GFD-R(ggf-ogsa-bes-spec-1.0)

Authors:
Open Grid Services Architecture Basic Execution Service
A. Grimshaw, U. Virginia

S. Newhouse, U. Southampton

Darren Pulsipher, Ovoca LLC

M. Morgan, U. Virginia

http://forge.gridforum.org/projects/ogsa-bes-wg

9/1/2006
GFD-R (ggf-ogsa-bes-spec-1.0)
9/1/2006

OGSA Basic Execution Service
Version 1.0
Copyright Notice

Copyright © Global Grid Forum (2004-2006). All Rights Reserved.

Abstract

This document presents a specification for a basic execution service (BES): a service to which clients can send requests to initiate, monitor, and manage computational activities. The specification defines an extensible state model for activities; an extensible information model for a BES and the activities that it creates; and two port-types; BES-Management and BES-Factory that include operations for the initiation, monitoring, and management of activities, and for accessing information defined in an information model.

Contents

41.
Introduction

51.1.
Terminology

51.2.
Namespaces

62.
Job Submission Description Language

62.1.
JSDL 1.0 Overview

63.
Naming Activities: Endpoint References

74.
State Model

74.1.
State Representation

75.
BES-Management Port-type (Attributes and Operations)

135.1.
Attributes

135.1.1.
IsAcceptingNewActivities

135.1.2.
CommonName

135.1.3.
LongDescription

135.1.4.
TotalNumberOfActivities

135.1.5.
ActivityReference

135.1.6.
ContainedResourceAttributes

135.1.7.
NamingProfile

135.1.8.
LocalResourceManagerType

135.1.9.
OperatingSystem

135.1.10.
CPUArchitecture

135.1.11.
CPUCount

135.1.12.
CPUSpeed

135.1.13.
PhysicalMemory

135.1.14.
VirtualMemory

135.2.
Operations

135.2.1.
StopAcceptingNewActivities

135.2.2.
StartAcceptingNewActivities

145.2.3.
GetAttributesDocument

146.
BES-Factory Port-Type

146.1.
BES-Factory Operations

166.1.1.
CreateActivity

176.1.2.
GetActivitiesStatus

176.2.
TerminateActivities

176.2.1.
Input(s)

186.2.2.
Output(s)

186.2.3.
Fault(s)

186.3.
GetActivityDocuments

186.3.1.
Input(s)

186.3.2.
Output(s)

186.3.3.
Fault(s)

187.
Management

198.
Security Considerations

199.
Optional extensions

20Authors Information

21Contributors

21Acknowledgments

21Intellectual Property Statement

21Full Copyright Notice

22References

23
23Appendix A:
Normative BES-Management XSD

25Appendix B:
Normative BES-Factory XSD

27Appendix C:
Normative BES-Management WSDL

29Appendix D:
Normative BES-Factory WSDL

32Appendix E:
Non-normative examples for BES-Management

32F.1
StopAcceptingNewActivities

32F.1.1
Request Message

32F.1.2
Response Message

32F.2
StartAcceptingNewActivities

32F.2.1
Request Message

33F.2.2
Response Message

33F.3
GetAttributesDocument

33F.3.1
Request Message

33F.3.2
Response Message

35Appendix F:
Non-normative examples for BES-Factory

35G.1
CreateActivity

35G.1.1
Request Message

35G.1.2
Response Message

36G.2
GetActivitiesStatus

36G.2.1
Request Message

36G.2.2
Response Message

37G.3
TerminateActivities

37G.3.1
Request Message

37G.3.2
Response Message

38G.4
GetActivityDocuments

38G.4.1
Request Message

38G.4.2
Response Message

40
40
40
40
40
40
41Appendix I:
OGSA WSRF Basic Profile 1.0 Rendering

1. Introduction
This Basic Execution Service (BES) specification defines Web Services interfaces for creating, monitoring, and controlling computational entities such as UNIX or Windows processes, Web Services, or parallel programs—what we call activities. Clients define activities using the Job Submission Description Language (JSDL) [JSDL 1.0]. A BES implementation executes each activity that it accepts on an appropriate computational resource, which—depending on the BES implementation and the type(s) of activities supported—may be a single computer; a cluster managed through a resource manager such as Load Leveler, Sun Grid Engine, Portable Batch System, or Condor; a Web Service hosting environment; or even another BES implementation.

More specifically, the BES specification defines two Web Services port-types, each of which is aimed at a different type of client:
· the BES-Factory port-type allows ordinary clients (with appropriate access privileges to the BES) to create, monitor, and control activities. It also allows such clients to monitor the publicly visible attributes of the BES, such as a characterization of the resources it makes available to activities or the number of activities it currently has instantiated.

· the BES-Management port-type allows clients with the appropriate system administration privileges to monitor the details of and control the BES itself. The BES-Management port-type is intended to contain operations that should not be visible/accessible to ordinary clients who are not BES system administrators.
·
In defining these two port-types, the OGSA-BES Working group had to balance competing needs of (a) achieving commonality across BES implementations, so that clients can easily access different BES implementations in standard ways; while also, when necessary, (b) allowing BES implementations to expose differences that may be important to clients. To this end, the BES specification allows for extensibility in three areas; namely state model, information model, and resource model.
State model: During its execution, an activity passes through various states. Different BES implementations may support different sets of states and allowable transitions. To accommodate such differences, the BES specification defines (a) a basic state model in which every successful activity is initially Pending, then Running, and finally one of Finished, Canceled, or Failed, and (b) mechanisms by which this basic state model can be extended, by defining sub-states, within a specific BES implementation.
Information model: Clients need to be able to inspect various properties of a BES and its activities. Different BES implementations may want to expose different properties, depending (for example) on the computational resources to which they provide access and the types of activity that they support. To accommodate such differences, the BES specification (a) defines a set of attributes that any implementation of the BES port-types must recognize, while (b) allowing many of those attributes to be optional, and (c) allowing this set to be extended (by defining additional attributes) within a specific BES implementation.
Resource model: The OGSA-BES Working Group supports different “resource models” (as they are sometimes called) through what they term profiles. Consequently, the BES specification requires that all BES implementations MUST support a simple operation for retrieving all attributes in a single document. At the same time, the specification does not preclude the option that a specific BES implementation MAY support other access mechanisms. In particular, an implementation MAY compose appropriate port-types – e.g. those defined in the WSRF/WS-Notification or WS-Transfer/WS-Eventing families of specifications – with the port-types defined in the BES specification.
Because additional resource model renderings are provided compositionally rather than explicitly, all schema and wsdl included as rendering information in this document should be interpreted to be common or profile-agnostic, normative schema. That is, these schema should be interpreted as the schema and wsdl necessary in addition to, or on top of any types, operations, or other properties required by various resource model renderings, such as for example the OGSA WSRF Basic Profile 1.0 [OGSA WSRF BP
].

One exception to this rule of thumb is the inclusion in Appendix I of WSRF Resource Properties type definitions that map naturally to BES attributes.
Table 1: Summary of the two BES port-types and their operations

	BES-Management Port-type

	StopAcceptingNewActivities
	Request that the BES stop accepting new activities

	StartAcceptingNewActivities
	Request that the BES start accepting new activities

	
	

	BES-Factory Port-type

	CreateActivity
	Request the creation of a new activity

	GetActivitiesStatus
	Request the status of a set of activities

	TerminateActivities
	Request that a set of activities be terminated

	GetActivityDocuments
	Request the JSDL documents for a set of activities

	GetAttributesDocument
	Request XML document containing BES properties

1.1. Terminology

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, “OPTIONAL” in this document are to be interpreted as described in RFC 2119 [RFC 2119].

Additional terms used in this document are defined in the Glossary.

When describing abstract data models, this specification uses the notational convention used by the XML Infoset specification [XML Infoset].

When describing concrete XML schemas, this specification uses the notational convention of the WS-Security specification [WS-Security]. Specifically, each member of an element’s [children] or [attributes] property is described using an XPath-like notation [XPath] (e.g., /x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of an element wildcard (<xsd:any/>). The use of @{any} indicates the presence of an attribute wildcard (<xsd:anyAttribute/>).

1.2. Namespaces

The following namespaces are used in this document.
	Prefix
	Namespace

	s11
	http://schemas.xmlsoap.org/soap/envelope

	S12
	http://www.w3.org/2003/05/soap-envelope

	xsd
	http://www.w3.org/2001/XMLSchema

	wsa
	http://www.w3.org/2005/03/addressing

	jsdl
	http://schemas.ggf.org/jsdl/2005/11/jsdl

	
	

	bes-mgmt
	http://schemas.ggf.org/bes/2006/08/bes-management

	bes-factory
	http://schemas.ggf.org/bes/2006/08/bes-factory

1.3.
2. Job Submission Description Language
We review JSDL briefly, as our choice of JSDL as an activity description language implies certain assumptions about the types of activities that BES implementations can support and the ways in which these activities can execute.
2.1. JSDL 1.0 Overview

A JSDL document describes a single activity. With the exception of stage in and stage out activities (discussed next), the execution of this activity is (from the perspective of an external observer) an atomic operation. If it can be decomposed further, such decomposition is not visible through the service interface.
JSDL provides a stage-in/stage-out model and associated “local” file system capability in which data is copied to and from the locus of execution. JSDL presumes that there is a universally visible, local file system, regardless whether this locus is a single host or a large cluster.
A BES that supports the stage-in/stage-out model may want to define state model extensions to allow clients to monitor the status of stage-in/stage-out operations. Such extensions can be defined, similarly to those described in section 1, but are out of scope for this specification.

3. Naming Activities: Endpoint References
As we describe in Section 0.0.4.2.3, the BES CreateActivity operation returns a WS-Addressing Endpoint Reference (EPR), which clients can subsequently use to refer to the new activity. Some BES implementations may wish to use the extended “WS-Naming” EPR syntax defined within the WS-Naming specification [WS-Naming]. In order to allow for the use of this extended syntax, without mandating its adoption, we specify that:

· All operations that generate EPRs (e.g., the “CreateActivity” operation) can generate any EndpointReferenceType-compliant data type. That is, the data type MUST be compliant with WS-Addressing EndpointReferenceTypes, but MAY include profiled data in addition to the required elements, as is the case with WS-Names.
· All operations that operate on EPRs as arguments (e.g., the GetActivityStatus operation) MUST accept any EndpointReferenceType-compliant data type but MAY ignore any additional elements.
· A BES implementation MUST always present an XML QName to clients and this single QName MUST be one of a well-defined set of QNames that represent the types of endpoints that the BES implementation deals with. Two QNames are defined:

· {http://schemas.ggf.org/bes/2006/08/bes/naming}BasicWSAddressing
· {http://schemas.ggf.org/bes/2006/08/bes/naming}WS-Naming
4. State Model

Activities transition through a number of states. It is a challenge to construct a state model that is simple, expressive, and extensible without confusing clients that are unaware of the extensions. The BES specification addresses these challenges by defining first a basic state model, and then mechanisms for extending this state model.
4.1. Basic State Model

[image: image1]
Figure 1. Basic state model.

