GWD-R

Michel Drescher, Fujitsu

OGSA-DMI WG

Allen Luniewski, IBM

Mario Antonioletti, EPCC

18 July 2007
draft-ogf-ogsa-dmi-spec-26

GWD-R

Michel Drescher, Fujitsu

OGSA-DMI WG
Allen Luniewski, IBM

Mario Antonioletti, EPCC

18 July 2007

OGSA-DMI Functional Specification 1.0
Status of This Document

This document specifies two port types to support the instantiation and management of data transfers within and across Grid deployments. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2007). All Rights Reserved.

Trademark
Open Grid Services Architecture and OGSA are trademarks of the Open Grid Forum.

Abstract

<< TBD >>
Contents

31.
Introduction

31.1
Goals

31.2
Non-Goals

32.
Notational Conventions

42.1
XML Namespaces

43.
Architecture

53.1
Topology

53.2
Entities

53.2.1
Data Endpoint Reference (DEPR)

53.2.2
Source

53.2.3
Sink

63.2.4
Data Transfer Factory Port Type

63.2.5
Data Transfer Instance Port Type

73.2.6
Data Transfer Client

73.2.7
Data Transfer User

74.
Data Transfer Factory Port Type

84.1
Properties

84.1.1
[supported protocol]

94.1.2
[undo strategy]

104.2
Operations

104.2.1
requestDataTransferInstance

104.2.2
Operation Parameters

144.3
Faults

144.3.1
UnsatisfiableRequestOptionsFault

144.3.2
NoTransferProtocolAgreementFault

154.3.3
CredentialsFailedFault

154.3.4
CustomFault

155.
Data Transfer Instance Port Type

165.1
Properties

165.1.1
[undo strategies]

165.1.2
[scheduled start time]

165.1.3
[estimated completion time]

175.1.4
[total data size]

175.1.5
[bytes transferred]

185.1.6
[status]

185.2
Operations

195.2.1
Start

195.2.2
Stop

195.2.3
Restart

195.2.4
Suspend

195.2.5
GetState

195.3
Faults

195.4
Lifecycle

195.4.1
Lifecycle States

215.4.2
Lifecycle Events

226.
Security Considerations

227.
Contributors

238.
Glossary

239.
Intellectual Property Statement

2310.
Disclaimer

2311.
Full Copyright Notice

2412.
References

2513.
Renderings

2513.1
Mandatory compositions

2513.1.1
NextGRID Basic Profile

2513.2
Optional compositions

2513.2.1
NextGRID Basic Profile

2513.2.2
WS-BaseNotifiication

2613.2.3
WSDM (WS-DistributedManagement)

1. Introduction

The Open Grid Services Architecture Data Movement Interface (OGSA-DMI) specification describes two port types that provide operations to co-ordinate the transfer of data from a source location to a sink location – the destination. The OGSA-DMI port types have been designed to encapsulate many different data transfer mechanisms – indeed this is the value a service that implements these port types provides. It enables the user consuming the service to focus on what is important to them – to transfer data from one location to another within a few optional constraints. The selection of the most suitable underlying data transfer protocol, from those that are supported by the service, is undertaken by the OGSA-DMI service – without any user involvement.

1.1 Goals
For this version of the specification we wish to:
· Compose the OGSA-DMI port types with other WS specifications.

· Ensure that the OGSA-DMI specification defines the semantics of the port types but is agnostic to any specific WS rendering.

· Provide normative renderings of the OGSA-DMI specification for different ‘flavours’ of WS.

· Be agnostic to the semantics of the data being transferred.
· Consider (from the DMI perspective) that the data transfer consists of a single block of data.

1.2 Non-Goals

For this version of the specification we consider the following topics to be out of scope. We consider these important topics for consideration in future revisions:
· No notion of bandwidth negotiation or establishment of service level agreements will be reflected in this specification.

· No co-ordination or scheduling of the data transfer with other activity.

· Any replication of the data for the purposes of reliability or data transfer optimisation is encapsulated within either the source or sink service and is not exposed within the OGSA-DMI architecture.

· No constraints are made as to how data is made available through the source or what happens with the bytes that are delivered to the sink.

· No knowledge or guarantee is made of the semantics of the data being transferred
Implementations MAY provide any of these capabilities on an ad hoc basis provided they are able to interoperate with other implementations, i.e. without changing the interface or the semantics of any of the defined operations.

2. Notational Conventions
Only include this section if applicable.

The key words ‘MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be interpreted as described in RFC 2119 [BRADNER1]

When describing abstract data models, this specification uses the notational convention used by the XML Infoset [XML Infoset]. Specifically, abstract property names always appear in square brackets (e.g., [some property]).

