An Open Grid Services Architecture (OGSA®) Primer
Andrew Grimshaw, Hiro Kishimoto, Andreas Savas, Mark Morgan, David Snelling, Duane Merrill, Chris Smith
Anyone else care to participate – meaning really do work
Notes: Target publications include IEEE Computer, IEEE Internet computing, ACM Communications, or InfoWorld ?? I think Internet computing is best match – but may not have the readership we want. One option is to do two slightly different versions for IEEE IC and InfoWorld.

Abstract:

Grids are about secure, transparent access to resources on a wide-area, multi-organizational scale. This is accomplished via resource virtualization and the adoption of standard protocols for interaction. Rather than one single monolithic “Grid”, it is expected that grids-of-grids will constructed. In order to construct grid-of-grids it is necessary to agree on grid interoperation standards. While simple standards such as TCP and http are sufficient (and necessary) to move the bits from one grid to another, they lack the semantic richness of higher level services.

The Open Grid Services Architecture defines both a set of design philosophies and protocols for service interaction that define higher level service abstractions such as execution management, naming and binding, data access and querying, authentication, delegation, and resource managament. OGSA is an open architecture in two ways. First, the development of specifications and profiles occurs in a completely open process where no one group or company can define the outcomes, porttypes, schema, and interaction protocols. Instead specifications and profiles are the result of consensus and are non-proprietary. Second, there are different implementations available – some of which are available as open source, reference implementations.

After several years of development, consensus building, and experimentation there are a suite of OGSA specifications that have completed, and for which there are both commercial and academic interoperable implementations.

In this paper we present a broad overview of OGSA, its’ motivation, structure, basic services, how those services can be composed to provide higher level services, and a road-map going forward.
1 Introduction
Grid computing is concerned with the virtualization, integration, and management of services and resources in a distributed, heterogeneous environment that supports collections of users and resources across traditional administrative and organizational domains. Grids, therefore, provide the framework for building and supporting multiple models of use such as adaptive computing
, utility computing, and high-performance computing. Grids may exist within a single enterprise, across departments, or, as in the case of academic Grids or collaborative commercial projects, they may span multiple organizations.
Grid technology has been the “secret weapon” of many early adopters, and its use is expected to grow significantly over the next few years as enterprises of all types and sizes take advantage of it to speed-up and improve their applications, handling huge amout of data, and automate and optimize their use and management of resources, in an effort to meet objectives such as reduce turn around time, increase precision of result, minimized cost and increased agility and collaboration.

While the precise definition of Grid is debated, common characteristics are that Grids tend to be large-scale and widely distributed, to require decentralized management, to comprise numerous heterogeneous resources, and to have a transient user population. Hence Grids exemplify the need for a highly-scalable, reliable, platform-independent architecture that supports secure operation and standardized interfaces for common functions.
To date, Grids have been built using, for the most part, either ad hoc open source software components and protocols or proprietary technologies. While various open source and commercial solutions have been successful in their niche areas, each has its strengths and limitations, and they offer little potential as the basis for future-generation Grids, which will need to be highly scalable and interoperable to meet the needs of global enterprises.
Service Orientation and Web Services

In recent years, the increasing use of Web-based applications such as retail sales and travel reservation systems has fostered a move toward a service-oriented style of design for distributed systems, implemented using Web services. Applications designed in this way are assembled from well-defined, modular “services” which interoperate by exchanging messages, without regard to each other’s implementation language or operating environment. Copies of a service can be distributed across multiple servers, and their numbers can be adjusted as demand fluctuates, to balance resource usage against required performance levels. Thus, IT managers can at once optimize the use of valuable resources and improve reliability, since services can be distributed across geographically-separated networks and servers.

Web services also offer a way to “virtualize” disparate resources or to enable legacy applications to participate in a service-oriented environment, as simple proxy services can be written to “represent” the resources or applications, allowing them to interoperate with other services through well-known interfaces.

W3C, OASIS, DMTF, IETF, and OGF are among the standards bodies that, often in partnership, are developing standards for areas such as communication, security, manageability and negotiation based on XML and Web services. The availability and use of standards makes it easier to develop high-level applications composed of simple, reusable services, and allows IT vendors to provide truly interoperable tools for activities such as system management.

Grids and Web Services

There is considerable overlap between the goals of Grid computing and the clear benefits of a service-oriented architecture (SOA) based on Web services. Rapid progress has been made in evolving Web services technology and standards, and there is now a natural evolutionary path from the “stovepipe” architecture of current Grids to the standardized, service-oriented, enterprise-class Grid of the future.

The Open Grid Forum (OGF) is now leading the convergence of Grid computing and SOA
with the introduction of the Open Grid Services Architecture.
The Open Grid Services Architecture (OGSA)
OGSA is an “open, service-oriented architecture,” based on Web services, for realizing Grid scenarios [1] <need to cite the OGSA 1.5 arch doc, the use case doc, and the roadmap doc>. “Open” refers to both the process to develop standards and the standards themselves. It is “service-oriented” because it delivers functionality as loosely-coupled interacting services. The “architecture” is the definition of the components, their organizations and interactions, and the design philosophy used.

Grid scenarios present a number of significant challenges to end-users, application developers, and IT managers. These challenges revolve around issues such as security (authentication, authorization, trust, and data integrity), fault-tolerance
 (meeting service-level agreements, availability, etc.), scheduling and resource management, and data management. They are exacerbated by bandwidth and latency constraints, and the scope and scale that Grids need to achieve.

Each of these challenges must be addressed either by the application developer or by Grid middleware. If application developers are forced to meet these challenges using traditional approaches, all but the best will be overwhelmed by the complexity. The result will be missed deadlines, cost-overruns, and less-than-robust software.

OGSA addresses these complex challenges by defining a set of standards that together, like the interlocking pieces of a puzzle, provide the foundation on which to build robust Grid applications and Grid management systems. Thus, OGSA defines the services, their interactions, and the design philosophy.

