs. WS-Transfer

94.6
REST vs. the Others

105
Summary

10Acknowledgments

10References

1 Introduction

An airline reservation system and a scheduler of computational jobs are two examples of systems that must provide their clients with some form of access to internal state (e.g., information about current reservations and jobs, respectively) so that those clients can, for example, query the status of, or delete, a reservation or job request.
A Web services interface to such a system will typically include constructs that allow clients refer to state (e.g., reservations and jobs), access state components (e.g., status of a flight or execution status of a job), manage state properties (e.g., set a time for scheduled destruction), and destroy state (e.g., delete a reservation). In other words, such an interface models state, either explicitly (i.e., in terms of operations that refer explicitly to “state”) or implicitly (i.e., in terms of operations that refer to domain-specific terms such as “reservations” or “jobs”).
A variety of approaches have been proposed to modeling state in Web services interfaces. These different approaches are in many respects (and perhaps inevitably) highly similar. However, there are also important differences, and considerable debate as to advantages and disadvantages.
Our goal in this document is to shed light on this topic. To this end, we first present four different approaches to modeling state and show how each can be used to define an interface to a simple job management system. Then, we use these four different interfaces to motivate a summary of key arguments that have been made for and against these approaches.
2 Four Approaches to Modeling State
We first make a few observations about what exactly we are modeling when we talk about “modeling state.” The systems to which we want to define Web services interfaces may have simple or complex internal state. Web services interfaces to such systems expose various aspects of this state so that external clients can engage in “management” operations. For example, an airline reservation system might have a customer-oriented Web service interface that allows clients to create, monitor, and manage reservations. The same system might also have another operator-oriented Web service interface that exposes information about current system load and the mapping of computational resources to different functions. Neither interface provides direct access to underlying state in its entirety. Rather, it defines a projection of some restricted aspects of that state into the Web service domain.
Such projections can be complex. For example, in the case of a job management system, the underlying state associated with even an apparently simple “job” may comprise multiple distinct processes on different computers, entries in various internal tables and catalogs, and activities within subsystems such as schedulers and monitors. A Web service interface to such a system must model the “state of a job” (the projection of the complex underlying state that is to be made available to clients) in a manner that is not only easy for clients to understand and use but that also makes it possible to maintain this projection effectively.

It is unwieldy to keep talking about “modeling a projection of underlying system state,” so in this paper we use the shorthand “modeling state.” But it is important to bear in mind the reality of what is really going on behind the Web service interface.

We now turn to the approaches that we discuss in the paper. We summarize key properties in Table 1, and provide a brief description of each approach in the following.
The WSRF approach models state explicitly as an XML document addressable via an Endpoint Reference (EPR) and with a schema defined by the service’s WSDL. A rich set of operations are defined for determining the schema of such a document, for accessing the document in its entirety or in part, for requesting notification of changes to this document, for updating the document in its entirety or in part, and for deleting the document. The WSRF approach is defined by specifications from the Web Services Resource Framework (WSRF) [5] and WS-Notification framework [2], as well as the WS-Addressing specification for EPRs [4].
The WS-Transfer approach also models state explicitly as an XML document accessible via an EPR, but defines a smaller set of operations: just Create of a new document, Get of an entire document, Put to update an entire document, and Delete to destroy a document. This approach is defined by the WS-Transfer [3], WS-Eventing, and WS-Addressing specifications.
The State Id approach models state implicitly, by application-specific operations on remote state identified by a state identifier that may have meaning only to the Web service to which the operations are directed. No specifications are associated with this approach, which is defined primarily by a commitment not to use EPRs to address state. Thus, each application developed with this approach tends to define it’s own domain-specific syntax and semantics for manipulating state.
The Representational State Transfer (REST) approach [6] is similar to the WS-Transfer approach in that it models state as a document on which essentially the same four basic operations are defined. However, SOAP is not employedm the document is an HTML document, and the operations are HTTP POST, HTTP PUT, HTTP GET, HTTP DELETE.
Table 1: Key characteristics of the four approaches. In each box, we list conventional encodings of a function in terms of operation name(s) and defining specification. The absence of an entry simply means that no conventional encoding has been defined; a custom encoding can still be provided.
	