All activities MUST traverse the following set of states, employing only those transitions between states shown in Figure 1:

· Pending: The service has created a record for an activity but not yet instantiated it on a suitable computational resource or enabled it to start execution on such a resource.

· Running: The activity is executing on some computational resource.

· Finished: The activity has terminated successfully. Successful termination implies that the activity exited of its own accord rather than due to some failure in the BES or of the computational resources that the activity was running on. Note that a successfully terminating activity may never-the-less return an error code as its return value. This is a terminal state.

· Canceled: The client – which might be some system administrator (and hence not necessarily the client who originated the request to create the activity) – has issued a TerminateActivity request. This is a terminal state.

· Failed: The activity has failed due to some system error/failure event, such as failure of a computational resource that the activity was running on. This is a terminal state.

4.2. Specialization of States

4.3.

·
·
·
·
·
·

To enable interaction among clients and BESes that understand differing levels of functionality, the notion of specialization of states is necessary. This enables a simple client who only understands base BES states to still interact with more complex service instances, albeit only understanding such services’ activities in base terms. Similarly, it provides a way for more complex clients to “down-level” their interactions with simpler BESes in a well understood, interoperable manner. Specific specializations of the base state model – or of other specializations thereof that have been previously defined – should be defined using profiles.
1.5.1. Specialization Example: Data Staging

A simple example of state specialization is the following: A data staging profile might extend the base state model to support the notion of staging input data in from a client user to a BES before an activity runs, and then staging result data out from the BES back to the client user after the activity has finished. Figure 2 illustrates this specialization.

[image: image4]
Figure 2. Data staging specialization profile: Extends the base state model to support the notion of staging in data from a client user to the BES before an activity runs and staging data out back to the client user after the activity has finished.

A client understanding only the base state model could still create activities on a BES that implements the data staging profile; it would simply ignore the ”Running:Stage-in”, “Running:Executing”, and “Running:Stage-out” sub-states of the “Running” state that activities can be in. (See section 4.3 for how sub-states are represented in an extensible manner that oblivious clients can easily ignore.) Similarly, a client who understands the specialization profile would still understand how to interact with a BES implementing only the base state model since the base states are a strict subset of those defined in the specialization profile.

To ensure this interoperability between clients and BESes with differing understandings of various specializations requires a specific set of restrictions on how specializations may be defined. Consider a variation of the data staging profile in which an activity in the “Running:Stage-in” sub-state can have data staging fail and consequently be returned to a “Pending” state. Figure 3 illustrates this altered data staging profile. Specialization profiles of this sort have the undesirable property that they expose unexpected and hence uninterpretable behaviors to clients who are unfamiliar with the specialization. In this case, a client who understands only the base state model could see an unexpected transition from the “Running” state back to the “Pending” state.

[image: image5]
Figure 3. An illegal variation of a data staging specialization profile: Failed data stage-ins result in an activity being placed in the “Pending” state. This profile is illegal because it adds a state transition that would be unexpectedly visible to clients who only understand the base state model.
Specialization profiles of this sort are illegal and BESes MUST not implement them. In particular, any specialization profile that a BES implements MUST obey the following rules regarding sub-state definitions and allowed state transitions:

5. A specialization can introduce sub-states only by replacing a state in the state model that it is specializing (which itself may be a specialization of some other state model) with a graph of sub-states and state transitions among those sub-states.

6. A state transition from any sub-state in the specialization to another state, S, in the unspecialized state model may only occur if a corresponding state transition already existed in the unspecialized state model from the state that has been replaced, R, to that state S.

5.2.2 Specialization Example: Suspend/Resume

Another specialization example involves splitting the “Running” state into “Proceeding” and “Suspended” sub-states. Figure 4 illustrates this specialization.

[image: image6]
Figure 4. Suspend/resume specialization profile: Activities can be suspended and resumed as a result of appropriate client requests.

This example has an important difference from the previous example: the transition from “Running:Proceeding” to “Running:Suspended” is something that a client can request. In that case, the specialization profile must define additional interface operations that enable clients to request “suspend” and “resume” state transitions.

5.2.3 Composition of Specializations
If multiple independent specialization profiles are defined the question arises of what it means for any given BES to implement multiple such profiles. That is, how does composition of multiple specialization profiles work? A related question is how clients that may not understand all of the profiles that a BES implements can still interact with it in a meaningful manner.
Consider the two specialization examples presented so far and their composition. A BES implementing both would yield a service capable of performing data staging for its activities as well as allowing clients to suspend and resume activities. The composition of the two capabilities raises a number of issues that must be addressed:

The Suspend operation is not necessarily applicable to all the sub-states of “Running” that are defined in the data staging profile. For example, one can imagine that the Suspend operation might only be meaningful or supported for an activity that is in state “Running:Executing”, but not for activities in sub-states “Running:Stage-in” and “Running:Stage-out”. This requires that clients must be prepared to receive back a fault response to their requests that indicates that a request is inapplicable to the current sub-state that an activity is in.
A variation on the theme of inapplicability is the case where a requested client operation is applicable to a sub-state that an activity will eventually transition to of its own accord – i.e. without requiring further interaction with the client. In such a case, a BES might choose to eventually apply the client’s request. For example, if it receives a Suspend request for an activity currently in the “Running:Stage-in” state then it might apply that Suspend request once the activity has transitioned to the “Running:Executing” state.
This case raises the question of what to tell a client about their request and when. The client may wish to receive a response to its request immediately, telling it that the request will eventually be applied once the relevant activity has progressed to a suitable sub-state other than the current one. Alternatively, the client may wish to receive a response to its request only when the requested change has actually occurred. To support both response cases requires that clients can specify in a request whether they wish to receive an immediate response back or whether they wish to only receive a response once the request has actually been acted upon. In the former case a client must be prepared to receive back a fault response indicating that their request will eventually be applied.
Different BESes can meaningfully support either the notion that suspension is applicable to the “Running:Stage-in” and “Running:Stage-out” states or not. This illustrates the fact that composition of specialization profiles can yield composition sub-states whose semantics are at least partially ambiguous. Note that clients who are prepared to receive “request-inapplicable” and “request-will-be-applied-eventually” faults can still determine the semantics of any given BES they interact with in an unambiguous manner at interaction time. However, the behavior of two different BESes that a client interacts with may vary with respect to whether they implement a given client request or return a fault response instead.
Unambiguous composition of specialization profiles requires the definition of an additional profile that precisely defines the semantics of each compositional sub-state when two or more specific specialization profiles are composed. Any given BES can choose to implement a compositional specialization profile or not, just as it can choose to implement individual specialization profiles or not. Clients interacting with a BES that implements a composition profile (and advertises the fact) will know precisely what behaviors to expect. Clients interacting with a BES that does not implement a composition profile – either because such a profile has not yet been defined or because the BES provides different composition semantics – can still interoperate with the BES. However, the set of potential behaviors a client might encounter will not be statically determinable and hence clients of such BESes will need to be prepared for a variety of different behaviors whose precise nature will only be determinable at interaction time with any given BES.

· Consider next the composition of three profiles: the data staging profile, the suspend/resume profile, and a third migration profile. Figure 5 illustrates the migration profile, in which an activity in state “Running” can be migrated on request to another computational resource.

[image: image7]
Figure 5. Migration specialization profile: Activities can be migrated upon client request to another computational resource.

· Whereas a client can query a BES to determine the state that a given activity is in, this still leaves the question of how to represent that state. In particular, how should the compositional sub-states derived from the three specialization profiles be represented? There is no obvious canonical way to represent the power set of sub-states that result from composing multiple specialization profiles unless one requires that an explicit composition profile be defined for every composition that any existing BES will ever implement.
· Consequently a set-based “union state” approach is taken to representing sub-state information. For example, an activity that is in the process of staging data out, and is both suspended and being migrated, would be represented by a set of sub-state labels as follows: {Running;Stage-out, Running:Suspended, Running:Migrating}. Section 4.3 describes how union states should be encoded as XML elements.
· Suppose now that a composition profile exists that specifies that migration is inapplicable to the “Running:Stage-out” sub-state of the data staging profile and that a client who understands the data staging and migration profiles, but not the suspend/resume profile, wishes to determine whether requesting a Migrate operation is appropriate to a given activity in the “Running” state. If the client receives a union state of the form {Running:Suspended, Running;Stage-out} in response to a query request, it can examine each element of the set, ignoring those it does not recognize. It will skip over the “Running:Suspended” sub-state label and will recognize the “Running:Stage-out” sub-state label. Consequently it will be able to determine that issuing a Migrate request would be inappropriate.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
5.2.2 Multi-Level Specializations
1.1.1. The composition model introduced in the previous section allows for “component” specializations to be defined that can, for the most part, be mixed and matched with each other. However, some component
1.1.2.
specializations require definition relative to both the base state model as well as to other specializations. Consider a hold/release specialization that introduces the notion of being able to hold an activity from progressing to its next state until an explicit client release request is issued. Figure 6 illustrates this specialization. The semantics of Hold are that an activity will not progress from its “Running” state to a “Finished” or “Canceled state until a corresponding Release operation is issued by the client.

[image: image9]
Figure 6. Hold/release specialization profile: Activities can be held from progressing to their next state until a client release request is issued.
Now suppose that a BES implements the data staging profile and that we would like to introduce the notion of being able to hold an activity after each sub-state of the data staging profile. Unfortunately the hold/resume specialization cannot be employed to achieve this aim since composition of the two profiles would only result in an implementation that would allow holding an activity from leaving its “Running:Stage-out” sub-state. To achieve the desired functionality would require defining a second hold/release specialization profile that is a specialization of the data staging profile rather than the base state model.
25. Activity Sub-
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
52.2. State Representation

While a simple state model – for example, one in which all states are represented by strings, enumerations, or other such basic types – seems a reasonable choice, the fact that a single BES specification cannot anticipate all possible BES uses leads to a more complex state representation. BES instead represents individual state elements by complex types that allow for the addition of sub-states. The example below shows the representation of the Running state in which the author has added a custom sub-state called Staging-In. In so doing, he has indicated that the target activity is in the basic Running state, but he has additionally indicated that it is also in the Staging-In sub-state of that Running state. This extra information may be of use to some clients, but need not be understood by other clients who care only that the activity is in the Running state.