These services fall into seven broad areas, defined in terms of capabilities that are frequently required in Grid scenarios. These capabilities are provided by functional behaviors of services, often through interaction with other services. It is important to note, though, that while there may be interdependencies between services, not all services need be used at any given time—different use-cases may call for different subsets of services. Further, there has been an uneven development of the seven areas.
The seven areas of OGSA are briefly introduced below.

· Infrastructure Services (Refer to a set of common functionalities typically required by higher level services. As OGSA builds on Web services technologies, service interfaces are defined by the Web Services Description Languages (WSDL). Infrastructure includes emerging standards such as the Web Services Resource Framework (WSRF), WS-Notification (WSN), and Naming (RNS, WS-Naming, and WS-Addressing).
· Execution Management Services (Concerned with issues such as starting and managing tasks, including placement, provisioning, and lifecycle management. Tasks may range from simple jobs to complex workflows or composite services.

· Data Services (Provide functionality to move data to where it is needed, manage replicated copies, run queries and updates, and transform data into new formats. Data consistency, persistency and integrity are key requirements satisfied by these services.

· Resource Management Services (Provide management capabilities for Grid resources: management of the resources themselves, management of the resources as Grid components, and management of the OGSA infrastructure. For example, resources can be monitored, reserved, deployed and configured as needed to meet application quality-of-service requirements. It also requires information model (semantics) and data model (representation) of grid resources and services.
· Security Services (Facilitate the enforcement of security-related policy within a (virtual) organization, and support safe resource-sharing. Authentication, authorization and integrity-assurance are essential functionalities provided by these services.

· Self-Management Services (Support service-level attainment for a set of services (or resources) – with as much automation as possible, to reduce the costs and complexity of managing the system. These services are essential in addressing the increasing complexity of owning and operating an IT infrastructure. The first step of self-management is automation of non-trivial procedure such as repurposing or provisioning of execution resource by installing specified OS, middleware, and application binary.
· Information Services (Provide efficient production of, and access to, information about the Grid and its constituent resources. The term information refers to dynamic data or events used for status monitoring; relatively static data used for discovery; and any data that is logged. Troubleshooting is just one of the possible uses for information provided by these services.
The remainder of this paper is structured as follows. We begin with a discussion of the architectural philosophies and design goals that underlie and frame OGSA. We then examine in more detail each of the eight OGSA service areas introduced above. For each we describe the problem, objectives, and relevant specifications and profiles. Next we illustrate how the pieces can be combined to realize three simple, illustrative, use cases. We conclude with a discussion of implementations, interoperability status, and the road-map going forward.

2 Architectural Philosophy and Design Goals
What is an architecture? In the computer systems world an architecture is the definition of the components, their interactions, and the design philosophy used in the development of the whole system. In a grid the architecture is defined by a design philosophy, the service interfaces, and the interaction protocols between those services. In other words, what are the pieces of the puzzle, how do they fit together, and what does the puzzle look like when complete. While there are many philosophical themes at work in OGSA – several deserve special attention.

One cannot design a system that will satisfy every user’s needs. We have designed OGSA to allow users and implementers the greatest flexibility in the semantics of their applications: We have avoided the temptation to provide “the solution” to a wide range of system functions. Users are be able, whenever possible, to select both the kind and the level of functionality, and make their own trade-offs between function and cost.

No play no pay. If you do not need a service or capability you should not have to “pay” for it in performance and complexity. This is essentially an endorsement of the End-to-End design philosophy[2].

Less is more. This is the old engineering maxim KISS. We have, as much as possible been guided by the famous quote from Antoine de Saint-Exupery, “Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away.”
Composition. Services and protocols must be designed so that they can be readily composed with other services and protocols without breaking. This, combined with “less is more”, leads to an architectural style with a large number of simple services and abstractions that can be combined in myriad ways to produce a large number of different behaviors.
Don’t re-invent the wheel. Work when possible with other proven standards. For example, OGSA relies heavily on existing Web Services standards and profiles such as WSDL, JSDL, WS-Security, WS-I, and others.
Architecture should be rendering neutral. An architecture should not depend on the particular implementation mechanism. Thus, while existing implementations use have a Web Services underpinning, OGSA components could be realized using Java RMI, CORBA, or a home-grown RPC.
Site autonomy: An OGSA-based grid will not be a monolithic system. It will be composed of resources owned and controlled by an array of organizations. There is simply no way that thousands of organizations and millions of users will subject themselves to the dictates of a “big brother” centralized control mechanism or subject their resources and data to external management. Organizations, quite properly, will insist on having control over their own resources, e.g., specifying how much resource can be used, when it can be used, and who can and cannot use the resource.

Another aspect of site autonomy is autonomy of implementation. Sites must be able to choose which implementations of OGSA components to use, either because they “trust” one implementation over another, for performance, or for whatever reason they may have to choose one implementation over another.

Security for users and resource owners: We believe very firmly that security must be built into the core from the very beginning. To try to patch security on as an afterthought, as is being attempted today in many contexts, is fundamentally flawed. We also believe that there is no one security policy that is perfect for all users.

Because we cannot replace existing host operating systems, we cannot significantly strengthen existing operating system protection and security mechanisms. However, we must ensure that existing mechanisms are not weakened by OGSA. Therefore, we must provide mechanism for users to select policies that fit their needs; OGSA should not define the security policy or require a “trusted” OGSA.

Fault-tolerance: In a system as large as OGSA, it is certain that at any given instant, several hosts, communication links, and disks will have failed. Thus, hooks for dealing with failure and dynamic re-configuration is a necessity — both for OGSA components themselves, and for applications.

Separation of policy and mechanism. Mechanism is concerned with how things are done, policy with what should be done. The focus in OGSA is on mechanism, and ensuring that adequate mechanism is available to support a wide variety of policies.
Note that many of these design goals are not unique to grids but are shared by systems in general.

3 Deeper Dive

3.1 Infrastructure
Infrastructure Services refer to a set of common functionalities typically required by higher level services. As OGSA builds on Web services technologies, service interfaces are defined by the Web Services Description Languages (WSDL). Infrastructure includes emerging standards such as the Web Services Resource Framework (WSRF), WS-Notification (WSN), and Naming (RNS, WS-Naming, WS-Addressing).