	WSRF
	WS-Transfer
	State Id
	REST

	Define state schema
	WSDL extensions
	
	
	

	Address state
	EPR
(WS-Addressing)
	EPR
(WS- Addressing)
	Web service reference + state identifier
	URI

	Create new state
	
	Create
(WS-Transfer)
	
	HTTP POST

	Access entire state
	GetResourcePropertyDocument
(WS-ResourceProperties)
	Get
(WS-Transfer)
	
	HTTP GET

	Get part of state
	GetResourceProperty,
GetMultipleResourceProperties,
QueryResourceProperties
(WS-ResourceProperties)
	
	
	HTTP GET

	Update entire state
	SetResourceProperties
(WS-ResourceProperties)
	Put
(WS-Transfer)
	
	HTTP PUT

	Update, or add, part of state
	SetResourceProperties,
InsertResourceProperties,
UpdateResourceProperties,
DeleteResourceProperties
(WS-ResourceProperties)
	
	
	HTTP PUT, HTTP POST

	Request notification
	Subscribe
(WS-Eventing)
	Subscribe
(WS-Eventing)
	
	

	Lease-based lifetime management
	SetTerminationTime
(WS-ResourceLifetime)
	
	
	

	Destroy state
	Destroy
(WS-ResourceLifetime)
	Delete
(WS-Transfer)
	
	HTTP DELETE

	Fault modeling
	Well-defined error codes
(WS-BaseFaults + other specs)
	
	
	

	Open standards process
	Yes (OASIS)
	No
	N/A
	N/A

3 Example: Job Management
We use a simple example to illustrate key issues involved in modeling state. The example is a job management system with an interface that allows clients both to request the creation of computational tasks (“jobs”) and to monitor and control previously created jobs.
Specifically, we consider the eight operations listed in Table 2. We choose these specific operations to represent a range of typical state manipulation operations. In each case, a client makes the request by sending an appropriate message to the job management system, and expects a response indicating success or failure.

Operation #1 creates a new job, with a syntax such as JSDL [1] used to specify such things as required resources, an initial lifetime for the job, and the program to be executed.
Operations #2-#7 support some archetypal job monitoring and control functions on a single job.
Operation #8 is an example of an operation applied to multiple jobs. The set of jobs to which the operation is to be applied might be specified either in terms of job characteristics or by supplying a set of job handles.
Table 2: The eight operations considered in our comparison of different approaches

	#
	Operation
	Description

	1
	Create new job
	A client requests the creation of a new job by sending a job creation request to a job factory service responsible for creating new jobs. Upon success, a job handle is returned that can be used to refer to the job in subsequent operations.

	2
	Retrieve state
	Retrieve all state information associated with a specified job: e.g., execution status, resource allocation, program name.

	3
	Status
	Determine the execution status (e.g., “active,” “suspended”) of a specified job

	4
	Lifetime
	Extend the lifetime of a specified job.

	5
	Subscribe
	Request notification of changes in the state of a specified job.

	6
	Suspend
	Suspend a specified job.

	7
	Terminate
	Terminate a specified job.

	8
	Terminate multiple
	Apply the terminate operation to all jobs with some specified characteristic, such as submitting client id, total execution time, current execution status.

In the subsections that follow, we show how our four approaches can be used to define an interface that supports these eight operations. As we shall see, each approach:

1. has in common that the “job factory service” is a network endpoint to which job creation and certain other requests should be directed, but also:

2. is distinguished from the other approaches in terms of:

· its syntax, i.e., how the “job-handle” should be represented and how operations on the job should be expressed in messages; and

· its use (or not) of conventions defined in existing specifications for the purpose of defining its syntax.
The distinction made here between syntax and conventions may appear unimportant, but we emphasize it so that we can focus in this section on syntax and delay discussion of the advantages or disadvantages of adopting specific “standards” (conventions) to Section ‎4.
3.1 WSRF Interface
Table 3 describes a job management interface based on the use of WSRF and WS-Notification. Here, as in the rest of this section, we use BoldFace to indicate operation names that are defined in some specification associated with the approach in question. Those operations that are not in boldface are, by definition, not defined in any existing specification, and thus their syntax and semantics represent somewhat arbitrary choices, chosen for illustrative purposes. In this case, we see that WSRF and WS-Notification specifications provide five of the eight required functions.

The job handle returned upon success from operation #1 is represented as an EPR. A client receiving such a job handle can then use it as a destination for operations #2-#7. Note that requests are directed to the Web service address contained in the job handle EPR, which may or may not be the job factory service.
Operation #8 is sent directly to the job factory service, which is assumed to have access to information about all active jobs. (WS-ServiceGroup mechanisms could be used to maintain this information.) The argument could be, for example, an Xpath specification identifying the jobs that are to be terminated: for example, all jobs created by Foster or all jobs that have exceeded their quota. An alternative interface would require the client to supply a list of EPRs denoting the jobs to be terminated, but this approach is less expressive and more fragile in that it requires that the client keep track of what jobs have been created.
Table 3: Syntax used in WSRF job management interface, showing for each operation of Table 2
the request message, destination address, and return message
	#
	Message
	To

