GWD-I (Informational)

D. Merrill, University of Virginia
Information-Security Use-Cases for Grid Architecture
A. Grimshaw, University of Virginia
Open Grid Services Architecture Working Group

May 2, 2007

GWD-I (Informational)

D. Merrill, University of Virginia
Information-Security Use-Cases for Grid Architectures
Open Grid Services Architecture Working Group

April 9, 2007

Information-Security Use-Cases for Grid Architectures
Status of This Memo
This memo provides information to the Grid community on common information security use-cases. Distribution is unlimited.
Copyright Notice
Copyright © Open Grid Forum (2007). All Rights Reserved.
Trademarks

OGSA is a trademark of the Open Grid Forum.

1Information-Security Use-Cases for Grid Architectures

21
Introduction

22
Fundamental Use-cases

33
Application Use-cases:

33.1
Traversing an RNS name space and reading a ByteIO file

33.2
Stage-in/stage-out operations in BES-containers

33.3
Brokered (on-demand) access to compute resources represented by BES containers

43.4
Service Migration

43.5
Firewall Traversal

44
Mechanism-driven Use-cases:

1 Introduction
This document serves to identify several common use-cases for aspects of information security within an open grid architecture.

The identification of operational use-cases plays an important role in deriving functional requirements, which in turn suggest design and implementation mechanisms. Use-cases are traditionally human-centric: they define actions between external actors (users) and the system (which is typically treated as a black box) to achieve specific business goals or tasks. Use-case descriptions generally strive to avoid implementation-specific language, focusing more on the purpose and properties of how the actor(s) and system(s) interact.

The reality, however, is that the relationship between use-case-identification and mechanism-design is not unilateral; we often find that the prevalence of existing or legacy technologies in fact drive use-cases and system requirements. In this document, we will present both fundamental use-cases (processes and their abstract properties) and use-cases that are mechanism-specific (processes whose environments leverage specific technologies whose mechanisms must be considered).

There are three “levels” of use cases described in this document. At the bottom are the “fundamental” use cases common to all network traffic as described in the Internet Threat Model as defined in RFC 3552. At the top are the “application” centric use cases, where application refers to the interaction patterns driven by what we want to accomplish with the Grid. In the middle are what we call “mechanism-driven” use cases. Mechanism driven use cases are the result of the existing legacy security infrastructures that we must accommodate.
See also [GFD 32, Site Requirements for Grid Authentication, Authorization and Accounting] and [GFD 38, Conceptual Grid Authorization Framework and Classification].

2 Fundamental Use-cases
The information security of a protocol or system is a set of related but somewhat independent properties that can be categorized into two overlapping concerns: communication security and system administration security. The overlap is a necessary one: communications are carried out by systems and access to systems is through communications channels.

The fundamental secure communication use-case is an interaction scenario between two networked parties (e.g., a client and a service) over an insecure communications channel. To be more concrete, let's examine the simple scenario in which a grid client A wishes to read the contents of a remote data source B (e.g., a federated grid file) over an insecure network (i.e., a network having the properties of the Internet Threat Model as defined in RFC 3552). We give simple use-cases for the following secure communication properties:

i. Authentication: A and B wish to ensure that they are indeed communicating with each other (instead of imposters).

ii. Confidentiality: A and B do not wish to expose any information regarding the read request or the returned data to third-parties.

iii. Integrity: A and B do not wish that either the read request or the returned data be subject to modification while in transit

We continue this simple "data-read" scenario to illustrate use-cases for the following system security properties:

i. Authorization: The service wishes to only provide data-read access to a limited set of users (i.e., those users who can demonstrate specific identities or attributes). In order to curb inappropriate usage even by acceptable actors, the decision to allow access may incorporate arbitrary service-specific policy. (E.g., "you may submit jobs to the job queue at a maximum frequency of once every 60 seconds".)

ii. Non-repudiation & Auditing: A and B wish to be able to demonstrate to a third party that the information they received from the other cannot be denied later.

For more information on the above security properties or the Internet Threat Model, consult the IETF RFC 3552.