Infrastructure services are concerned with service naming, inter-service communication, and reflection. We build heavily on existing Web Services standards and augment them with two specifications that address high level service naming and binding. Before we begin we need to define some terms – then will start with naming.

Naming

Suppose we have two resources A and B, and that A wishes to interact with B. How does A refer to B? OGSA, like many distributed systems architectures before it [3-7], defines a multi-layer naming scheme of addresses, location transparent identities, and path names.
For addressing OGSA uses WS-Addressing End Point References (EPR’s)[8]. An EPR is an XML document that contains an “address” field that is a URI, e.g., http://hadrian.cs.virginia.edu/someformofstring. An EPR may also contain ReferenceParameters and MetaData sub-elements. The ReferenceParameters are opaque to clients. MetaData is visible to the client and is used to decorate the EPR’s with information that clients may use.
The optional WS-Naming [9] layer provides location transparent identities and name re-binding. Location transparent names are supported via an optional EPR MetaData element called an End Point Identifier (EPI). An EPI is an IRI/URI that the minter asserts is unique in space and time. Clients may compare the EPI’s contained in two or more EPR’s. If the EPI’s are the same, the EPR’s are said to refer to or point to the same entity. Sameness is defined by the semantics of the underlying service. If the EPI’s are different nothing can be inferred.
The re-binding aspects of WS-Naming EPR’s facilitate the implementation of the traditional distributed system transparencies [10-12]: migration, failure, replication, etc. The basic idea is simple. Embedded inside of an EPR’s MetaData element is an optional Resolver EPR. A client may call the Resolver EPR to acquire a new EPR for the service. For example suppose we have a client C, and service EPR S that contains a Resolver EPR R. Suppose S migrates. Subsequent invocations of S by C will fault – S has moved. C can then invoke the resolution function to acquire a new EPR for S, S`. E.g., S` = S.R.resolve().
While EPRs are convenient for applications to manipulate they can easily exceed hundreds of characters in length making them awkward for humans to use. Further, the EPR namespace usually does not represent relationships between EPR’s. To address these short-comings and make Grids more human friendly the Resource Namespaces Service (RNS) provides a hierarchical directory structure that maps string paths to EPRs much as a Unix directory maps string paths to inodes. Thus services and Grid resources can be grouped and accessed in a semantically meaningful way using directories and paths.

For example, suppose I have the path “/biology/databases/Sequences/pir21.a” I do not need to know where the file is located, whether there are multiple copies, or anything else.

Synchronous and asynchronous communication

Distributed systems often support both synchronous and asynchronous communication. By “synchronous” we mean for example a synchronous Remote Procedure Call (RPC) where the caller sends a message to a service and waits for the result. Synchronous RPC is the dominate form of interaction in Web Services today.

Often though either the client does not want to wait for the result, or perhaps the client is interested in some event that may or may not happen in the future. In this case the client passes a call-back to the service. The call-back is invoked when the result is ready or the event of interest occurs. Examples in use include WS-Notification and WS-Eventing. Both of these paradigms, synchronous RPC and asynchronous notification are extensively used in OGSA.
Reflection & Metadata
Reflection is a critical infrastructure capability. “Reflection” here refers to the ability to discover properties or attributes of Grid resources, e.g., the port types implemented, the security mechanisms used, the provenance of data, etc. Examples in use include WS-Resource [13] and WS-MetadataExchange [14].
Factory pattern

How OGSA resources come into existence is generally out of scope of the specification. However, many OGSA services realize a factory pattern in which a resource is instantiated as side effect of a service invocation. For example, when a legacy application is run using a OGSA-BES resource a new resource representing the application execution is created, and the EPR to the new resources is returned to the caller.
Other yet undefined services

There are other infrastructure services – many of which are still in development in various standards bodies, e.g., reliable messaging and distributed transaction. We look forward to leveraging those efforts.
3.2 Execution

Execution Management Services (OGSA-EMS) are concerned with the problems of instantiating and managing, to completion, units of work. Examples of units of work may include either OGSA applications
 or legacy (non-OGSA) applications (BLAST application, a database server, a servlet running in a Java application server container, etc).

More formally, EMS addresses problems with executing units of work, including their placement, “provisioning,” and lifetime management. These problems include, but are not limited to:

· Finding execution candidate locations. What are the locations at which a unit of work can execute because they satisfy resource requirements such as memory, CPU and binary type, available libraries, and available licenses? Given the above, what provider’s policies are in place that may further limit the candidate set of execution locations?

· Selecting execution location. Once it is known where a unit of work can execute, the question is where should it execute? Answering this question may involve different selection algorithms that optimize different objective functions or attempt to enforce different policies or service level agreements.

· Preparing for execution. Just because a unit of work can execute somewhere does not necessarily mean it can execute there without some setup. Setup could include deployment and configuration of binaries and libraries, staging data, or other operations to prepare the local execution environment.

· Initiating the execution. Once everything is ready, actually starting the execution and carrying out other related actions such as registering it in the appropriate places.

· Managing the execution. Once the execution is started it must be managed and monitored to completion. What if it fails? Or fails to meet its agreements. Should it be restarted in another location? What about state? Should the state be “checkpointed” periodically to ensure restartability? Is the execution part of some sort of fault-detection and recovery scheme?

These are the major issues to be addressed by EMS. As one can see, it covers the gamut of tasks, and involves interactions with many other OGSA services (e.g., provisioning, logging, registries, and security.) that are expected to be defined by other OGSA capabilities.
There are three broad classes of EMS services:

· Execution Resources that model processing;

· Job management and monitoring services; and

· Resource selection services that collectively decide where to execute a unit of work.

Execution Resources.
Execution resources are modeled as service “containers”
 in which execution logically occurs. In general service containers will handle all sorts of executions, from command line applications to Java applications, Web Services and database transactions. That said, an initial set of Basic Execution Services targeted at the execution of command line applications have been developed. The OGSA-BES [15] specification defines operations to start, monitor, and terminate jobs. The job to be executed is specified in a JSDL (Job Submission Description Language) [16] document. The JSDL document describes the application, the command string to be executed, files to be staged-in and out before and after the execution, etc.