When describing concrete XML schemas [XML Schema Part 1, Part 2], this specification uses the notational convention of WS-Security [WS-Security]. Specifically, each member of an element’s [children] or [attributes] property is described using an XPath-like notation (e.g., /x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of an element wildcard (<xs:any/>). The use of @{any} indicates the presence of an attribute wildcard (<xs:anyAttribute/>).

2.1 XML Namespaces

This specification uses a number of namespace prefixes throughout; they are listed in Table 1. Note that the choice of any namespace prefix is arbitrary and not semantically significant (see [BRAY]).

	Prefix
	Namespace

	s11
	http://schemas.xmlsoap.org/soap/envelope

	rns
	http://schemas.ogf.org/rns/2006/09/rns

	wsa
	http://www.w3.org/2005/03/addressing

	xs
	http://www.w3.org/2001/XMLSchema

	dmi
	http://schemas.ogf.org/dmi/2007/05/dmi

Table 1: Namespaces and prefixes used in this document
3. Architecture
A common requirement within a Grid environment is to transfer data from one location to another. The services and protocols available to support such data transfer will vary between Grid deployments, the person requesting the data transfer, and potentially the amount of data being transferred. The sole purpose of this specification is to control and co-ordinate the transfer of bytes from a source (an emitter of an ordered byte sequence) and a sink (a receiver of an ordered byte sequence).
To provide such a capability, OGSA-DMI defines two port types:

· A port type that defines how to set up a data transfer instance.
· A port type that defines operations for a data transfer instance in order to:
· control its behavior, e.g. “cancel”, “resume”, “suspend”,
· return attribute values relating to its internal behaviour, e.g. “number of moved bytes”, “total size of the data being moved”.
Error! Reference source not found. gives an overview of the functional architecture.

The diagram
 depicts the use of particular communication mechanisms:
· On the far left is an unspecified interaction between the user agent (human) and a client agent that will undertake interaction with the OGSA-DMI port types.

· In the centre is the OGSA-DMI specific communication (as defined in this document) between the client with the Data Transfer Factory and Data Transfer Instance port types.

· On the far right of the diagram are the established native data transfer protocols for controlling and undertaking the data transfer, e.g. FTP[xxx], GridFTP[xxx], HTTP[xxx], ParallelHTTP[xxx], UDT[xxx], SRMCopy[xxx], FTS[xxx], RFT[xxx] etc.

It is important to note that the source services and sink services needed to ‘get’ and ‘put’ the data, although shown separately in this diagram, may be treated as the same functional entity. They are separated in the overview to make it clear that the source and sink can be addressed individually using a specific data transport protocol or with a specific identity token when part of different virtual organizations.

Not shown in this diagram are the interactions between the Client (or User) and the source and sink data sources that are needed in order to select the data that is to be transferred, and where it is to be transferred to, and to record the protocols that can be used to access the source and sink data locations. These interactions are out of scope for OGSA-DMI even though their outcome is necessary in order to fully specify the data transfer activity through the information that is embedded within the Data Endpoint Reference (DEPR).
3.1 Topology
It is inevitable that different Grid deployments will support a number of different data transfer protocols through different service interfaces and that not all nodes in a Grid will support all of the available protocols.
In an OGSA-DMI enabled Grid there will be at least one OGSA-DMI Factory port type available that will ‘understand’ a number of protocols. This service will undertake to initiate, control and monitor a data transfer activity from a data source to a data sink using the most suitable protocol supported by both the source and the sink endpoints that can be used to move the data.
[Needs much more elaboration – multiple Factory Services etc
. – Does it? Will it just add more complexity?]
3.2 Entities

This section describes the entities that participate in a data transfer. These entities can be natural (i.e. human beings), or agents. Non-human entities can be hardware or software only, or software governing/controlling hardware.

3.2.1 Data Endpoint Reference (DEPR)

The DEPRs (one unique DEPR is needed for each of the source and the sink) encapsulates all the information relating to how the data can be accessed and where it is to be placed. The protocols by which these operations could be undertaken are encapsulated within this endpoint reference and are used by the Data Transfer Factory to select the protocol for the underlying data transfer.

3.2.2 Source
The source of a data transfer contains all the bytes that need to be transferred to the sink. The internal organisation of this data (e.g.. a flat file, relational database, distributed across replicas, striped for performance, etc.) is not exposed within the DMI architecture.
From the viewpoint of the other data transfer entities the source’s primary function is to emit an ordered byte sequence using one of several data transfer protocols.