<bes:Running>
 <n00:Staging-In/>

</bes:Running>
Example 1: Example of an Activity State with a Sub-state element.

More specifically, the schema type declaration for any state is given precisely as

<xsd:complexType name=”ActivityStateType”>

 <xsd:sequence>

 <xsd:any namespace=”##other” processContents=”lax”

 minOccurs=”0” maxOccurs=”unbounded”/>

 </xsd:sequence>

</xsd:complexType>

Example 2: Non-normative schema for the ActivityStateType.
52.3. Specialization Fault Responses
1.1. Definition of “Cant-apply-operation-to-current-sub-state” and “Operation-will-be-applied-eventually” fault response messages.
53. BES-Management Port-type (Attributes and Operations)
The BES-Management port-type defines two operations for BES management. The intent of the BES-Management port-type is to define an interface for clients who are system administrators of a BES. Operations are specified using a combination of English and IDL. (A normative rendering is presented in Appendices A-C.)
53.2.
54.
55.
56.
5.2.2
57.
5.2.2
58.
59.
60.
61.
5.2.2
62.
63.
64.
65.
5.2.2
66.
5.2.2
67.
5.2.2
68.
5.2.2
69.
70.
71.
5.2.2
72.
73.
74.
75.
5.2.2
76.
5.2.2
77.
5.2.2
78.
5.2.2
79.
5.2.2
80.
5.2.2
81.
81.2. Operations

The following sections give (non-normatively) the total set of operations defined on the BES-Management port type. For normative information, please refer to Appendix D.
5.2.2 StopAcceptingNewActivities
This operation is used to request that the BES stop accepting new activities.

81.2.2.1. Input(s)

· None.
81.2.2.2. Output(s)

· None. The response message will be sent once the BES has stopped accepting new activity creation requests.
81.2.2.3. Fault(s)

· None.
5.2.3 StartAcceptingNewActivities
This operation is used to request that the BES start accepting new activities.
81.2.3.1. Input(s)

· None.
81.2.3.2. Output(s)

· None. The response message will be sent once the BES has started accepting new activity creation requests
81.2.3.3. Fault(s)

· None.
5.2.4
82.
82.2.2.1.
83.
83.2.2.1.
84.
84.2.2.1.
85.
86. BES-Factory Port-Type
The BES-Factory port type contains operations that support the creation and manipulation of activities controlled or maintained by the BES. It also contains an operation for retrieving attribute information about the BES itself. Although one might argue that such attribute information and the operation to retrieve it belongs in the BES-Management port-type, it is included here because the BES-Factory port-type is intended to be the interface that ordinary clients of a BES employ. Ordinary clients will often wish to inspect the state of a BES in order to determine whether or not to employ it for executing activities (as compared to some other BES).
6.1. Attributes

The authors of BES anticipate a wide range of scenarios in which various BESes will play a part. These scenarios may include direct management and manipulation of a single computational resource (such as a UNIX or Windows host), they may be employed to manage clusters of resources through well known cluster management software such as LSF, Load Leveler, SGE, and PBS queues, and they may be facades to other BESes (i.e., hierarchical arrangements of BESes). As such, it is not always clear that an attribute or piece of metadata that is valid for one type of BES is necessarily valid or useful for another type of BES. Further, the authors of this document cannot anticipate all possible nuggets of information that may be required for any given BES or family of BES implementations. Because of this, BES adopts a flexible and extensible mechanism for describing both backend resources, and front-end BES semantics.

Attributes are broken up into two broad categories -- Basic Resource, and BES specific. Appendix B shows the schemas for this attribute document. The basic principle used here is that all BESes provide BES specific attribute documents. That document (through the use of extensibility elements included in the schema) may contain 0 or more sub-documents which correspond to either contained BES attribute documents, or Basic Resource attribute documents.

While the schema for these attributes is normatively given in the appendices of this document, a formal description and definition of those elements is given here (please refer to Appendix B for cardinality and exact type). For each attribute, the abbreviation BES refers to a BES specific attribute while BR indicates a basic resource attribute (i.e., one that applies only to underlying resources).

6.2.1 IsAcceptingNewActivities

A BES attribute that Indicates whether or not the target BES is currently accepting new activities. If this value is false, then the BES MUST throw a NotAcceptingActivitiesFault fault for every CreateActivity request that it receives. If this value is true, then the BES MUST process every CreateActivity request that comes in.
6.2.2 CommonName

A BES attribute that indicates a common or human readable name for the service. The vagueness of this attribute is intentional as its use is meant primarily for human consumption (for example, for users browsing with client tools). Likely values may include:

· machine.domain.name

· My Organization’s Big Iron machine
· etc.
6.2.3 LongDescription

Like CommonName above, this attribute is a BES attribute that is meant as a human readable string of text, similar to comments, which should be geared towards human consumption. Again, the purpose of this attribute is primarily for client side browsing capabilities and may include values such as:

· The big iron machine located in room 1138 in building THX.

· Mark’s personal desktop machine

· etc.
6.2.4 TotalNumberOfActivities

This BES attribute indicates the total number of activities currently managed (regardless of the states of those activities) by the target BES.
6.2.5 ActivityReference

A BES attribute which lists all of the WS-Addressing endpoint reference types for all of the currently contained activities.
6.2.6 ContainedResourceAttributes

This attribute is a list of sub-attribute documents whose types must all either be bes:BasicResourceAttributeDocumentType, or bes:BESResourceAttributeDocumentType. This attribute is itself BES specific (thus implying that BasicResourceAttributeDocumentTypes are leaf nodes in an attribute document hierarchy).
6.2.7 NamingProfile

A BES attribute that indicates what types of Endpoint References this BES returns from it’s CreateActivity operation. Valid values include (but are not limited to):

· {http://schemas.ggf.org/bes/2006/08/bes/naming}BasicWSAddressing

· {http://schemas.ggf.org/bes/2006/08/bes/naming}WS-Naming
6.2.8 LocalResourceManagerType

This attribute is both a BES and a BR attribute type which indicates (where applicable) the type of resource/resources that is/are being managed. For example, the values may indicate that the resources are single UNIX or Windows machines, clusters of machines behind LSF, LoadLeveler, SGE, or PBS queues, etc. Valid values for this attribute are QNames which SHOULD be defined on a per-resource type basis. In otherwords, it is expected that various companies participating in the BES specification will provide unique, company-specific and product specific namespaces for QNames identifying their resource types. Examples might include:

· {http://vcgr.cs.virginia.edu/bes/2006/08/resources}queing

· {http://sun.com/bes/2006/08/resources/queues}SGE

· etc.
6.2.9 OperatingSystem

A BR attribute which indicates the operating system information for the managed resource. The type for this attribute is taken directly from the JSDL [JSDL 1.0] documentation.
6.2.10 CPUArchitecture

A BR attribute which indicates the architecture of the machine for this managed resource. The type for this attribute is taken directly from the JSDL [JSDL 1.0] documentation.
6.2.11 CPUCount

A BR attribute which indicates the number of CPUs managed or provided by the target resource. This number is equal to the total number of CPUs, cores, etc. available on the resource indicated.
6.2.12 CPUSpeed

An attribute available in the BR document which indicates the clock speed of an individual CPU on the resource given. This value is an integer type and is assumed to be in Hertz.
6.2.13 PhysicalMemory

A BR attribute giving the total amount of memory (in bytes) managed by the indicated resource.
6.2.14 VirtualMemory

A BR attribute giving the total amount of memory (in bytes) available as swap or virtual memory on the indicated resource.
6.2. BES-Factory Operations
The following sections non-normatively describe in total the operations supported by the BES-Factory port type. For normative descriptions, please refer to Appendix E.
Several of the operations listed in this section – in particular GetActivitiesStatus, TerminateActivities, and GetActivityDocuments – take a vector of activity EPRs as input and operate on all the referenced activities. Since an input vector may contain EPRs that are either unknown to a BES or for which the BES cannot execute the requested operation, the following failure semantics MUST be provided by a compliant BES:

If a request fails for some reason that applies to all the specified activities – e.g. due to an authorization fault – then the BES MUST respond with an appropriate fault response message.

If a request can succeed for one or more of the specified activities then the BES MUST respond with a vector of response elements, where each element corresponds to the equivalent activity designated in the input EPR vector. Each response element MUST be either an element describing the results of the request, as applied to the designated activity, or a SOAP-1.2 fault element describing why the request could not be applied to the designated activity (e.g. because the EPR could not be resolved to any known activity within the BES).
6.2.1 CreateActivity
This operation is used to request the creation of a new activity. In the following subsections, we define this operation’s inputs, outputs, and faults.
6.2.1.1. Input(s)

· ActivityDocument activityDescriptionDocument: An XML infoset describing a single activity that is to be created.
The ActivityDocument element is used to describe either the desired or the actual representation of a single activity and has the following structure. In all cases, a jsdl:JobDescription element MUST be present. In a CreateActivity request this element describes desired/required aspects of the activity to be created. When returned in response messages for GetActivitiesStatus and GetActivityDocuments requests the element describes the current representation of a existing activity. Other elements may also be present in an ActivityDocument, for example, to describe desired/actual aspects of an activity that correspond to one or more BES extension specifications.
<bes:ActivityDocument>

 <jsdl:JobDefinition>

 ...

 </jsdl:JobDefinition>
 <xsd:any/> *
</bes:ActivityDocument>
6.2.1.2. Output(s)

· EPR activityIdentifier: On success, an EPR identifying the requested activity is returned.
6.2.1.3. Fault(s)

· NotAcceptingNewActivities: A fault that indicates that the BES is not currently accepting new activities.
· UnsupportedJSDLFault: A fault indicating a well-formed XML document describing a version of JSDL that is not supported by this BES implementation.
· UnsupportedFeatureFault: A fault indicating either:

· A well-formed, supported JSDL document input element containing a sub-element that is not implemented by this BES implementation.
· A non-JSDL input element that is not implemented by this BES implementation.
The feature that is not implemented is returned in the body of the fault
.
6.2.2 GetActivitiesStatus

This operation allows a client to request the status of zero or more activities previously initiated by CreateActivity operations. Each activity for which status information is required is specified by an EPR; the response is a vector of ActivityStatus elements, one per requested activity.
6.2.2.1. Input(s)

· EPR[] activityIdentifiers: A vector of zero or more EPRs (obtained from previous CreateActivity operations), indicating activities from which we require status information.
6.2.2.2. Output(s)

· ActivityStatus[] activityStatus: An XML document containing a vector of ActivityStatus elements (see below), one for each EPR provided in the input. Note that because many activities can be queried, this document may become large.
The ActivityStatus element used to represent the status of a single activity has the following structure. Its two components are the EPR for the activity and either a description of the overall state of the activity referenced by that EPR (OverallStatus) or a SOAP-1.2 fault element indicating that the indicated EPR could not be resolved to any known activity by the BES.