There are many different implementations of the OGSA-BES specification. At SC’06 in Tampa there was an interoperability demonstration. Ten different organizations, both corporate and academic, from Asia, the United States, Europe, and the UK
 were shown to interoperate. Further, Microsoft has announced that it will support the HPC-Profile on BES in Version 2 Microsoft Cluster Compute ServerTM.
The OGSA-BES interface (in WSDL) includes functions to start jobs based on a JSDL description, monitor jobs though their lifetime, query job state, and destroy jobs. The specification also includes the definition of a number of resource attributes or properties that describe the execution resources, such as processor type, operating system, etc.

3.3 Data <Dave Berry and Mark Morgan please check!>
Data is the Ying to the execution services Yang. The basic problem is how to model, name, access, and manage data resources. The OGSA data architecture has many components [cite], but can thought of as broadly falling into two conceptual layers: an access layer and a virtualization layer. The access layer is concerned with how applications programmatically get to the data, e.g., via a Grid-aware NFS service or a Grid-aware data API such as SAGA [cite]. The virtualization layer presents all data resources as Web Services that are manipulated via invocations on WS-Addressing End Point References. The virtualization layer does not distinguish between data that is real or has been materialized, e.g., there are bits sitting on a disk or in memory somewhere, and data that is generated on request. Data is data, accessed via Web Services.
Broadly speaking there are three types of data for which there are specifications today: data stored in relational database management systems, randomly addressable byte vectors (think Unix file), and streams of bytes. The porttypes for these are specified in the OGSA-DAI [cite], OGSA-ByteIO, and OGSA-ByteIO streams respectively.

Resource instances of each of these types (and indeed many others) may be placed into an RNS name space for easy access. Let’s look at each of these.

Resource Name Space – RNS

RNS provides basic directory services. Each RNS resource maps strings to rns_entries. An rns_entry is an XML document. Each rns_entry must contain a string rns_entry_name, e.g., “myfile”, an EPR, and may contain additional arbitrary XML elements. RNS entries may be added, deleted, and listed. The list function takes a regular expression and returns a list of zero or more RNS entries. Directory paths can be followed by extracting substrings from a path, looking them up in an RNS resource, extracting the EPR from the returned rns_entry (assuming three is one), and then looking up the next path element.
OGSA-DAI

OGSA-DAI provides the ability to submit queries against structured databases such as RDBMSs. The client sets up a query and invokes it against an OGSA-DAI resource. The OGSA-DAI resource parses and executes the query and creates a new OGSA-DAI resource that is the result, and returns the EPR of the new resource. The returned resource may also implement the ByteIO interface, in which case the client can simply read the bytes out.

OGSA-ByteIO
ByteIO provides the usual POSIX-like interface to files, e.g., read, write, stat, etc. In read and write the offset, number of bytes, and data buffers are passed in and out. The OGSA-ByteIO specification also defines a streamable ByteIO with the functions you would expect, get_next, etc.
One of the powerful aspects of OGSA is that the ByteIO and RNS interfaces (porttypes) can be combined with other porttypes. For example, a BES resource could implement the RNS interface as well. Listing the “contents” of the BES resource might return entries corresponding to the jobs running on that BES resource. Similarly, copying a ByteIO file into the BES resource could cause the BES resource to see if it is a valid JSDL document – and if so execute the document. This is reminiscent of Plan 9 [3].

3.4 Resource Management

Ellen’s modeling stuff
3.5 Security

The subject of computer and information security is complex and far-reaching. Simply put, the notion of “security” is a system’s ability to protect its assets. At the most fundamental level, the assets within a services-oriented Grid architecture are the resources exposed by service clients and endpoints. Such resources may exist in the form of information and data, communication and data processing services, controls for equipment and facilities, etc.
Why do Grid assets need protection? The types of security threat that Grid resources can be vulnerable to can be generalized to:

· Disclosure or theft of resources. The disclosure of confidential data (such as new product designs or advertising campaigns) to a competitor can spell disaster for a company. The theft of computing or storage resources might result in loss of revenue or, perhaps worse, legal consequences. (For example, stolen resources might be employed to share copyrighted media, etc.)
· Modification (including destruction) of resources. Consider the accidental corruption of data from a high-energy physics experiment that no one can afford to repeat. Or the alteration of clinical trial data to show that a new drug is safe. Or perhaps the destruction of electronic evidence from a criminal case.

· Resource service interruption. The denial of service to legitimate users defeats the purpose of exposing resources within the Grid.
The successful fulfillment of such threat can result in dire consequences for Grid participants. It is for this reason that an effective security model is paramount to the adoption of the OGSA. Without a strong commitment to meaningful security, many potential adopters would be unable to participate because of undue risk and/or legal restrictions.
Although daunting, the task of realizing acceptable security can be boiled down to the process of threat assessment. Threat assessment is the process of identifying the specific security threats against which protection is required. At a high level, threat assessment involves:

(a) Identifying asset vulnerabilities.

(b) Analyzing the likelihood of attacks exploiting these vulnerabilities and assessing the consequences of successful attacks.
(c) Deriving a high-level set of requirements that governs what is and is not permitted during operation. (Unauthorized behavior is implicit in the notion of security threat.) These requirements are stated as security policy.
(d) Selecting security mechanisms that are appropriate in terms of cost, usability, performance, and effectiveness at implementing the security policy.

The biggest challenges of architecting a practical Grid security model arise from the fact that, in many cases, the users and resources participating within a Grid environment have already undergone threat assessment within the context of their existing organizational domains. Resources will already be equipped with security policies for authorized behavior. The OGSA’s site autonomy theme posits that organizational domains will retain control over these security policies, even as they may need adjustment to accommodate new vulnerabilities arising from exposure through Grid service interfaces.