3.2.3 Sink

The sink of a data transfer will eventually receive all the bytes that constitute the source of the data transfer. Issues such as byte ordering are outside the scope of the DMI specification but may be supported natively by the selected data transfer protocol. As with the source, the internal organization of the data once it is consumed by the sink is intentionally left unspecified.
[image: image3.emf]

DEPR

http

Instance Port Type

User

Factory Port Type

initiate()

control() manage()

data

d ata

Client

delegate()

negotiate()

control() manage()

create()

file

GridFTP

GridFTP

file

Services capable of placing data at the sink

DEPR

Native data transfer

Native data transfer protocols OGSA - DMI protocol

Services capable of retrieving data from the source

3.2.4 Data Transfer Factory Port Type
The Data Transfer Factory (DTF) port type’s sole role is to set up and asynchronously initiate a data transfer
between a data source and a data sink from a set of parameters supplied by the user.
To set up a data transfer, the DTF approaches both the source and sink, using the information encapsulated within the source and sink DEPRs, in an attempt to negotiate a data transfer protocol and, upon success, protocol specific parameter settings according to the current parameter set and the configuration of the DTF. Eventually, the DTF instantiates a DTI and passes the instance handle back to the client.

Within a typical Grid deployment, a DTF is a persistent well-known service which could have a lifetime of months.

3.2.5 Data Transfer Instance Port Type
The Data Transfer Instance (DTI) port type’s purpose is to act as the third party instance that configures and then controls the data transfer. Towards the Data Transfer Client, it acts as a proxy to the underlying data transfer using the interface defined within this specification. Additional protocol-specific capabilities and information relating to the data transfer may be provided if it does not alter the semantics and operation of this specification.

Clients of the DTI may poll information about its status, or apply management and control operations as described below.

The lifetime of a DTI is fairly short-lived compared to a DTF. Thus, a DTI is used for one, and only one data transfer. If no suitable data transfer protocol can be found or if the data transfer fails then any attempt to re-initiate the data transfer must be done through a new DTI generated from the DTF.

However, destruction is not performed automatically after the last byte of the data has arrived and stored successfully at the sink or if the data transfer fails for some unexpected reason. The DTI configuration allows a DTI to live past the last transferred byte until the user has confirmed its destruction.
3.2.6 Data Transfer Client

The Data Transfer Client contacts the DTF to set up and configure a data transfer. It will receive a handle to a DTI, which it can query for its status and other relevant information.

The Client may invoke control and management operations, such as “cancel”, “suspend”, “resume”, “status”, progress”, etc. as available and applicable on the service.

The Data Transfer Client is not always the same as the Data Transfer User (or their workstation, or the software installed on it). Rather, it might be a software agent located at a remote execution management system that executes parts of a larger workflow that require data transfers. It could also be a web based portal that lets the user manually set up and invoke data transfers.

3.2.7 Data Transfer User

The Data Transfer User is the only human actor in the Data Transfer Architecture. The identity of the Data Transfer User is immutable
. The identity of the Data Transfer User may have important security implications (see the Security section later in this document).
3.3

3.3.1

3.3.1.1

3.3.1.2

3.3.1.3

3.3.1.4

3.3.1.5

4. Data Transfer Factory Port Type
This section defines the operations of the Data Transfer Factory (DTF) port type and its attributes. The purpose of the DTF is to set up a data transfer between a source and a sink.

The DTF provides a set of properties describing the current configuration of the Factory. The set of properties MUST minimally include the compulsory attributes defined in this specification. It MAY support the optional attributes defined in this specification, and using the defined extensibility mechanisms any implementation specific attributes. These attributes are defined in the following properties section.

The factory has a single operation that requests a data movement activity, requestDataTransferInstance. It is invoked asynchronously–. The data transfer activity is encapsulated within a DTI. Parameters given in invoking this operation define the requirements specified by the client for the data transfer. If the creation of a DTI fails, the operation exits with a fault. If creating a DTI succeeds, the operation returns an EPR to the DTI.

The abstract interface definition is as follows:
The details of the DTF are described in the following sections.
4.1 Properties

The Data Transfer Factory exports the following read-only properties that describes its configuration and capability.
4.1.1 [supported protocol]

The [supported protocol] information element identifies a particular data transfer protocol that is recognized by the DTF (and any generated DTI) and can be used to initiate a data transfer from a source or a sink. If a protocol specified within a DEPR is not listed as a supported protocol by the DTF then it will not be considered as an option during any negotiation that follows. Multiple [supported protocol] elements may be specified. A [supported protocol] element indicates which protocols this factory knows about. Once a protocol has been selected there may be a number of available protocol specific undo strategies. As a consequence, there cannot be a default [undo strategy] for a DTF and any created DTI.

4.1.1.1 XML Representation

The [supported protocol] information element is rendered in XML as:

<tns:SupportedProtocol name=”xs:anyURI”>
 <tns:UndoStrategy name=”xs:anyURI”/>*
</tns:SupportedProtocol>

Where:

/tns:SupportedProtocol

Represents the [supported protocol] information element. Its XML type is defined as xs:anyURI.