<ActivityStatus>

 <ActivityIdentifier> {wsa:EndpointReferenceType} </ActivityIdentifier>

 <OverallStatus> ActvityStateType REF _Ref143325151 \h
 * MERGEFORMAT </OverallStatus> ?

 |

 <SOAP-1.2:fault> ActivityDoesNotExist fault </SOAP-1.2:fault> ?

</ActivityStatus>*

Since the BES specification allows for extensible activity state diagrams, it is possible that not all states within the state diagram will be relevant/meaningful to a particular client. BES requires that all legal state transitions are transitioned even if they are not relevant to a particular client. For instance, if an empty JSDL document is submitted to the BES then all the states from New to Finished will be transitioned through even though there is no underlying specified activity.
6.2.2.3. Fault(s)

· The usual faults for things like auth-denied, etc.
6.2.2.4.

6.2.3 TerminateActivities
This operation requests that a specified set of activities be terminated. The BES attempts to terminate each activity specified. As a consequence of this operation, the specified activities MAY be terminated. If an activity cannot be terminated immediately, the eventual success of this operation (i.e., to move the activity into the Canceled state) must be determined through other operations (e.g., GetActivityState) or by subscribing to any generated events, if a BES supports subscription.

If a request is successful, then each specified activity will eventually enter the Cancelled state. Invoking this operation on a Cancelled activity has no further effect. How long the activity remains in the Cancelled state before the EPR no longer returns a reference to the activity is not defined.
6.2.3.1. Input(s)

· EPR[] activities: A vector of zero or more EPRs identifying the activities that are to be terminated.
6.2.3.2. Output(s)

· TerminateResponse[] responses: A vector detailing the response of the BES to the termination request. The Cancelled element is a boolean value indicating whether the BES successfully (true) cancelled the activity or not (false). If true is returned then the associated activity is now in the Cancelled state. If false is returned then the activity MAY eventually transition to the Cancelled state. If an activity specified in the input cannot be located or cannot be terminated for some reason then the TerminateResponse MUST contain a SOAP-1.2 fault element instead of a Cancelled element.
<bes:TerminateResponse>

 <bes:ActivityIdentifier>EPR</bes:ActivityIdentifier>

 <bes:Cancelled> xsd:Boolean </bes:Cancelled> ?
 |

 <SOAP-1.2:fault> ... </SOAP-1.2:fault> ?
</bes:TerminateResponse> *
6.2.3.3. Fault(s)

· The usual faults for things like auth-denied, etc.
6.2.4 GetActivityDocuments
This operation requests ActivityDocument descriptions for a set of specified activities. These ActivityDocuments may be different from those initially passed to the BES in the CreateActivity operation, as the BES may alter its contents to reflect policy or process within the service. That is, the ActivityDocument for a given activity reflects the activity being run as opposed to what the BES was originally asked to run. (If the submitter wishes to access the latter document, they should retain their own copy.)
6.2.4.1. Input(s)

· EPR[] ActivityIdentifiers: A vector of EPRs identifying the activities for which ActivityDocuments are requested.
6.2.4.2. Output(s)

· ActivityDocumentResponse [] documents. The output from this operation returns a vector of ActivityDocumentResponse elements.
The ActivityDocumentResponse element used to represent information about a single activity has the following structure. Its two components are the EPR for the activity and either an ActivityDocument for the activity referenced by that EPR or a SOAP-1.2 fault element indicating that the indicated EPR could not be resolved to any known activity by the BES.

< ActivityDocumentResponse >

 <ActivityIdentifier> {wsa:EndpointReferenceType} </ActivityIdentifier>

 <ActivityDocument> ... REF _Ref143325151 \h
 * MERGEFORMAT </ActivityDocument> ?

 |

 <SOAP-1.2:fault> ActivityDoesNotExist fault </SOAP-1.2:fault> ?

</ ActivityDocumentResponse >*

6.2.4.3. Fault(s)

· The usual faults for things like auth-denied, etc.
·
6.2.5 GetAttributesDocument

This operation is used to request a document containing the BES-Management attributes.

6.2.5.1. Input(s)

None
6.2.5.2. Output(s)

· BESAttributes document: An XML document containing the various attributes listed above in the attributes section (this document MUST be of type bes-mgmt:BESResourceAttributeDocumentType.
6.2.5.3. Fault(s)

· The usual faults for things like auth-denied, etc.
·
7. Management

Currently no generic management infrastructure has been specified for OGSA services. We would expect such an infrastructure to support the termination of a BES following a duly authorized request. In terminating a BES, the impact on the activities taking place within the BES is undefined.

8. Security Considerations

Security considerations are significant in execution management. A BES will typically want to control who can invoke its various operations. There may also be a need for identity mapping between a grid credential and the BES’s authorization and authentication space. These considerations are outside the scope of this document.
9. Optional Extensions
How do we represent the fact that these extensions are supported by a given BES? Need to define the extension-exists property/attribute values for each extension.
9.1. Idempotent Execution Semantics

If idempotent execution is required, the following element MUST be used to uniquely identify an activity to the BES using a client-generated identifier. If present in an activity description, the BES MUST NOT execute the activity containing this identifier more than once
.
<bes:IdempotentActivityID>

 wsa:AttributedURI

</bes:IdempotentActivityID>
Should a BES receive a second CreateActivity request that includes the same identity element as a previously received one then the BES MUST not create the requested activity a second time if it already created the activity for the first request. Furthermore, if the first request resulted in a created activity then the BES MUST return the same response message as was returned to the first CreateActivity request.

How long does a BES have to remember activity IDs?
9.2. Subscription to Notification Events

A BES that allows its clients to subscribe for messages concerning activity state changes MUST do so using either the WS-Eventing or WS-Notification protocols.

To avoid both additional round-trip messages and the race-condition inherent in first creating and then subscribing to an activity’s state changes, compliant BESes implementing this extension MUST support the (optional) inclusion of the following subscription request element as input to the CreateActivity request.
<bes:Subscription>

 ??? WS-Eventing or WS-Notification subscription element
</bes:Subscription>
Need to define semantics of when events get generated.
9.3.
9.4. JSDL 1.0 Extensions

We define two
optional extensions to the JSDL activity description. These extensions are defined here so that clients and services that want to use them can adopt common syntax and semantics.

6.2.1 Library
This element MAY be used to identify libraries and other software components that are available at a resource. They MAY also be added to the Job Description Resource element to indicate that the job requires the given library or software package.

<bes:Library>

 <LibraryName .../>?

 <LibraryVersion .../>?

 <Description .../>?

</bes:Library>

6.2.2
10.
11.
12.
6.2.1 Lifetime Management

Q: Do we include this as an extension, or is this defined in a WSRF BES profile?
A BES that implements the WS-ResourceLifetime operation SHOULD use this element to indicate the requestor’s suggestion for the initial setting of the termination time resource property [WS-ResourceLifetime] of the activity.

There are two forms of this element, absolute time and duration. If the type of this element is xsd:dateTime, the value of the element is to be interpreted as an “absolute time”. If the type of this element is xsd:duration, the value of the element is to be interpreted as a “relative time” or “duration”. Regardless of the form, time is relative to the time source used by the BES implementation.

The duration form is used to “compute” the “absolute time” form in the following fashion. The value of this element in “absolute time” form is computed by adding the xsd:duration value to the current time value of the BES implementation.

The “absolute time” form (whether computed from a duration, or contained within the request message) is used to initialize the value of the TerminationTime attribute of the activity.

If the BES implementation is unable or unwilling to set the TerminationTime attribute of the activity to the given value of the “absolute time” form or a value greater, then the CreateActivity request MUST fault. If the value is not “in the future” relative to the current time as known by the BES implementation, the request MUST fault. The use of the xsi:nil attribute with value “true” indicates there is no scheduled termination time requested for the activity. If the element does not include the time zone designation, the value of the element MUST be interpreted as universal time (UTC) time. If a fault is returned, the operation MUST NOT have an effect.

If this element is not included, the initial value of the TerminationTime resource property is dependent on the BES implementation.
Authors Information

Andrew Grimshaw
Mark Morgan
Darren Pulsipher

Chris Smith

Steven Newhouse

William Lee
Ian Foster
Marvin Theimer

Contributors

We gratefully acknowledge the contributions made to this document by

Acknowledgments

We are grateful to numerous colleagues for discussions on the topics covered in this document, and to the people who provided comments on the public drafts. Thanks in particular to (in alphabetical order, with apologies to anybody we have missed) ….

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2005, 2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

References

[RFC2119]
S.Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[XML-Infoset]
XML Information Set (Second Edition) W3C Recommendation 4 February 2004 - http://www.w3.org/TR/xml-infoset/
[XPATH]
XML Path Language (XPath) Version 1.0 W3C Recommendation, 16 November 1999 -http://www.w3.org/TR/xpath
[WS-Addressing]
D. Box and F. Curbera (ed.) Web Services Addressing 1.0 – Core (WS-Addressing), W3C Last Call 31 March 2005, http://www.w3.org/TR/2005/WD-ws-addr-core-20050331

[SOAP 1.1]
Simple Object Access Protocol (SOAP) 1.1 , W3C 08 May 2000 – http://www.w3.org/TR/soap11

[OGSA WSRF BP
] OGSA WSRF Basic Profile definition 1.0, GGF February, 2006
[WS-Security]
Web Services Security (WS-Security), Version 1.0 05 April 2002 - http://www-128.ibm.com/developerworks/webservices/library/ws-secure/
[WS-Naming]
WS-Naming Specification 1.0, GGF February 2006
[JSDL 1.0]
Job Service Description Language 1.0, GGF November 2005

13.
14.
15.
Appendix A. Normative BES-Management XSD

None needed.