Federation
The principle of authorization is fundamental to any security model. Security models are created to mitigate threat, and the notion of unauthorized behavior is implicit within any given security threat. In the OGSA security model, resources are anticipated to have existing security policies for authorized behavior that are tied to extant identity or rule- based credential infrastructures (e.g., Kerberos, X.509 PKI, SAML, etc.). These infrastructures are unlikely to be shared by other administrative domains within the Grid, even if the credential mechanisms are common. In an end-to-end interaction scenario within the Grid environment, the identities or roles of the participants as well as their respective credentials may not carry any syntactic or semantic meaning to the other participants. However, these credential infrastructures and authorization mechanisms are core to the operation of their parent domains and cannot be expected to be replaced or supplanted for the purposes of the Grid architecture. Hence the OGSA security model is tasked with the integration of existing trust and security domains.
Enabling interoperation will thus require federation of the involved domains and their respective security mechanisms: authorized access to resources managed in one realm can be provided to security principals whose identities and attributes are managed in other realms. To enable federation, the OGSA security model will leverage the WS-Federation specification as a foundation for profiling mechanisms that broker identity, provide attribute discovery and retrieval, manage authentication and authorization claims between federation partners, and protect the privacy of these claims across organizational boundaries.
However, the profiling of mechanisms for achieving cross-domain authorization does not fully solve the security-domain-integration problem. In order to securely process requests that traverse between members of a virtual organization, it is necessary for the member organizations to have established trust relationships. Trust is the expression between parties that one party will believe claims made by another party. Trust is often based on evidence, history, experience, and risk tolerance. Implicit in the notion of trust is the expectation of certain future behavior.
The arrangement and maintenance of such relationships is known as trust management, which is a much more tenuous prospect than simple end-to-end interoperability. The OGSA security model addresses trust management via the profiling of mechanisms defined in the WS-Trust specification in order to realize trust relationships as rules and policies for mapping identities and credentials among the involved organization domains.
The OGSA merely profiles the behavior and interfaces of the federation and trust management services necessary to integrate security domains. These services will not be operated by a “trusted third party” OGSA entity, and will themselves be subject to the trust relationships they collectively define.

Communication Mechanisms
The OGSA is intended to operate within a networked environment having the set of threat characteristics known as the “Internet Threat Model” (RFC 3552). In general terms, this model assumes that the end systems (i.e., hosting environments, operating systems, container software, etc.) are secure, yet the interconnection network is not. Attackers within the network are presumed to be able to inspect and possibly modify communication traffic, and are assumed to have reasonable computational ability.
In many cases a resource’s existing security policy will have already been defined within the context of a security domain having the properties of the Internet Threat Model. As such, it may identify secure communication requirements (e.g., integrity, confidentiality) that can be directly mapped to corresponding mechanisms in Web services protocols. In other cases, particularly scenarios in which the resource previously operated in a trusted domain (e.g., a network topology with security perimeters such as firewalls, VPNs, etc.), new threat assessments will need to be conducted to address potential secure communication requirements. This task, of course, is the responsibility of the resource provider.
The commitment of the OGSA to the Web services paradigm carries an implicit commitment to the SOAP protocol for exchanging XML messages over communication networks. The SOAP protocol is extremely flexible. It can be enacted over virtually any other communication protocol, such as HTTP, SMTP, JMS message queues, etc. These substrate protocols may themselves provide security guarantees for properties such as authentication, integrity, and confidentiality. (For example HTTP can leverage SSL/TLS to provide transport-layer security protection.) When relying on these properties to mitigate threat, care must be taken to assure that the end-to-end notions of the substrate protocol match those of the SOAP message exchange.

The SOAP protocol is sufficiently general in that it can support virtually any credentialing system. In particular, the Web Services Security (WS-Security) family of specifications defines a general-purpose mechanism for associating security credentials with message content which is then used to construct a set of specific profiles for encoding popular token types (e.g., X.509, Kerberos, SAML, and Username-token credentials). The WS-Security Core specification also defines the application of XML-Encryption and XML Digital Signature to provide end-to-end messaging integrity and confidentiality without the support of the underlying communication protocol. In order to achieve real-world interoperability, the WS-I Basic Security Profile (WS-I BSP) provides guidance on the use of WS-Security and its associated security token formats to resolve nuances and ambiguities between communicating implementations intending to leverage common security mechanisms.
The SOAP protocol and, to a more general extent, the service-oriented-architecture (SOA) philosophy, present a fine line that must be observed by the OGSA security model. The SOA paradigm asserts that nothing can be presumed regarding the implementations of service resources. Interaction with these resources is accomplished via the exchange of SOAP messages, whose formats and destinations constitute their only publicly-available descriptions. The security model must not make any presumptions regarding the security policy (i.e., authorization semantics) of service endpoints. Such semantics are solely the concern of the resource provider. However, the mechanisms required to support a service endpoint’s security policy do affect message format. For example, a service endpoint may require incoming messages to contain specific types of security credentials or be signed or encrypted in a certain fashion. The OGSA security model treats these impositions upon message format as orthogonal to the application-specific message formats defined by service interfaces. All service implementations of a particular application (e.g., a basic execution service) must conform to the same interface, yet each is free to choose the security mechanisms that satisfy its particular security policy requirements.
Although the OGSA philosophy suggests that service implementers are free to select arbitrary SOAP transports and message-level security mechanisms, the OGSA security model does in practice place restrictions on such choices. The OGSA Security Profile 2.0 (OGSA-SP) is a “living” set of documents intended to profile security mechanisms suitable for use within Grid communication. These documents are architected in such a way to facilitate the composition of profiled mechanisms in meaningful ways to suite the particular needs of a given service endpoint. The mechanism profiles defined within the OGSA-SP documents are primarily transparent references to de-facto profiles published within WS-Security and the WS-I BSP. For example, the OGSA-SP presently contains composable profiles for server-authenticated TLS, mutually-authenticated TLS, UsernameToken authentication, mutual-X.509 authentication, digital signature and encryption of document elements, etc., most of which defer completely to sections of the WS-I BSP. In this fashion, the OGSA-SP serves as a location for minor mechanism clarifications and refinements as Web services mechanisms are adapted to the Grid environment.
The main contribution of the OGSA-SP documents, however, is that they are a profile on the WS-Addressing specification. The WS-Addressing endpoint reference (EPR) data structure is a useful construct because it provides the “invocation context” for a service endpoint: the necessary information required by a client to establish meaningful communication. As defined by WS-Addressing, the EPR is not capable of conveying the security requirements of the service endpoint. The OGSA-SP documents remedy this deficiency by describing the mechanism by which WS-SecurityPolicy policies should be included within an EPR to describe the communication requirements (in as much as how these requirements affect acceptable message format) of the referenced endpoint.