3 Application Use-cases:

There are an infinite number of different Grid use cases. See [GFD 29, Open Grid Service Architecture Use Cases, 2004] for a sampling. Here we present five that represent common access patterns that we can expect to see again and again. We have not presented use cases that involve complex security rules, e.g., assert that something is true in a way that is trusted without revealing who is making the assertion. More complex use cases such as those used in health care or national security are beyond the scope of this document – and may be addressed in a future document. In the discussion below when we use the term “client” we mean an application or application component that utilizes some service in the grid. When we use the term “service” we mean a Web Service being invoked by a client.
3.1 Traversing an RNS name space and reading a ByteIO file
This is the simplest use case. The defining element is the direct interaction between a client and a service with no intermediate actors or services. In this example the client is traversing an RNS name space. At each node in the name space it performs a lookup operation on the RNS directory. The RNS directory has an authorization mechanism in place (out of scope for this document). The interesting question here is what forms of client authentication does the service support or require. For example, does the service authorization mechanism require a signed X.509 certificate and signed SOAP message? Or does it support SSL/TLS authentication? Once the path has been expanded (ending in this case in an EPR that “points” to a ByteIO service), the client reads the ByteIO file. Once again the authorization mechanism of the ByteIO service is out of scope. What is relevant is what authentication mechanisms are required and/or supported.
3.2 Stage-in/stage-out operations in BES-containers

This use case requires some explanation. The basic problem is that a client A wants to run a job on a remote computational resource B. The remote resource is represented by a BES service. The job is described in a JSDL document that the client passes to the BES service as part of the createActivity operation. If that were all that was involved then this use case would resemble the first use case, involving a direct interaction between the client and the service. However, many jobs require access to data that may not be replicated everywhere, or they may generate output files that the client needs to access. To support this JSDL supports the notion of staging data in and out. Thus, the JSDL document passed to the BES service may refer to files C and D in other locations that must be copied in/out by the BES service on behalf of the client.
The problem is that C and D may have authorization policies that require assurance that the BES container is acting on behalf of the client.

3.3 Brokered (on-demand) access to compute resources represented by BES containers
Our third use case involves intermediary services that perform tasks on the client’s behalf. For example, consider a computational economy where compute service brokers interact with compute resource providers and sell their services to clients. Assume a client A, a broker B, a set of compute resources C = {c0..cn}, and a job J. A asks B to execute J, and is willing to pay Jprice if J is completed by some deadline. Each of the providers ci in C can execute J for ci,cost. B selects a resource ci and forwards J to ci. B does not want to expose C to A nor does B want A and ci to directly interact. Perhaps because B wants to control the interaction and capture the difference between Jprice and ci,cost, or because B is providing an enhanced quality of service by replicating execution on several cj’s
. At the same time ci may need to perform operations (e.g., stage-in, stage-out) that require access to resources on behalf of the client (see 3.2).
3.4 Service Migration

Endpoints may need to migrate from one location to another for many reasons. Two common migration use cases are discussed below. In both cases the key security question is one of service authentication – the client must be able to ensure that only the desired service endpoint can view or process a request.
Migrate closer to active users. Suppose that a client application is making intense use of a resource that is physically located far away – for example an application in California that reads and modifies a shared file resource currently residing in New York. In this configuration, the application may be unnecessarily suffering from poor performance due to high network latency. We need to migrate the file resource from New York to California without any service interruption to other users that need access to the shared file. At the same time, in a Web Services environment the container keys at the different locations are different.

Migrate away from failing or overloaded systems. Consider a service or resource executing on a host that is heavily loaded in some way – for example, the host CPU is overloaded or the network into the host is flooded. One would like to migrate the service to another host without interrupting the service and without disrupting on-going interactions with this and other services and resources. Similarly, it may be known that a host is going to “go down” soon, perhaps because of maintenance, or maybe problems with the physical environment (power shortage, air conditioning failure, etc.). Once again, we want to migrate the service to another location without interrupting on-going interactions.
3.5 Firewall Traversal

In many Grid deployments services are behind corporate filewalls or NAT’s for policy or resource protection reasons. Thus clients cannot directly interact with the service or the container in which the service resides. Instead all interactions are mediated by an intermediary – a firewall or NAT proxy of some sort.
One solution common in Web Services today to the firewall problem is to mint WS-Addressing EPR’s with the address of a firewall proxy service in the EPR address field. The address of the actual service is then a part of the EPR reference properties. The client authenticates to the proxy service, authorization decisions are made at the firewall service, and the firewall service calls the service on behalf of the client. This approach is adequate in those cases where: 1) the services behind the firewall trust the firewall proxy to make authorization decisions; 2) the service does not need to perform any actions on behalf of the client as in 3.2; and 3) services do not migrate (see 3.4) between domains behind different firewall or NAT proxies. As we have seen though – there are cases when those conditions are not true.
4 Mechanism-driven Use-cases:

This section presents use-cases for simple communication patterns. As in the previous section, we specify properties of the environment in which our use-cases are manifested. The properties in this section, however, are mechanism-specific: we describe our assumptions about the technologies and mechanisms that will manifest themselves in these communication patterns and how they factor into the use-case’s interactions.