	Returns on success

	1
	CreateJob(job-specification)
	job-factory-service
	WS-Resource-qualified EPR to job state (“job handle”)

	2
	GetResourcePropertyDocument()
	job-handle EPR
	XML document comprising all job state

	3
	GetResourceProperty(“status”)
	job-handle EPR
	Job status

	4
	SetTerminationTime(lifetime)
	job-handle EPR
	New lifetime

	5
	Subscribe(condition)
	job-handle EPR
	EPR to subscription

	6
	Suspend
	job-handle EPR
	Acknowledgement

	7
	Destroy
	Job-handle EPR
	Acknowledgement

	8
	DestroyMultiple(job-description)
	job-factory-service
	Acknowledgement

3.2 WS-Transfer Interface
Table 4 describes a job management interface based on the use of WS-Transfer and WS-Eventing. We see that WS-Transfer provides five of the eight required operations.
As in the WSRF interface, the job handle returned upon success from operation #1 is represented as an EPR, and a client receiving such a job handle can then use it as a destination for operations #2-#7. Note that requests are directed to the Web service address contained in the job handle structure, which may or may not be the job factory service.

Operation #8 is sent directly to the job factory service, which is assumed to have access to information about all active jobs, as in the WSRF case.
Table 4: Syntax used in WS-Transfer job management interface, showing for each operation of
Table 2 the request message, destination address, and return message

	#
	Message
	To

	Returns on success

	1
	Create(job-spec)
	job-factory-service
	EPR to job state

	2
	Get()
	job-handle EPR
	XML document comprising all job state

	3
	Get()
	job-handle EPR
	XML document comprising all job state, from which status can be extracted

	4
	SetLifetime(lifetime)
	job-handle EPR
	New lifetime

	5
	Subscribe(condition)
	job-handle EPR
	EPR to subscription

	6
	Suspend
	job-handle EPR
	Acknowledgement

	7
	Delete()
	Job-handle EPR
	Acknowledgement

	8
	DeleteMulti(job-spec)
	job-factory-service
	Acknowledgement

3.3 State Id Interface
The State Id interface does not make use of any conventions for its syntax and semantics. Table 5 summarizes its key features. The CreateJob operation returns as a job handle some identifier for the job. This identifier need only have meaning to the factory service, and does not incorporate any Web service address component. A client receiving such a job handle can then pass it to the job factory service.

Table 5: Syntax used in Job handle approach, showing for each operation of Table 2
the request message, destination address, and return message

	#
	Message
	To

	Returns on success

	1
	CreateJob(job-specification)
	job-factory-service
	Identifier for the newly created job

	2
	GetState(job-handle)
	job-handle-service
	XML document comprising all job state

	3
	GetStatus(job-handle)
	job-handle-service
	XML document comprising all job state, from which status can be extracted

	4
	SetLifetime(job-handle, lifetime)
	job-handle-service
	New lifetime

	5
	Subscribe(job-handle, condition)
	job-handle-service
	Acknowledgement

	6
	Suspend(job-handle)
	job-handle-service
	Acknowledgement

	7
	Destroy(job-handle)
	Job-handle-service
	Acknowledgement

	8
	DestroyMulti(job-spec)
	job-factory-service
	Acknowledgement

3.4 REST Interface
The REST interface communicates requests via HTTP POST, PUT, GET, and DELETE messages, with the details of the operations to be performed encoded in the URIs supplied as arguments. Table 6 summarizes its syntax. Note that operation #5 can presumably be addressed via some custom encoding, or by using a system such as SMTP, Jabber, SMS, or Atom.
Table 6: Syntax used in REST job management interface, showing for each operation of Table 2
the request message, destination address, and return message

	#
	Message
	To

	Returns on success

	1
	HTTP POST job-specification
	job-factory-service (e.g., http://grid.org)
	URI(s) identifying the job(s) that have been created: e.g., http://grid.org/Foster/Jobs/4523

	2
	HTTP GET
	http://grid.org/Foster/Jobs/4523
	A representation of the state of the job, including Xlinks and semantic information

	3
	HTTP GET
	http://grid.org/Foster/Jobs/4523/status
	A representation of the status of the job

	4
	HTTP PUT exp-time
	http://grid.org/Foster/Jobs/4523/lifetime
	Acknowledgement

	5
	HTTP POST condition
	http://grid.org/Foster/Jobs/4523/subs
	URI identifying the new subscription

	6
	HTTP PUT “suspended”
	http://grid.org/Foster/Jobs/4523/status
	Acknowledgement

	7
	HTTP DELETE
	http://grid.org/Foster/Jobs/4523
	Acknowledgement

	8
	HTTP DELETE
	http://grid.org/Foster/Jobs
	Acknowledgement

4 Discussion

We summarize here important arguments that have been made for and against the four different approaches. Needless to say the characterizations of the various positions are our own.
4.1 Implementation Architecture as a Nonissue