Appendix B. Normative BES-Factory XSD

<xsd:schema

 xmlns=http://schemas.ggf.org/bes/2006/08/bes-factory
 xmlns:s12="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:bes-factory="http://schemas.ggf.org/bes/2006/08/bes-factory"

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 targetNamespace="http://schemas.ggf.org/bes/2006/08/bes-factory"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xsd:import

 namespace="http://docs.oasisi-open.org/wsrf/bf-2"

 schemaLocation="http://docs.oasis-open.org/wsrf/bf-2.xsd"/>

 <xsd:import

 namespace="http://www.w3.org/2005/08/addressing"

 schemaLocation="http://www.w3.org/2005/08/addressing/ws-addr.xsd"/>

 <xsd:import

 namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 schemaLocation="./jsdl.xsd"/>

<!-- Fault types -->

 <xsd:complexType name="NotAcceptingNewActivitiesFaultType">

 <xsd:complexContent>

 <xsd:extension base="s12:FaultType"/>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:element name="NotAcceptingNewActivitiesFaultType"

 type="bes-factory:NotAcceptingNewActivitiesFaultType"/>

 <xsd:complexType name="UnsupportedJSDLFaultType">

 <xsd:complexContent>

 <xsd:extension base="s12:FaultType"/>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:element name="UnsupportedJSDLFaultType"

 type="bes-factory:UnsupportedJSDLFaultType"/>

 <xsd:complexType name="UnsupportedFeatureFaultType">

 <xsd:complexContent>

 <xsd:extension base="s12:FaultType">

 <xsd:sequence>

 <xsd:element name="UnsupportedFeature" type="xsd:string"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:element name="UnsupportedFeatureFaultType"

 type="bes-factory:UnsupportedFeatureFaultType"/>

<!-- Attribute Document Types -->

 <xsd:complexType name="BasicResourceAttributeDocumentType">

 <xsd:sequence>

 <xsd:element name="LocalResourceManagerType"

 type="xsd:QName" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="OperatingSystem"

 type="jsdl:OperatingSystem_Type"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="CPUArchitecture"

 type="jsdl:CPUArchitecture_Type"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="CPUCount" type="xsd:unsignedInt"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="CPUSpeed" type="xsd:unsignedLong"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="PhysicalMemory" type="xsd:unsignedLong"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="VirtualMemory" type="xsd:unsignedLong"

 minOccurs="1" maxOccurs="1"/>

 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="BasicResourceAttributeDocumentType"

 type="bes:BasicResourceAttributeDocumentType"/>

 <xsd:complexType name="BESResourceAttributeDocumentType">

 <xsd:complexContent>

 <xsd:extension base="bes:BasicResourceAttributeDocumentType">

 <xsd:sequence>

 <xsd:element name="IsAcceptingNewActivities"

 type="xsd:boolean" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="CommonName" type="xsd:string"

 minOccurs="0" maxOccurs="1"/>

 <xsd:element name="LongDescription" type="xsd:string"

 minOccurs="0" maxOccurs="1"/>

 <xsd:element name="TotalNumberOfActivities"

 type="xsd:unsignedInt" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="LocalResourceManagerType"

type="xsd:QName" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="ActivityReference"

type="wsa:EndpointReferenceType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="ContainedResourceAttributes"

 type="xsd:anyType" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="NamingProfile"

 type="xsd:QName" minOccurs="1" maxOccurs="1"/>

 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:element name="BESResourceAttributeDocumentType"

 type="bes:BESResourceAttributeDocumentType"/>

<!-- Message Helper Types -->

 <xsd:complexType name="ActivityDocumentType">

 <xsd:sequence>

 <xsd:element name="JobDefinition" type="jsdl:JobDefinition_Type"

 minOccurs="0" maxOccurs="1"/>
 <xsd:any>
 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="ActivityDocumentType"

 type="bes-factory:ActivityDocumentType"/>

 <xsd:complexType name="OverallStatusType">

 <xsd:choice maxOccurs="1">

 <xsd:element name="Pending" type="xsd:anyType"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="Running" type="xsd:anyType"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="Cancelled" type="xsd:anyType"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="Failed" type="xsd:anyType"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="Finished" type="xsd:anyType"

 minOccurs="1" maxOccurs="1"/>

 </xsd:choice>

 </xsd:complexType>

 <xsd:element name="OverallStatusType"

 type="bes-factory:OverallStatusType"/>

 <xsd:complexType name="ActivityStatusType">

 <xsd:sequence>

 <xsd:element name="ActivityIdentifier"

 type="wsa:EndpointReferenceType"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="OverallStatus"

 type="bes-factory:OverallStatusType"

 minOccurs="0" maxOccurs="1"/>
 <s12:Fault minOccurs=”0” maxOccurs=”1”/>
 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="ActivityStatusType"

 type="bes-factory:ActivityStatusType"/>

 <xsd:complexType name="TerminateResponseType">

 <xsd:sequence>

 <xsd:element name="ActivityIdentifier"

type="wsa:EndpointReferenceType"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="Cancelled" type="xsd:boolean"

 minOccurs="1" maxOccurs="1"/>

 <s12:Fault minOccurs=”0” maxOccurs=”1”/>
 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="TerminateResponseType"

 type="bes-factory:TerminateResponseType"/>

 <xsd:complexType name="ActivityDocumentResponseType">

 <xsd:sequence>

 <xsd:element name="ActivityIdentifier"

type="wsa:EndpointReferenceType"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="ActivityDescription" type="bes-factory:ActivityDocumentType"

 minOccurs="1" maxOccurs="1"/>

 <s12:Fault minOccurs=”0” maxOccurs=”1”/>
 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="ActivityDocumentResponseType"

 type="bes-factory:ActivityDocumentResponseType"/>

</xsd:schema>

Appendix C. Normative BES-Management WSDL

<wsdl:definitions name="BESManagement"

 targetNamespace="http://schemas.ggf.org/bes/2006/08/bes-management"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:bes-mgmt="http://schemas.ggf.org/bes/2006/08/bes-management"

 xmlns:wsa="http://www.w3/org/2005/08/addressing"

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:wsbf="http://docs.oasis-open.org/wsrf/bf-2"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>

 <wsdl:types>

 <xsd:schema

 attributeFormDefault="unqualified"

 elementFormDefault="qualified"

 targetNamespace="http://schemas.ggf.org/bes/2006/08/bes-management">

 <xsd:import

 namespace="http://www.w3/org/2005/08/addressing"

 schemaLocation="http://www.w3.org/2005/08/addressing/ws-addr.xsd"/>

 <xsd:import

 namespace="http://schemas.ggf.org/bes/2006/08/bes-management"

 schemaLocation="./bes-management.xsd"/>

 <xsd:import

 namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 schemaLocation="./jsdl.xsd"/>

<!-- Message Types -->

 <xsd:element name="StopAcceptingNewActivities"/>

 <xsd:element name="StopAcceptingNewActivitiesResponse"/>

 <xsd:element name="StartAcceptingNewActivities"/>

 <xsd:element name="StartAcceptingNewActivitiesResponse"/>

 </xsd:schema>

 </wsdl:types>

<!-- Messages -->

 <wsdl:message name="StopAcceptingNewActivitiesRequest">

 <wsdl:part name="StopAcceptingNewActivitiesRequest"

 element="bes-mgmt:StopAcceptingNewActivities"/>

 </wsdl:message>

 <wsdl:message name="StopAcceptingNewActivitiesResponse">

 <wsdl:part name="StopAcceptingNewActivitiesResponse"

 element="bes-mgmt:StopAcceptingNewActivitiesResponse"/>

 </wsdl:message>

 <wsdl:message name="StartAcceptingNewActivitiesRequest">

 <wsdl:part name="StartAcceptingNewActivitiesRequest"

 element="bes-mgmt:StartAcceptingNewActivities"/>

 </wsdl:message>

 <wsdl:message name="StartAcceptingNewActivitiesResponse">

 <wsdl:part name="StartAcceptingNewActivitiesResponse"

 element="bes-mgmt:StartAcceptingNewActivitiesResponse"/>

 </wsdl:message>

<!-- Port Type -->

 <wsdl:portType name="BESManagementPortType">

 <wsdl:operation name="StopAcceptingNewActivities">

 <wsdl:input

message="bes-mgmt:StopAcceptingNewActivitiesRequest"/>

 <wsdl:output

message="bes-mgmt:StopAcceptingNewActivitiesResponse"/>

 </wsdl:operation>

 <wsdl:operation name="StartAcceptingNewActivities">

 <wsdl:input

message="bes-mgmt:StartAcceptingNewActivitiesRequest"/>

 <wsdl:output

message="bes-mgmt:StartAcceptingNewActivitiesResponse"/>

 </wsdl:operation>

 </wsdl:portType>

</wsdl:definitions>

Appendix D. Normative BES-Factory WSDL

<wsdl:definitions name="BESFactory"

 targetNamespace="http://schemas.ggf.org/bes/2006/08/bes-factory"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:bes-factory="http://schemas.ggf.org/bes/2006/08/bes-factory"

 xmlns:wsa="http://www.w3/org/2005/08/addressing"

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:wsbf="http://docs.oasis-open.org/wsrf/bf-2"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>

 <wsdl:types>

 <xsd:schema

 attributeFormDefault="unqualified"

 elementFormDefault="qualified"

 targetNamespace="http://schemas.ggf.org/bes/2006/08/bes-factory">

 <xsd:import

 namespace="http://www.w3/org/2005/08/addressing"

 schemaLocation="http://www.w3.org/2005/08/addressing/ws-addr.xsd"/>

 <xsd:import

 namespace="http://schemas.ggf.org/bes/2006/08/bes-factory"

 schemaLocation="./bes-factory.xsd"/>

 <xsd:import

 namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 schemaLocation="./jsdl.xsd"/>

<!-- Message Types -->

 <xsd:element name="CreateActivity">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="activityDescriptionDocument"

 type="bes-factory:ActivityDocumentType"

 minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="CreateActivityResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="activityIdentifier"

 type="wsa:EndpointReferenceType"

 minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="GetActivitiesStatus">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="activityIdentifier"

 type="wsa:EndpointReferenceType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="GetActivitiesStatusResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="activityStatus"

 type="bes-factory:ActivityStatusType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="TerminateActivities">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="activityIdentifier"

 type="wsa:EndpointReferenceType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="TerminateActivitiesResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="response"

 type="bes-factory:TerminateResponseType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="GetActivityDocuments">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="activityIdentifier"

 type="wsa:EndpointReferenceType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="GetActivityDocumentsResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="document"

 type="bes-factory:ActivityDocumentType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="GetAttributesDocument"/>