In of itself, the OGSA security model is not sufficient to guarantee interoperability of all OGSA services. The purpose of the model and its philosophies is provide a flexible and extensible framework for profiling of how security requirements are advertised, discovered, and enacted in an environment composed of heterogeneous security domains. The specific secure communication requirements may vary between grid communities. The intent is for a community to self-select such requirements that are appropriate and then leverage the model’s profiles and security services as necessary to achieve interoperability between its members (and/or cleanly discover where interoperability is not possible).
3.6 Self management

Problem, solution, specs

Look at 1.5 architecture document

CDDLM?, ACS?
3.7 Information Services

Problem, solution, specs

4 Putting the Pieces together
The specifications described above are sufficient to realize a number of different grid use cases. Five of these use cases are described below: high throughput computing, transparent access to data, a data center use case, a federated data environment, and a service mobility use case. For each we will briefly describe the problem the use case is designed to solve and how the OGSA services are composed to provide the required capability.
4.1 High-throughput computing use case

High throughput computing is one of the most common uses cases in grids today. The problem to be solved is to distribute a large number of jobs onto a set of computational resources that may span administrative domains and file systems. For example, a researcher may want to screen a potential new cancer drug against a large number of targets. For each potential target an application must be run. In total there may be tens of thousands of application instances to be run. Similarly, an aircraft manufacturer may want to simulate a new wing in a large number of different configurations and airspeeds. In both cases the organization may have compute resources scattered within the organization that may be utilized – or they may to exploit an on-demand compute service.
The most basic OGSA specification for this use case is OGSA-BES. Compute resources are represented or proxied by BES resources that can run the applications. A simple “run” command can be used that generates an appropriate JSDL document for the needed execution, and sends the JSDL document in a round-robin fashion to one of a number of pre-configured BES resources
. Note that “run” is out of scope of the OGSA specifications. However, implementations of “run” tools exist, for example in Genesis II [17]. The JSDL document can contain data staging elements – specifying from where to fetch input files, and where to place the results. The staging elements can specify a variety of protocols to be used, http, ftp, email, or an RNS path pointing to a ByteIO file. The run command then polls the BES resource until the job is complete.

[image: image1]
Round-robin job placement on a pre-selected set of BES resources is rigid and may not reflect different application requirements or organizational policies. We can make this more interesting by implementing a BES resource that rather than directly executing JSDL documents, itself proxies for a large number of other BES resources and schedules jobs on those containers in FIFO order. The run command now simply sends the JSDL document to the queue-like BES resources, and the queue-like resource takes over from there. Alternatively, a matchmaking or meta-scheduling BES resource might match the job requirements in the JSDL document such as CPU architecture against the resource properties of the BES resources. Of course the BES resources used by a queue-like or matchmaking BES resource may themselves proxy a number of different resources. It is important to note that the compute resources may be desktops or high-end supercomputers, that they may have disjoint file systems, and may be in different countries.
Security is woven into this example from the beginning. When the run command interacts with the target BES resource run may need to provide identity information to BES resource and may require that the BES resource be mutually authenticated. For example, the user may posses an X.509 certificate and associated private key that must be used to sign the message or to authenticate and secure communication using SSL. This brings into play WS-Security, WS-SecurityPolicy, and the OGSA Base Security profiles (BSP).

<I can go on and on about options on this one – I think this gets the basic idea across.>

4.2 Enterprise Data Federation use case
The problem is that data within an organization may be stored and managed in a number of different locations. It may not be possible to directly access the data using standard operating environments such as Unix or Windows due to disjoint administrative domains or unwillingness to provide accounts between sub-organizations. Further it may not be practical to simply copy all of the data to a single data warehouse. First because it may be too large, second because only a subset may actually be used – but which subset is unknown ahead of time, third because the data may become stale very rapidly requiring access to up-to-date data, or perhaps due to lack of trust between the different business units. Whatever the reason a mechanism is required to directly access data.

To realize this use case we can proceed several ways. We’ll start assuming the data to be accessed is flat file, unstructured data, located in a rooted directory tree stored in a Windows or Unix file system. The first step is to create by some means (not part of the OGSA specification) a set of ByteIO EPRs that correspond to the files and RNS EPRs that correspond to the directories in the rooted tree. This set of ByteIO and RNS endpoints represent an RNS namespace in which the leaves are ByteIO files. We will call this step “exporting” a directory structure. The exported directory structure can then be linked into an already existing RNS name space in a manner similar to mounting a file system. ExportDir in Genesis II is just such a tool. Client applications can then directly access data regardless of physical location by issuing the appropriate ByteIO read and write calls.
To simplify access libraries such as the SAGA library may provide C/C++, and Java bindings to access the data and directories in an RNS name space eliminating the need for programmers to use Web Services. Alternatively access tools such as OGRSH (described later), or grid-aware FTP or NFS clients may interact with ByteIO and RNS resources on the users behalf, eliminating the need to understand or use Web Services.

Structured relational data can be added by including OGSA-DAI EPRs into our RNS name space. Each OGSA-DAI EPR may refer to a different table or set of tables. SQL queries can be executed against each OGSA-DAI endpoint. The result is another OGSA-DAI EPR that represents the result of executing the query. Thus, RNS could be used to find an EPR for a particular data set, an OGSA-DAI query is issued, and the result EPR might be stored in yet another RNS directory where it can be subsequently used. If the returned OGSA-DAI resource also implemented the OGSA-ByteIO porttype, the result set could then be read as a file or “cat’d” to the screen.