It has been argued that some interfaces permit more reliable or efficient implementations than others. However, this argument is discredited by the fact that the messages transmitted across the wire in each approach contain essentially the same information. For example, a request to destroy a particular job will in each case be directed to a network endpoint via an HTTP PUT, and contain the name of the operation to be performed plus some data indicating the job that should be destroyed. The approaches vary only in how these different components are included in a message, an issue that may have implications for how messages can be processed and routed but that has no impact on how services are implemented.
Thus, regardless of which of the four approaches considered here is used to model state, a service will receive essentially the same information. A Web service with an interface that provides access to state may be implemented, as is often desirable, as a stateless façade to a backend database. Alternatively, as can sometimes be appropriate—for example, when the state in question is associated with a specialized application—the Web service logic may be an integral part of the application. The same interface abstractions can be used in each case.
4.2 WSRF and WS-Transfer vs. State Id: Is Convention Valuable?
One topic of debate concerning the WSRF and WS-Transfer approaches vs. the State Id approach concerns the value of capturing common patterns relating to state creation and management.

Proponents of the WSRF and WS-Transfer approaches argue that creating, accessing, and managing state involve a set of common patterns that can usefully be captured in a set of specifications, thus simplifying the design, development, and maintenance of applications that use those patterns. For example, in the case of our job management service, they might observe that (a) the creation and subsequent management of a job can naturally be viewed as an instance of some general patterns (creation, access, subscription, lifetime management, and destruction of state associated with a job); (b) the encoding of the job management interface in terms of those patterns simplifies both the design of the interface (as much of it is already provided in other specifications) and the explanation of that interface to others; and (c) the adoption of those patterns can also simplify implementation, as (for example) existing code for state access, lifetime management, and so forth can be reused rather than being written from scratch.
In contrast, proponents of the State Id approach argue that the design of any particular interface (e.g., one for job management) will typically (a) be relatively simple, (b) involve issues that are not captured by these conventional patterns, and (c) not require all of the features included in the specifications that encode that pattern. Thus, one can achieve a design and implementation that are simpler by not following the common patterns but instead proceeding from first principles. For example, in the case of our job management service, they might observe that while it is true that WSRF and WS-Transfer provide us with a Destroy operation “for free,” we still need to introduce a separate “Suspend” operation. Furthermore, the semantics of “Destroy” may be quite application-specific.
Ideally, we would like to evaluate the relative merits of these two positions in terms of concrete metrics such as code size. However, such an evaluation requires agreement on the requirements that interfaces should support. Unfortunately, proponents of the different approaches tend to differ also in their views of requirements. For example, a proponent of common patterns might see the ability to use WS-ResourceLifetime operations for soft-state lifetime management as desirable, while others might not see that feature as important.
4.3 WSRF and WS-Transfer vs. State Id: Expressivity Issues

We can also contrast the WSRF and WS-Transfer interfaces with the State Id interface in terms of expressiveness.
Proponents of the WSRF and WS-Transfer interfaces point out that having the create operation return an EPR rather than a simple state identifier allows them to refer subsequent monitoring and management operations to a different service. This redirection can allow jobs and the factory to be placed at different locations. A counter-argument is that if this behavior is required, the State Id interface can be extended to return a Web service address as well as a State Id. In that case, the distinction between the different approaches relates primarily to whether the two components are maintained separately, or packaged in an XML structure such an EPR.
Proponents of the State Id approach have argued that if a WSRF or WS-Transfer interface supports requests sent directly to the factory service, then there is no need to also support operations on individual jobs. (E.g., operation #7 is redundant given operation #8.) A counter-argument is that the individual job and multi-job operations are of different kinds. The individual job operation is a primitive function to be sent directly to the service that encapsulates the job. Multi-job operations exploit the additional registry state maintained by the factory, which as noted in the preceding paragraph, may or may not be the same service.
4.4 WSRF and WS-Transfer vs. State Id: Use of WS-Addressing
Proponents of the State Id approach criticize the WSRF and WS-Transfer approaches’ use of WS-Addressing EPRs on the grounds that not all Web service client tooling support WS-Addressing. Proponents of the WSRF and WS-Transfer approaches counter that WS-Addressing is by now quasi-ubiquitous, being supported by Microsoft, IBM, BEA, and Apache for example.
4.5 WSRF vs. WS-Transfer