 <xsd:element name="GetAttributesDocumentResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="BESAttributes"

 type="bes-mgmt:BESResourceAttributeDocumentType"

 minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

 </wsdl:types>

<!-- Fault Messages -->

 <wsdl:message name="NotAcceptingNewActivitiesFault">

 <wsdl:part name="NotAcceptingNewActivitiesFault"

 element="NotAcceptingNewActivitiesFaultType"/>

 </wsdl:message>

 <wsdl:message name="UnsupportedJSDLFaultType">

 <wsdl:part name="UnsupportedJSDLFaultType"

 element="UnsupportedJSDLFaultTypeType"/>

 </wsdl:message>

 <wsdl:message name="UnsupportedFeatureFault">

 <wsdl:part name="UnsupportedFeatureFault"

 element="UnsupportedFeatureFaultType"/>

 </wsdl:message>

<!-- Messages -->

 <wsdl:message name="CreateActivityRequest">

 <wsdl:part name="CreateActivityRequest"

 element="bes-factory:CreateActivity"/>

 </wsdl:message>

 <wsdl:message name="CreateActivityResponse">

 <wsdl:part name="CreateActivityResponse"

 element="bes-factory:CreateActivityResponse"/>

 </wsdl:message>

 <wsdl:message name="GetActivitiesStatusRequest">

 <wsdl:part name="GetActivitiesStatusRequest"

 element="bes-factory:GetActivitiesStatus"/>

 </wsdl:message>

 <wsdl:message name="GetActivitiesStatusResponse">

 <wsdl:part name="GetActivitiesStatusResponse"

 element="bes-factory:GetActivitiesStatusResponse"/>

 </wsdl:message>

 <wsdl:message name="TerminateActivitiesRequest">

 <wsdl:part name="TerminateActivitiesRequest"

 element="bes-factory:TerminateActivities"/>

 </wsdl:message>

 <wsdl:message name="TerminateActivitiesResponse">

 <wsdl:part name="TerminateActivitiesResponse"

 element="bes-factory:TerminateActivitiesResponse"/>

 </wsdl:message>

 <wsdl:message name="GetActivityDocumentsRequest">

 <wsdl:part name="GetActivityDocumentsRequest"

 element="bes-factory:GetActivityDocuments"/>

 </wsdl:message>

 <wsdl:message name="GetActivityDocumentsResponse">

 <wsdl:part name="GetActivityDocumentsResponse"

 element="bes-factory:GetActivityDocumentsResponse"/>

 </wsdl:message>

 <wsdl:message name="GetAttributesDocumentRequest">

 <wsdl:part name="GetAttributesDocumentRequest"

 element="bes-mgmt:GetAttributesDocument"/>

 </wsdl:message>

 <wsdl:message name="GetAttributesDocumentResponse">

 <wsdl:part name="GetAttributesDocumentResponse"

 element="bes-mgmt:GetAttributesDocumentResponse"/>

 </wsdl:message>

<!-- Port Type -->

 <wsdl:portType name="BESFactoryPortType">

 <wsdl:operation name="CreateActivity">

 <wsdl:input

message="bes-factory:CreateActivityRequest"/>

 <wsdl:output

message="bes-factory:CreateActivityResponse"/>

 <wsdl:fault name="NotAcceptingNewActivitiesFault"

message="bes-factory:NotAcceptingNewActivitiesFault"/>

 <wsdl:fault name="UnsupportedJSDLFault"

message="bes-factory:UnsupportedJSDLFault"/>

 <wsdl:fault name="UnsupportedFeatureFault"

message="bes-factory:UnsupportedFeatureFault"/>

 </wsdl:operation>

 <wsdl:operation name="GetActivitiesStatus">

 <wsdl:input

message="bes-factory:GetActivitiesStatusRequest"/>

 <wsdl:output

message="bes-factory:GetActivitiesStatusResponse"/>

 </wsdl:operation>

 <wsdl:operation name="TerminateActivites">

 <wsdl:input

message="bes-factory:TerminateActivitesRequest"/>

 <wsdl:output

message="bes-factory:TerminateActivitesResponse"/>

 </wsdl:operation>

 <wsdl:operation name="GetActivityDocuments">

 <wsdl:input

message="bes-factory:GetActivityDocumentsRequest"/>

 <wsdl:output

message="bes-factory:GetActivityDocumentsResponse"/>

 </wsdl:operation>

 <wsdl:operation name="GetAttributesDocument">

 <wsdl:input

message="bes-mgmt:GetAttributesDocumentRequest"/>

 <wsdl:output

message="bes-mgmt:GetAttributesDocumentResponse"/>

 </wsdl:operation>

 </wsdl:portType>

</wsdl:definitions>

Appendix E. Non-normative examples for BES-Management

a. StopAcceptingNewActivities
i. Request Message

<s11:Envelope

 xmlns:s11="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:bes-mgmt="http://schemas.ggf.org/bes/2006/08/bes-management">

 <s11:Header>

 <wsa:Action>

 http://schemas.ggf.org/bes/2006/08/bes-management/StopAcceptingNewActivities

 </wsa:Action>

 <wsa:To s11:mustUnderstand=1>

 http://www.bes.org/BESManager

 </wsa:To>

 </s11:Header>

 <s11:Body>

 <bes-mgmt:StopAcceptingNewActivities/>

 </s11:Body>

</s11:Envelope>
ii. Response Message
<s11:Envelope

 xmlns:s11="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:bes-mgmt="http://schemas.ggf.org/bes/2006/08/bes-management">

 <s11:Header>

 <wsa:Action>

 http://schemas.ggf.org/bes/2006/08/bes-management/StopAcceptingNewActivitiesResponse

 </wsa:Action>

 <wsa:To>

 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

 </wsa:To>

 </s11:Header>

 <s11:Body>

 <bes-mgmt:StopAcceptingNewActivitiesResponse/>

 </s11:Body>

</s11:Envelope>
b. StartAcceptingNewActivities

i. Request Message
<s11:Envelope

 xmlns:s11="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:bes-mgmt="http://schemas.ggf.org/bes/2006/08/bes-management">

 <s11:Header>

 <wsa:Action>

 http://schemas.ggf.org/bes/2006/08/bes-management/StartAcceptingNewActivities

 </wsa:Action>

 <wsa:To s11:mustUnderstand=1>

 http://www.bes.org/BESManager

 </wsa:To>

 </s11:Header>

 <s11:Body>

 <bes-mgmt:StartAcceptingNewActivities/>

 </s11:Body>

</s11:Envelope>
ii. Response Message
<s11:Envelope

 xmlns:s11="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:bes-mgmt="http://schemas.ggf.org/bes/2006/08/bes-management">

 <s11:Header>

 <wsa:Action>

 http://schemas.ggf.org/bes/2006/08/bes-management/StartAcceptingNewActivitiesResponse

 </wsa:Action>

 <wsa:To>

 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

 </wsa:To>

 </s11:Header>

 <s11:Body>

 <bes-mgmt:StartAcceptingNewActivitiesResponse/>

 </s11:Body>

</s11:Envelope>
c.
i.

ii.

Appendix F. Non-normative examples for BES-Factory

d. CreateActivity

i. Request Message
<s11:Envelope

 xmlns:s11="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:bes-factory="http://schemas.ggf.org/bes/2006/08/bes-factory">

 <s11:Header>

 <wsa:Action>

 http://schemas.ggf.org/bes/2006/08/bes-factory/CreateActivity

 </wsa:Action>

 <wsa:To s11:mustUnderstand=1>

 http://www.bes.org/BESFactory

 </wsa:To>

 </s11:Header>

 <s11:Body>

 <bes-factory:CreateActivity>

 <bes-factory:activityDescriptionDocument>

 <bes-factory:ActivityDocument>

 {Any valid JSDL document}
 </bes-factory:ActivityDocument>
 </bes-factory:activityDescriptionDocument>

 </bes-factory:CreateActivity>

 </s11:Body>

</s11:Envelope>
ii. Response Message
<s11:Envelope

 xmlns:s11="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:n00="http://tempuri.org/"

 xmlns:naming="http://schemas.ggf.org/naming/2006/08/naming"

 xmlns:bes-factory="http://schemas.ggf.org/bes/2006/08/bes-factory">

 <s11:Header>

 <wsa:Action>

 http://schemas.ggf.org/bes/2006/08/bes-factory/CreateActivityResponse

 </wsa:Action>

 <wsa:To>

 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

 </wsa:To>

 </s11:Header>

 <s11:Body>

 <bes-factory:CreateActivityResponse>

 <bes-factory:activityIdentifier>

 <wsa:Address>http://tempuri.org/some-service</wsa:Address>

 <wsa:ReferenceParameters>

 <n00:id>D4A88953-FFFF-49F6-5145-AE21FF0438AE</n00:id>

 </wsa:ReferenceParameters>

 <wsa:Metadata>

 <naming:EndpointIdentifier>urn:guid:B94C4186-FFFF-4dbb-AD9C-39DFB8B54388</name:EndpointIdentifier>

 </wsa:Metadata>

 </bes-factory:activityIdentifier>

 </bes-factory:CreateActivityResponse>

 </s11:Body>

</s11:Envelope>
e. GetActivitiesStatus

i. Request Message
<s11:Envelope

 xmlns:s11="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:n00="http://tempuri.org/"

 xmlns:naming="http://schemas.ggf.org/naming/2006/08/naming"

 xmlns:bes-factory="http://schemas.ggf.org/bes/2006/08/bes-factory">

 <s11:Header>

 <wsa:Action>

 http://schemas.ggf.org/bes/2006/08/bes-factory/GetActivitiesStatus

 </wsa:Action>

 <wsa:To s11:mustUnderstand=1>

 http://www.bes.org/BESFactory

 </wsa:To>

 </s11:Header>

 <s11:Body>

 <bes-factory:GetActivitiesStatus>

 <bes-factory:activityIdentifier>

 <wsa:Address>http://tempuri.org/some-service</wsa:Address>

 <wsa:ReferenceParameters>

 <n00:id>D4A88953-FFFF-49F6-5145-AE21FF0438AE</n00:id>

 </wsa:ReferenceParameters>

 <wsa:Metadata>

 <naming:EndpointIdentifier>urn:guid:B94C4186-FFFF-4dbb-AD9C-39DFB8B54388</name:EndpointIdentifier>

 </wsa:Metadata>

 </bes-factory:activityIdentifier>

 </bes-factory:GetActivitiesStatus>

 </s11:Body>

</s11:Envelope>
ii. Response Message
<s11:Envelope

 xmlns:s11="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:n00="http://tempuri.org/"

 xmlns:naming="http://schemas.ggf.org/naming/2006/08/naming"

 xmlns:bes-factory="http://schemas.ggf.org/bes/2006/08/bes-factory">

 <s11:Header>

 <wsa:Action>

 http://schemas.ggf.org/bes/2006/08/bes-factory/GetActivitiesStatusResponse

 </wsa:Action>

 <wsa:To>

 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

 </wsa:To>

 </s11:Header>

 <s11:Body>

 <bes-factory:GetActivitiesStatusResponse>

 <bes-factory:ActivityIdentifier>

 <wsa:Address>http://tempuri.org/some-service</wsa:Address>

 <wsa:ReferenceParameters>

 <n00:id>D4A88953-FFFF-49F6-5145-AE21FF0438AE</n00:id>

 </wsa:ReferenceParameters>

 <wsa:Metadata>

 <naming:EndpointIdentifier>urn:guid:B94C4186-FFFF-4dbb-AD9C-39DFB8B54388</name:EndpointIdentifier>