Security is once again woven into this example as in the high-throughput computing use case. Client side Web Services code uses WS-Security and the OGSA BSP 2.0 to mutually authenticate client and service and provide data integrity. Authorization policies in place at the services endpoints determine which calls are allowed to proceed.
4.3 Transparent data access use case

In the above data federation example we made no assumptions about how the client actually accessed the data – whether through a C library call, a user-defined Web Services call, or via some other mechanism. The problem is that many users do not want to, or cannot, change their applications to access the data grid resources via a new API. Instead, we must hide the grid from users and applications so that they could access data without application modification. This can be achieved via a variety of mechanisms, three of which we will now describe: grid aware ftp, grid-aware mountable file systems, and grid-aware file system “shims”.
Grid-aware FTP

The basic idea is simple (see Figure XX). On each client host, e.g., a PC running Windows, run a grid-aware FTP daemon. The daemon can be configured to only accept connections from localhost, preventing non-local users from accessing the grid via the FTP service. Local clients interact with the FTP service using either an anonymous connection or by specifying the local certificate to use along with the certificate password. The grid-aware FTPd users the specified certificate as its identity when interacting with grid resources. The FTPd translates FTP directory operations into operations on the appropriate RNS resource, and file operations into ByteIO operations. The FTPd may use a local cache for disk blocks or directories if desired. In the caching case the FTPd may need to subscribe to update events on cached resources.

[image: image2]
Using Microsoft Windows as our example again, the user could view the grid name space via Explorer as shown in Figure YZ, drag and drop files into the grid name space, and “double click” to open remote files.

[image: image3.png]# fitp://warrenton.cs. virginia. edu; 18079/bes-containers/centurion021/.
Fle Edt View Favores Took Help

Qbak - © - ¥ POseach [Foders [

address @ fp: /fwarrenton .cs.virginia.edu: 18079 bes-containers /centurion021/

@) @)

Riml Marks Activity Marks Activity
() bescontaiers [1] bt [2] bl
(D My Documents

ST @] @)

Other Places

Marks Activity Marks Activity Marks Activity
[3]hterl [4] bl [hterl

User: Anonymols. @ Internet

<Place screen shot of Windows Explorer accessing RNS name space. >
Grid aware mountable file systems

The concept is similar to the FTPd example above. Rather than an FTPd we use grid-aware NFS or CIFS file service. This has been done for example in [18, 19]. Once again the file server may cache RNS directories and ByteIO files. One of the challenges using legacy standards such as NFS and CIFS is that their interfaces lack good mechanisms for conveying identities that can be used in the grid[18]. For example, NFS requests contain the Unix UID and GID of the client. The UID and GID by themselves are generally insufficient for authorization to access grid resources. The file server may need to maintain a host map file that maps local user identities to and from grid identities and their associated credentials. Similarly, generating Unix file protection bits that are meaningful to the host operating system may be a challenge, as there may be no corresponding local user or group. On the positive side, applications can run without modification, accessing data in the grid as if it were on a local file system.
Grid aware file system shims

The basic idea is again simple. Interpose a software shim between the application code and the file system [20, 21]. Then trap all IO calls and determine whether they are calls to the local file system name space or the grid name space. If they are local, pass them through. If they are to the grid, make the appropriate outcalls after first checking the optional cache. A similar approach has been used in Condor [22] to route I/O requests from Condor jobs back to the initiating host. This mechanism is also used in an OGSA context by Genesis II to provide transparent access to grid resources for Linux applications. The grid proxy (OGRSH) is a user level process and does not require root permission to install and run.

[image: image4]
4.4 DATA center use case

See OGSA use case document
4.5 Resource mobility

While existing Web Services best practices support heterogeneity, concurrency and behavioral transparency, the use of abstract naming name rebinding mechanisms as defined in WS-Naming can provide a framework for realizing several additional important transparencies – in particular migration, location, replication, and failure transparency. Here we describe four real world use cases that highlight the importance of supporting these additional transparencies.

Migrate closer to active users. Suppose that a client application is making intense use of a resource that is physically located far away – for example an application in California that reads and modifies a shared file (ByteIO) resource currently residing in New York. In this configuration, the application may be unnecessarily suffering from poor performance due to high network latency. One would like to be able to migrate the file resource from New York to California without any service interruption to other users that need access to the shared file. Thus, migration provides a mechanism for meeting performance SLTs.

Migrate away from failing or overloaded systems. Consider a service or resource executing on a host that is heavily loaded in some way – for example, the host CPU is overloaded or the network into the host is flooded. One would like to migrate the service to another host without interrupting the service and without disrupting on-going interactions with this and other services and resources. Similarly, it may be known that a host is going to “go down” soon, perhaps because of maintenance, or maybe problems with the physical environment (power shortage, air conditioning failure, etc.). Once again, we want to migrate the service to another location without interrupting on-going interactions. Thus, migration can be used to meet performance, availability and reliability SLTs.
Recovery from a failed resource. Consider a stateful resource that has failed (due to a hardware failure, a software failure, etc.) and needs to be restarted – possibly on a different physical resource. One wants to be able to “migrate” the resource instance to a different location or machine while minimizing interruptions for accessing the resource .
 Thus, migration can support failure masking and be used to meet reliability SLTs.

Replica management and usage. A resource may have multiple “back-end” endpoints that can each perform its services and one would like to dynamically select which replica to use. For example, one replica may be closer to the end-user than another (in network terms) or one replica may offer better QoS in some dimension (e.g., performance). Replication can be used to meet performance, reliability, and availability SLTs.
5 Adoption

Who is using OGSA specifications and profiles in what products/projects? Who has committed? In product or experiment/prototype. Won’t discuss use of WS-Security, WSDL, etc. Just OGF/OGSA specifications.