As suggested by the strong similarities between the WSRF and WS-Transfer specifications, the differences here are fairly subtle. We discuss a few of these differences here.
WS-Transfer defines a standard Create operation; WSRF, unlike its predecessor OGSI, does not, on the grounds that any practical implementation of this operation must always extend it in various ways [7]. This difference is relatively minor.
The WS-Transfer Get operation returns the entire state of a resource, while the operations defined in the WS-ResourceProperties specification can provide access to selected components. Proponents of WSRF argue that the latter approach is preferable because state size may sometimes be large, as for example with a complex job.
Proponents of WS-Transfer argue that because it defines fewer operations, it is better suited to implementation on small devices. This argument has been countered by a demonstration of a WSRF and WS-BaseNotification implementation in 102 kilobytes memory on a RIM Blackberry handheld.
Proponents of WSRF point out that WSRF and WS-Notification specifications have been been the subject of an intensive community review within the OASIS standards organization; the WS-Transfer and WS-Eventing specifications have not.
4.6 REST vs. the Others

The arguments made for and against the State Id approach also apply, in large part, to the REST approach, in that neither approach (a) identifies standard patterns nor (b) makes use of EPRs to bundle endpoint address and job identifier.
Proponents of the REST approach also argue that it provides for more concise requests and permits the use of simpler client tooling than approaches based on Web services.
5 Summary
We have presented four different approaches to modeling state in (Web) service interfaces. Each approach defines roughly comparable constructs for referring to, accessing, and managing state components, but differs according to both their precise syntax and the use made (or not) of conventional domain-independent encodings of operations.
Thus, what we call the WSRF and WS-Transfer approaches both use WS-Addressing EPRs to refer to state components, and adopt conventions defined in the WSRF and WS-BaseNotification specifications (for WSRF) and in the WS-Transfer and WS-Eventing specifications (for WS-Transfer), respectively, when defining state management operations. In contrast, what we call the State Id and REST approaches adopts a domain-specific encoding of operations, on top of SOAP and HTTP, respectively.
Our analysis of the arguments made for and against the different approaches identify the following key areas of debate:

· Is it useful to adopt conventional encodings of common state access patterns? WSRF and WS-Transfer do (WSRF to a greater extent than WS-Transfer), State Id and REST do not.
· Is it important that specifications be developed within standards organizations? WSRF has been so developed, WS-Transfer has not.
· Are Web services mechanisms, specifically SOAP transport, useful? REST does not use them, others approaches do.

· Is the use of WS-Addressing an obstacle to adoption? WSRF and WS-Transfer use WS-Addressing, State Id and REST do not.

The answers to these questions can presumably vary according to the interface that is being developed, the intended deployment environment, and other factors.
Acknowledgments

I am grateful to Mark Mc Keown for providing the REST description, and to Karl Czajkowski, Jim Grey, Savas Parastatidis, Sam Meder, and Paul Watson for comments on an earlier version of this document. Needless to say, the characterizations of the different arguments are my own.
This work was supported in part by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.
References
1.
Job Submission Description Language (JSDL) Working Group. Global Grid Forum, 2005. https://forge.gridforum.org/projects/jsdl-wg.

2.
OASIS WS-Notification Technical Committee, 2004. www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn.

3.
Alexander, J., Box, D., Cabrera, L.F., Chappell, D., Daniels, G., Geller, A., Janecek, R., Kaler, C., Lovering, B., Orchard, D., Schlimmer, J., Sedukhin, I. and Shewchuk, J. Web Services Transfer (WS-Transfer), 2004.

4.
Bosworth, A., Box, D., Christensen, E., Curbera, F., Ferguson, D., Frey, J., Kaler, C., Langworthy, D., Leymann, F., Lucco, S., Millet, S., Mukhi, N., Nottingham, M., Orchard, D., Shewchuk, J., Storey, T. and Weerawarana, S. Web Services Addressing (WS-Addressing). 2003.

5.
Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Sedukhin, I., Snelling, D., Tuecke, S. and Vambenepe, W. The WS-Resource Framework, www.globus.org/wsrf, 2004.

6.
Fielding, R. Architectural Styles and the Design of Network-based Software Architectures. University of California Irvine, PhD, 2000.

7.
Foster, I., Czajkowski, K., Ferguson, D., Frey, J., Graham, S., Maguire, T., Snelling, D. and Tuecke, S. Modeling and Managing State in Distributed Systems: The Role of OGSI and WSRF. Proceedings of the IEEE, 93 (3). 604-612. 2005.

� With apologies to Elizabeth Browning (1806-1861)