 </wsa:Metadata>

 </bes-factory:ActivityIdentifier>

 <bes-factory:OverallStatus>

 <bes-factory:Running>

 <n00:Staging-In/>

 </bes-factory:Running>

 </bes-factory:OverallStatus>

 </bes-factory:GetActivitiesStatusResponse>

 </s11:Body>

</s11:Envelope>
f. TerminateActivities

i. Request Message
<s11:Envelope

 xmlns:s11="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:n00="http://tempuri.org/"

 xmlns:naming="http://schemas.ggf.org/naming/2006/08/naming"

 xmlns:bes-factory="http://schemas.ggf.org/bes/2006/08/bes-factory">

 <s11:Header>

 <wsa:Action>

 http://schemas.ggf.org/bes/2006/08/bes-factory/TerminateActivities

 </wsa:Action>

 <wsa:To s11:mustUnderstand=1>

 http://www.bes.org/BESFactory

 </wsa:To>

 </s11:Header>

 <s11:Body>

 <bes-factory:TerminateActivities>

 <bes-factory:activityIdentifier>

 <wsa:Address>http://tempuri.org/some-service</wsa:Address>

 <wsa:ReferenceParameters>

 <n00:id>D4A88953-FFFF-49F6-5145-AE21FF0438AE</n00:id>

 </wsa:ReferenceParameters>

 <wsa:Metadata>

 <naming:EndpointIdentifier>urn:guid:B94C4186-FFFF-4dbb-AD9C-39DFB8B54388</name:EndpointIdentifier>

 </wsa:Metadata>

 </bes-factory:activityIdentifier>

 </bes-factory:TerminateActivities>

 </s11:Body>

</s11:Envelope>
ii. Response Message
<s11:Envelope

 xmlns:s11="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:n00="http://tempuri.org/"

 xmlns:naming="http://schemas.ggf.org/naming/2006/08/naming"

 xmlns:bes-factory="http://schemas.ggf.org/bes/2006/08/bes-factory">

 <s11:Header>

 <wsa:Action>

 http://schemas.ggf.org/bes/2006/08/bes-factory/TerminateActivitiesResponse

 </wsa:Action>

 <wsa:To>

 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

 </wsa:To>

 </s11:Header>

 <s11:Body>

 <bes-factory:TerminateActivitiesResponse>

 <bes-factory:ActivityIdentifier>

 <wsa:Address>http://tempuri.org/some-service</wsa:Address>

 <wsa:ReferenceParameters>

 <n00:id>D4A88953-FFFF-49F6-5145-AE21FF0438AE</n00:id>

 </wsa:ReferenceParameters>

 <wsa:Metadata>

 <naming:EndpointIdentifier>urn:guid:B94C4186-FFFF-4dbb-AD9C-39DFB8B54388</name:EndpointIdentifier>

 </wsa:Metadata>

 </bes-factory:ActivityIdentifier>

 <bes-factory:Cancelled>true</bes-factory:Cancelled>

 </bes-factory:TerminateActivitiesResponse>

 </s11:Body>

</s11:Envelope>
g. GetActivityDocuments

i. Request Message
<s11:Envelope

 xmlns:s11="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:n00="http://tempuri.org/"

 xmlns:naming="http://schemas.ggf.org/naming/2006/08/naming"

 xmlns:bes-factory="http://schemas.ggf.org/bes/2006/08/bes-factory">

 <s11:Header>

 <wsa:Action>

 http://schemas.ggf.org/bes/2006/08/bes-factory/GetActivityDocuments
 </wsa:Action>

 <wsa:To s11:mustUnderstand=1>

 http://www.bes.org/BESFactory

 </wsa:To>

 </s11:Header>

 <s11:Body>

 <bes-factory:GetActivityDocuments>

 <bes-factory:activityIdentifier>

 <wsa:Address>http://tempuri.org/some-service</wsa:Address>

 <wsa:ReferenceParameters>

 <n00:id>D4A88953-FFFF-49F6-5145-AE21FF0438AE</n00:id>

 </wsa:ReferenceParameters>

 <wsa:Metadata>

 <naming:EndpointIdentifier>urn:guid:B94C4186-FFFF-4dbb-AD9C-39DFB8B54388</name:EndpointIdentifier>

 </wsa:Metadata>

 </bes-factory:activityIdentifier>

 </bes-factory:GetActivityDocuments>

 </s11:Body>

</s11:Envelope>
ii. Response Message
<s11:Envelope

 xmlns:s11="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:n00="http://tempuri.org/"

 xmlns:naming="http://schemas.ggf.org/naming/2006/08/naming"

 xmlns:bes-factory="http://schemas.ggf.org/bes/2006/08/bes-factory">

 <s11:Header>

 <wsa:Action>

 http://schemas.ggf.org/bes/2006/08/bes-factory/GetActivityDocumentsResponse

 </wsa:Action>

 <wsa:To>

 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

 </wsa:To>

 </s11:Header>

 <s11:Body>

 <bes-factory:GetActivityDocumentsResponse>

 <bes-factory:ActivityIdentifier>

 <wsa:Address>http://tempuri.org/some-service</wsa:Address>

 <wsa:ReferenceParameters>

 <n00:id>D4A88953-FFFF-49F6-5145-AE21FF0438AE</n00:id>

 </wsa:ReferenceParameters>

 <wsa:Metadata>

 <naming:EndpointIdentifier>urn:guid:B94C4186-FFFF-4dbb-AD9C-39DFB8B54388</name:EndpointIdentifier>

 </wsa:Metadata>

 </bes-factory:ActivityIdentifier>

 <bes-factory:document> { any valid JSDL document} </bes-factory:document>

 </bes-factory:GetActivityDocumentsResponse>

 </s11:Body>

</s11:Envelope>
h. GetAttributesDocument

i. Request Message

<s11:Envelope

 xmlns:s11="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:bes-mgmt="http://schemas.ggf.org/bes/2006/08/bes-management">

 <s11:Header>

 <wsa:Action>

 http://schemas.ggf.org/bes/2006/08/bes-management/GetAttributesDocument

 </wsa:Action>

 <wsa:To s11:mustUnderstand=1>

 http://www.bes.org/BESManager

 </wsa:To>

 </s11:Header>

 <s11:Body>

 <bes-mgmt:GetAttributesDocument/>

 </s11:Body>

</s11:Envelope>

ii. Response Message

<s11:Envelope

 xmlns:s11="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:n00="http://tempuri.org/"

 xmlns:naming="http://schemas.ggf.org/naming/2006/08/naming"

 xmlns:bes-mgmt="http://schemas.ggf.org/bes/2006/08/bes-management">

 <s11:Header>

 <wsa:Action>

 http://schemas.ggf.org/bes/2006/08/bes-management/GetAttributesDocumentResponse

 </wsa:Action>

 <wsa:To>

 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

 </wsa:To>

 </s11:Header>

 <s11:Body>

 <bes-mgmt:GetAttributesDocumentResponse>

 <bes-mgmt:BESAttributes>

 <bes-mgmt:LocalResourceManagerType>{http://schemas.ggf.org/bes/2006/08/bes-management}native</bes-mgmt:LocalResourceManagerType>

 <bes-mgmt:OperatingSystem>

 <jsdl:OperatingSystemType>

 <jsdl:OperatingSystemName>Inferno</jsdl:OperatingSystemName>

 </jsdl:OperatingSystemType>

 <jsdl:OperatingSystemVersion>

 5.01

 </jsdl:OperatingSystemVersion>

 </bes-mgmt:OperatingSystem>

 <bes-mgmt:CPUArchitecture>

 <jsdl:CPUArchitecureName>sparc</jsdl:CPUArchitecureName>

 </bes-mgmt:CPUArchitecture>

 <bes-mgmt:CPUCount>4</bes-mgmt:CPUCount>

 <bes-mgmt:CPUSpeed>2400000000</bes-mgmt:CPUSpeed>

 <bes-mgmt:PhysicalMemory>2048000000</bes-mgmt:PhysicalMemory>

 <bes-mgmt:VirtualMemory>20480000000</bes-mgmt:VirtualMemory>

 <bes-mgmt:IsAcceptingNewActivities>true</bes-mgmt:IsAcceptingNewActivities>

 <bes-mgmt:CommonName>mooch.home.net</bes-mgmt:CommonName>

 <bes-mgmt:LongDescription>Mark's Personal Desktop Machine</bes-mgmt:LongDescription>

 <bes-mgmt:TotalNumberOfActivities>2</bes-mgmt:TotalNumberOfActivities>
 <bes-mgmt:NamingProfile>{http://schemas.ggf.org/bes/2006/08/bes/naming}WS-Naming</bes-mgmt:NamingProfile>
 <bes-mgmt:ActivityReference>
 <wsa:Address>http://tempuri.org/some-service</wsa:Address>

 <wsa:ReferenceParameters>

 <n00:id>D4A88953-FFFF-49F6-5145-AE21FF0438AE</n00:id>

 </wsa:ReferenceParameters>

 <wsa:Metadata>

 <naming:EndpointIdentifier>urn:guid:B94C4186-FFFF-4dbb-AD9C-39DFB8B54388</name:EndpointIdentifier>

 </wsa:Metadata>

 </bes-mgmt:ActivityReference>

 <bes-mgmt:ActivityReference>

 <wsa:Address>http://tempuri.org/some-service</wsa:Address>

 <wsa:ReferenceParameters>

 <n00:id>D4A88953-0000-49F6-5145-AE21FF0438AE</n00:id>

 </wsa:ReferenceParameters>

 <wsa:Metadata>

 <naming:EndpointIdentifier>urn:guid:B94C4186-0000-4dbb-AD9C-39DFB8B54388</name:EndpointIdentifier>

 </wsa:Metadata>

 </bes-mgmt:ActivityReference>

 </bes-mgmt:BESAttributes>

 </bes-mgmt:GetAttributesDocumentResponse>

 </s11:Body>

</s11:Envelope>

Appendix B.
Appendix C.
a.
Appendix D.
i.
Appendix E.
Appendix F.
Appendix G.
Appendix H.
Appendix I.
Appendix J.
i.
Appendix K.
Appendix L.
Appendix M.
Appendix N.
i.
Appendix O.
Appendix P.
Appendix Q.
i.
Appendix R.
Appendix S.
Appendix T.
Appendix U.
Appendix V.
Appendix W.
Appendix X.
Appendix Y.
Appendix G. OGSA WSRF Basic Profile 1.0 Rendering of Attributes
BES is largely agnostic of profile rendering. Most operations exist unchanged reguardless of which profile an implementation chooses to adhere to (though all valid implementations MUST adhere to some OGSA Basic Profile). Note that this does not imply that the operations and attributes described in this document are the only ones that an implementation need contain. Rather, all valid implementations of the BES specification will include all operations, attributes, properties, etc. required by their chosen profile in addition to those described herein.
In order for a BES implementation to be OGSA WSRF Basic Profile 1.0 compliant, in addition to all requirements given within this document, and all requirements given in the profile itself, implementers MUST also ensure that all attributes given in the description of the attributes document appear as exactly named WS-ResourceProperties. Exactly named here implies that each resource property must have the QName {http://schemas.ggf.org/bes/2006/08/bes-management}attr-name where attr-name is the name of the attribute used inside the attributes document types (e.g., TotalNumberOfActivities, CommonName, etc.).
Appendix H. BES Containers

1.2. Overview

The Container Model describes the managed objects and their relationships for defining the execution environment for activities in a grid. The CIMv2.10 final schema is the foundation for the development of this model. It is expected that this model will be folded into CIMv2.12 preliminary.