The communication environment that we assume is one in which grid components communicate via SOAP messages. These messages are conveyed over a network transport protocol such as HTTP/HTTPS/JMS/etc. Except where noted, our communication pattern use-cases assume HTTPS at the network transport level. The goal of any implementation suggested by the use-cases below would be to preserve the abstract information security properties from the previous section. As such, we include considerations for these use cases that such an implementation would need to address.

i. Simple one-way communication pattern. A message is delivered from one grid component to another without necessity of a response. This pattern is frequently manifested in scenarios that employ notification mechanisms; consider an example of lifetime-notification if a metadata repository wishes to be notified upon the termination of a basic execution service that it monitors.
Depending on the one-way-ness of the transport mechanism, the client may not be able to use "handshake" information in order to authenticate the service and be assured of confidentiality. For example, consider the use-case in which a subscriber must receive notification of an event (such as a service migration event), even in the presence of intermittent network failures. An implementation that this use-case suggests is one in which a reliable messaging transport such as JMS would be employed to ensure message delivery. A handshake (such as the SSL/TLS handshake) for providing the client with key and trust-based cryptographic identity may not exist, causing this use-case to possibly depend on an external mechanism for key distribution and trust.
ii. Simple request-response communication pattern. A message is delivered from one grid component to another with the necessity of a response. A bidirectional transport protocol such as HTTPS is a good fit for this pattern and is an expected mechanism-specific property of this use-case. As such, any X.509 certificates that are communicated during SSL/TLS handshake that do not include the service's network address (possibly because it may vary) are not sufficient to authenticate the service identity to the communication endpoint. Therefore this use-case suggests an external mechanism for key distribution and trust.
iii. Delegation. The response data is dependent on communication that must be performed with other grid services. This is a superposition of the above two communication patterns. Consider the job-submission scenario in which jobs are submitted to a queuing service which must further delegate job instantiation to basic execution services (which in turn may need to further delegation actions to with file, data, and application deployment services).

A restricted version of this use-case is one in which the caller employs a one-way communication to initiate the process. The one-way pattern allows the caller to operate in a network environment that does not allow incoming messages from third-parties or allows it to terminate before the entire process has completed. In these cases, delegation protocols that require callbacks (e.g., certificate signing requests) may not be feasible.

iv. Communication with intermediaries. Consider again the scenario in which one wants reliable delivery of lifetime notification messages. This scenario requires an end-to-end security solution. One implementation suggested by this use-case is the use of reliable delivery functionality provided at the transport-level. This would require message-level security. An alternative solution might provide reliable delivery functionality at the message-level (via first-class grid services). In this case, delegation (and the considerations that accompany it) and document-level encryption (i.e., message-level) would be required for information security.

v. Communication using multiple identities/attributes. Consider the scenario in which clients may need to communicate multiple security credentials to a service for authentication/authorization. More specifically, a delegation scenario may require that an intermediary need to communicate its own identity credential as well as a delegation credential. Another scenario is one in which users obtain a set of credentials for the different administrative domains with which they will interact. (This relieves services from the burden of identity mapping.) Communicating with multiple identities may require message-level security. (Transport-level protocols such as SSL/TLS are specific to single X.509 credentials.)

vi. Hosted service resources. Due to prevalent Web services technology, it is likely that multiple stateful service resources will be hosted within a single web application container. Therefore transport-level communication (specifically authentication) occurs between the client and the container. A client may want to ensure that the container being communicated with actually contains a specific resource. This would require giving resources cryptographic identity, an external mechanism for distributing such key material, and trust-based message-level security for authenticating it.

Resource replication and migration are also use-cases that suggest an implementation in which resources are given cryptographic identity to ensure information security. Stateful resources that are replicated for high-availability (e.g., grid files) may be deployed within multiple containers, yet all copies should have the same trust-based cryptographic identity. Stateful service resources that are migratable (e.g., in response to container decommissioning or insufficient computing resources) should also maintain the same authenticatable identity regardless of hosting container.

Although it is not the stated purpose of a use-case document to derive mechanism or implementation, it is interesting to note that the considerations discussed for the above scenarios suggest that a sufficient implementation provide both an external mechanism for key distribution and trust as well as a mechanism for message-level security.

� See for example, W. Kang and A. Grimshaw, A Highly Available Job Execution Service in a Computational Service Market

ogsa-wg@ogf.org

ogsa-wg@ogf.org

4