	Project/Spec
	WS-Naming
	RNS
	OGSA-BES
	OGSA-ByteIO
	OGSA-DAI
	OGSA-BSP 2.0

	Globus
	?
	
	yes
	
	yes
	

	Unicore1
	
	
	no
	yes
	
	

	Unicore2
	
	
	yes
	yes
	
	

	Microsoft CCS
	
	
	yes
	
	
	

	Genesis II
	yes
	yes
	yes
	yes
	no
	will

	Marty
	
	
	yes
	
	
	

	OMII-UK
	
	
	yes
	yes
	
	

	GridSAM
	
	
	yes
	
	
	

	Crown
	
	
	yes
	
	
	

	Platform
	
	
	yes
	
	
	

	NESC
	
	
	
	yes
	yes
	

	
	
	
	
	
	
	

6 Roadmap going forward

What’s next, e.g., simple authentication, workflows, service level terms, ….
7 Related Work

Blah blah blah – what should we consider related work? Existing architectures, e.g., Globus, Legion, Unicore, Genesis II, Condor? Or related specifications? What?
8 Summary

Blah blah blah
Acknowledgements: The whole OGSA regular team: Hiro Kishimoto, Andreas Savas, Mark Morgan, Fred Maciel, Jay Unger, Ellen Stokes, Jem Tredwell, Steve Newhouse, Dave Berry, Allen Lueneski, Stephen Mcgough, Chris Kantarjiev, Duane Merrill, Tom Mcguire, Ian Foster, Ravi Subramanian, Dave Snelling, Donal Fellows, Michel Drescher, Mike Behrens, Chris Jordan, Frank Siebinlist.
1.
Foster, I., et al. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration. 2002.

2.
Saltzer, J., D. Reed, and D. Clark, End-to-end Arguments in System Design. ACM Transactions on Computer Systems, 1984. 2(4): p. 195-206.

3.
Pike, R., et al. Plan 9 from Bell Labs. in UKUUG Summer 1990 Conference. 1990.

4.
Ousterhout, J., et al., The Sprite Network Operating System. IEEE Computer, 1988. 21(2): p. 23-36.

5.
Tanenbaum, A.S., et al., Experiences with the Amoeba Distributed Operating System. Commuications of the ACM, 1990. 33(12): p. 46-63.

6.
Tannenbaum, A.S. and M.V. Steen, Distributed Systems: Principles and Paradigms. 2002, Upper Saddle River, New Jersey: Prentice Hall. 803.

7.
Adya, A., et al. FARSITE: Federated, Available, and Reliable Storage for an Incompletely Trusted Environment. 2002.

8.
Gudgin, M., M. Hadley, and T. Rogers, Web Services Addressing 1.0 – Core. 2006, World Wide Web Consortium.

9.
OGSA-Naming-WG. WS-Naming. 2005 Available from: https://forge.gridforum.org/projects/ogsa-naming-wg/.

10.
Mullender, S., Distributed Systems. 1989: ACM Press.

11.
Powell, M.L. and B.P. Miller. Process Migration in DEMOS/MP. in 9th ACM Symposium on Operating System Prinicples. 1983.

12.
Milojicic, D., et al., Process Migration. ACM Computing Surveys, 200. 32(3): p. 241-299.

13.
Graham, S., et al., Web Services Resource 1.2 2 (WS-Resource). 2005.

14.
Ballinger, K.e.a. Web Services Metadata Exchange (WS-MetadataExchange). 2004 February 2004 Available from: http://xml.coverpages.org/WS-MetadataExchange.pdf.

15.
Grimshaw, A., et al., OGSA Basic Execution Service. 2007.

16.
Anjomshoaa, A., et al., Job Submission Description Language (JSDL), Version 1.0. 2005, Global Grid Forum.

17.
Morgan, M. and A. Grimshaw. Genesis II - Standards Based Grid Computing. in Seventh IEEE International Symposium on Cluster Computing and the Grid. 2007. Rio de Janario, Brazil: IEEE Computer Society.

18.
White, B., et al. LegionFS: A Secure and Scalable File System Supporting Cross-Domain High-Performance Applications. in SC 01. 2001. Denver, CO.

19.
Grimshaw, A., Avaki Data Grid - Secure Transparent Access to Data, in Grid Computing: A Practical Guide To Technology And Applications, A. Abbas, Editor. 2003, Charles River Media.

20.
Myers, D.S. and A.L. Bazinet, Intercepting Arbitrary Functions on Windows, UNIX, and Macintosh OS X Platforms. 2004, University of Maryland.

21.
Hunt, G. and D. Brubacher. Detours: Binary interception of Win32 functions. in Proceedings of the 3rd USENIX Windows NT Symposium. 1999. Seattle.

22.
Thain, D., T. Tannenbaum, and M. Livny, Condor and the Grid, in Grid Computing: Making The Global Infrastructure a Reality, F. Berman, A.J.G. Hey, and G. Fox, Editors. 2003, John Wiley. p. 299-332.

Figure xyz. A simple “run” command (not defined by OGSA) generates a JSDL document describing the application to be run, its resource requirements, file inputs and outputs, etc. It interacts securely with a set of predefined BES resources using the OGSA Basic Security Profile 2.0, authenticating the client to the BES resources and the BES resources to the client.

run myjob

BES resource0

BES resource1

BES resource2

Figure XY. A conceptual view of a grid-aware FTPd. The grid-aware FTPd communicates with the “grid” using secure, authenticated communication. The client interacts with the FTPd using the standard FTP protocol.

Certificate store

Grid-aware FTPd

RNS name space with references to OGSA-ByteIO and OGSA-DAI resources

FTP client

Legacy application

Grid aware shim

RNS name space with references to OGSA-ByteIO and OGSA-DAI resources

Grid-proxy

User certificate

Figure XY. A conceptual view of grid-aware shim. The shim traps calls to the grid and interacts directly with the proxy. The proxy uses the user identity, perhaps contained in a local certificate store. Legacy applications work without modification.

� “Container” is a very overloaded term in Web Services. We do not mean a Web Service container – rather a more abstract notion of an entity that logically contains running programs and services.

� [cite] provides detailed UML diagrams documenting recommended protocols.

� How the state management between the failed instance is kept synchronized with the replica is not the issue here. There are many well-known techniques including, periodic checkpoints, message logging, etc. The important fact is that naming facilitates this process.

�Is this popular?

Can we mention collaborative computing instead?

�Is separate section necessary? It looks like a part of the above section.

�Web service?

�Quality of service?

�Another widely used message pattern is:

Trigger a time consuming operation by RPC and pull (RPC) status repeatedly until operation complete.

�Definition?

�Is this politically correct?

9