In this document we provide the container model in UML, DMTF CIM Managed Object Format (MOF), and suggest, as a strawman, an XML schema that could be used by OGSA-compliant Grid Services to exchange the information in the model presented. DMTF provides their XML representation via automatic conversion tool (MOF to CIM-XML, via CIM DTD).

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED” and “MAY” used in this document are to be interpreted as described in [RFC2119].

1.3. The Container Model

OGSA defines a container as a collection of running entities and activities, e.g. services, jobs. A container may, for example, be a queuing service, a Unix host, a J2EE environment, or a collection of containers (a façade or a virtual organization of job containers). A container has resource properties that describe both static and dynamic information, e.g. OS version, types of executables allowed, policies, security, load, QoS information. A container implements some subset of the manageability interfaces of a Web Services Distributed Management (WSDM) manage resource. The container has various relationships to other resources. The container uses various services such as reservation services, logging services, information services, job management services, and provisioning services.

A single new class, Container
, is defined as a subclass of the Collection class. While OGSA desires to define specific containers, there is no need to define subclasses of the Container class. Instead, the details of OGSA containers necessary for implementation and interoperability are defined by a profile. For example, OGSA needs a Basic Execution Services (BES) Container. The BES container is a container constrained by a profile and not a subclass of the Container class. The Container acts as an aggregator of the managed properties necessary for the use of the container through its various relationships with the ManagedElement class.
 In the BES context, the container aggregates and exposes attributes needed to make scheduling decisions.

The class added to CIMv2.12 experimental in support of the Container work is marked as ‘Experimental’ in the CIM MOF and as {E} in the UML diagram and appear in bold font for easier identification.

The model elements are discussed in a bit more detail in Section 4 following the presentation of the UML in Section 3. The ManagedObject Format (MOF) description is given in Section 5. (MOF is a textual rendering of UML, defined in the CIM Specification [CIMspec] published by the DMTF.) Section 6 offers a corresponding XML description.

Note: It is expected that additional CIM classes, attributes, and methods will be defined and need to be added to CIM as the specific container profile work progresses. These will be documented in similar fashion to the Container class either within this document or in a separate document.

1.4. UML

The figure below depicts the classes and properties of the container model. The new class with its attributes and methods are highlighted in red bold.

Question: do we need an attribute to denote the environment of container, such as whether the container is a queuing service, a J2EE hosting environment, a host (operating system based), etc?

[image: image13.emf]ManagedSystemElement

(See Core Model (Managed

System Element))

ManagedElement

(See Core Model

(Overview))

LogicalElement

(See Core Model

(Managed System Element))

1

CollectionOfMSEs

CollectionID : string

Collection

CollectedMSEs

MemberOfCollection

*

*

*

*

SystemSpecificCollection

InstanceID : string {key}

System

(See Core Model

(Enabled Logical Element))

EnabledLogicalElement

(See Core Model

(Enabled Logical Element))

Hosted

Collection

Collected

Collections

*

*

**

OrderedMember

OfCollection

ConcreteCollection

InstanceID : string {key}

Association

Aggregation

Association with WEAK reference

Inheritance

Aggregation with WEAK

reference

w

w

*

Equivalent to: 0 .. n

Composition Aggregation

{E} Experimental Class or Property

{D} Deprecated Class or Property

Owning

Collection

Element {E}

0..1

*

*

Container {E}

InstanceID: string {key}

IsOpen : boolean

open()

close()

add()

delete()

Figure 1: Container Model

1.5. Discussion of the Model Elements

This section describes the classes, associations, properties, and methods proposed to be added to CIM v2.12 experimental in support of a container model.

1.5.1. New Classes

1.5.1.1. Container

The Container class inherits from the CIM_Collection class. It is a concrete class meaning that it is instantiable without further subclassing. It is a collection of running entities and activities, e.g. services, jobs. A container may, for example, be a queuing service, a Unix host, a J2EE environment, or a collection of containers (a façade or a virtual organization of job containers). A container has resource properties that describe both static and dynamic information, e.g. OS version, types of executables allowed, policies, security, load, QoS information. A container implements some subset of the manageability interfaces of a Web Services Distributed Management (WSDM) manage resource. The container has various relationships to other resources. The container uses various services such as reservation services, logging services, information services, job management services, and provisioning services. Because this container class serves as an aggregator of other classes (attributes and methods) and can aggregat any ManagedElement (all classes in CIM are ManagedElements), the contents of a specific container are described by a profile.

Contents:

· InstanceID (required)

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class.
· IsAcceptingNewActivities

A boolean attribute that defines the current ability of the container to accept new activities.

· Open

This operation moves the container into a state where it is open for requests. Within the context of the Basic Execution Services specification, this means the container can start accepting new activities, and the operation maps to ‘StartAcceptingNewActivities()’ interface.

· Close

This operation moves the container into a state where it is closed to requests. Within the context of the Basic Execution Services specification, this means the container stops accepting new activities, and the operation maps to ‘StopAcceptingNewActivities()’ interface.

· Add

This operation add requests to the container. Within the context of the Basic Execution Services specification, this means that a new activity is added to the container, and the operation maps to the ‘CreateActivity()’ interface.

· Delete

This operation changes and/or deletes requests within the container. Within the context of the Basic Execution Services specification, this means that an existing activity can be terminated, and the operation maps to the ‘TerminateActivities()’ interface.

1.5.1. New Associations

None.
1.5.1. Properties Added to Existing Classes

None.
1.5.1. Methods Added to Existing Classes

None.
1.6. Managed Object Format (MOF)

The schema is described in Managed Object Format, defined in [CIMspec].

The MOF below reflects the UML diagram in this document. It is included to provide the details and descriptions necessary to understand the UML.
<insert MOF>
1.7. XML

An XML representation of Container as an XSD is being developed.
1.8. Security Considerations

This specification defines the model and XML Schema for containers. While the interactions of containers with its activities must be secured, the security details are outside the scope of this specification. Instead, it is assumed that security is addressed in specifications that define how this model and XML Schema are bound to specific communication protocols (such as [CIMOPS] or [OGSA]) and programming environments.[image: image14.png]

Finished

Running

Pending

Suspend

Running:

Suspended

Failed

Canceled

Finished

Running

Pending

New

Running:

Stage-out

Running:

Executing

Failed

Canceled

Finished

Running:

Stage-in

Pending

New

Migrate

Running:

Migrating

Failed

Canceled

Finished

Running

Pending

New

Failed

Canceled

Finished

Running

Pending

New

Failed

Cancelled

Finished

Running

Pending

TerminateActivity request

Canceled

Failed

System error/failure event

Successful termination of activity

New

Pending

Running:

Stage-in

Finished

Canceled

Failed

Running:

Executing

Running:

Stage-out

Pending

Running: Proceeding

Finished

Canceled

Failed

Running:

Suspended

Suspend

SuspendResume

New

Pending

Running:On-resource

Finished

Canceled

Failed

Running:

Migrating

Migrate

New

Pending

Running:On-resource

Finished

Canceled

Failed

Running:

Migrating

Migrate

MigrateHold

Running:

MigratingHeld

Failed

Canceled

Finished

Running:On-resourceCan-proceed

Pending

New

Pending

Running:

Stage-in

Finished

Canceled

Failed

Running:

Executing

Running:

Stage-out

MigrateRelease

� There are two additional basic states for exceptional conditions; namely Cancelled and Failed.

� This class is planned to be submitted to DMTF for inclusion in CIMv2.12 experimental.

� Details of the BES profile are in [BES Profile] document.

�Not currently cited. Should it be?

�I don't believe that this is actually true.

�ITF: We state that we can only return ONE unsupported feature. Why not several, if several are found?

�How should this be represented??

�How should this be represented??

�How should this be represented??

�Need to specify the property/attribute that indicates the fact that a BES implements this extension.

�I think we need to time box how long the container must keep track of whether it has executed something in the past. ASG

�This section is largely from the ESI document. Note also that we had discussed building an input wrapper document that contains JSDL as the parameter to create activity from jsdl, or add sub-documents to jsdl documents – I decided on the latter, though we can of course change it back. ASG.

�These should be separate JSDL extensions since they are JSDL-specific and not BES-specific.

�??

�Activities already have a JSDL notion of a wall-clock time limit -- i.e. a resource lifetime. Specification of a value to CreateActivity should be done with the appropriate JSDL element. Modification of lifetime -- if supported -- is part of the activity interface. A possible extension might be to define a BES-Factory ModifyActivityLifetime operation.

�This list os longer than the list of authors in the header on page 1.

�Can contributors and acknowledgements be one section?

�To be completed.

�To be completed.

�Need to check references.

�Not currently cited. Should it be?

�Not currently cited. Should it be?

�This section is largely from the ESI document. Note also that we had discussed building an input wrapper document that contains JSDL as the parameter to create activity from jsdl, or add sub-documents to jsdl documents – I decided on the latter, though we can of course change it back. ASG.

�??

�I think we need to time box how long the container must keep track of whether it has executed something in the past. ASG

ogsa-bes-wg@ggf.org
17

_1198933014.vsd