For the purpose of this specification, the following character strings identify the described data transfer protocol and are intended for use as values within the [supported protocol] information elements.

All implementations MUST support the following identifiers. However, it is left to the implementation whether they actually implement the described data transfer protocol.

http://www.ogf.org/ogsa-dmi/2006/03/im/protocol/gridftp-v20

This identifier describes the GridFTP as specified in [4]

http://www.ogf.org/ogsa-dmi/2006/03/im/protocol/http/v11

This describes the HTTP/1.1 as specified in [7]

http://www.ogf.org/ogsa-dmi/2006/03/im/protocol/ftp

This describes the FTP as specified in [8]

http://www.ogf.org/ogsa-dmi/2006/03/im/protocol/ftp-passive
This describes the “Passive Mode” of the FTP when a Sink supports only passive FTP transfer mode, e.g. because of firewall restrictions, as described in [8]

http://www.ogf.org/ogsa-dmi/2006/03/im/protocol/parallel-http
This describes the ParallelHTTP as described in [Error! Reference source not found.]

4.1.2 [undo strategy]

The [undo strategy] information element describes the strategy that a data transfer protocol within a Data Transfer implementation could use to clean up a failed data transfer.

The data type of the [undo strategy] information element is a character sequence constructed using URL construction rules. Hence [undo strategy] values look like URLs but they are not. When the [undo strategy] is invoked, its resultant state {clean, unclean or unknown} MUST be reflected within the DTI ‘Done’ state.
Clients to and implementations of this interface MUST support the following values:

http://www.ogf.org/ogsa-dmi/2006/03/im/undo/full
The data transfer protocol guarantees a complete and verifiable cleanup which ensures that:
· Any data transferred to the sink is removed from the sink;

· Any temporary files generated at the sink or the source are removed;

· Any remaining space reservations done at the sink are removed;

· Any remaining bandwidth reservations are undone;

·
If the clean up activities cannot be verified then the implementation MUST not indicate that it can support this policy.
 http://www.ogf.org/ogsa-dmi/2006/03/im/retry/best-effort

A full undo is attempted as described earlier, but the outcome of this effort cannot be guaranteed or verified. An OGSA-DMI implementation MAY return additional information about which undo efforts have succeeded.
http://www.ogf.org/ogsa-dmi/2006/03/im/retry/none

The protocol does not guarantee to undo any of the change caused at the entities participating in the data transfer (e.g. releasing reserved resources, wiping storage space of partial data, etc.).
 Clients MAY take the appropriate actions to perform any clean up on their own, which is out of scope for this specification.
4.1.2.1 XML Representation

The [undo strategy] information element is rendered in XML as:

<tns:UndoStratergy name=”xs:anyURI” />
Where:

/tns:UndoStratergy
Represents the [undo strategy] information element. Its XML type is defined as xs:anyURI.

4.2 Operations
The DTF defines a single operation that requests a data transfer.
4.2.1 requestDataTransferInstance
This operation is used to create a DTI relating to a request for a specific data transfer activity within the specified constraints.

Invoking this operation will, on success, create a DTI accessed through an EPR returned by this operation. The DTI encapsulates the negotiations that may take place in selecting the protocols and services that will be used to undertake the data transfer, and ultimately the data transfer itself. By creating the instance the interaction with the client can continue in an asynchronous manner using a ‘message style’ model.
4.2.2 Operation Parameters
The following information elements further describe the parameters used in the “requestDataTransferInstance” operation.
4.2.2.1 [service instance]
The [service instance] information element describes the EPR to a DTI. This handle is minted upon creation of the DTI by the DTF during the “requestDataTransferInstance” operation and sent back to the client of the DTF.

Once the Client receives the EPR its communication with the DTF is complete for the current data transfer, and all future communication by the client for this data transfer is with the DTI using the EPR.

4.2.2.1.1 XML Representation
When rendered in XML, the [service instance] information element is described as follows:

<tns:ServiceInstance> wsa:EndpointReferenceType </tns:ServiceInstance>

The following describes the attributes and elements in the Pseudo Schema given above:

/tns:ServiceInstance
This represents the [service instance] information element. Its XML type is defined as wsa:EndpointReferenceType.
4.2.2.2 [source] or [sink]
The [source] information element describes the source of a data transfer and has the type of a Data Endpoint Reference (DEPR). The [sink] information element describes the sink of a data transfer and has the type of a DEPR.

The DEPR used as either the sink or source is obtained in a manner out of bands for this specification and the client to the DTF passes these DEPRs to the factory. The DEPR is minted by a Web Service in close proximity or identical to Web Services that handles and manages the actual data represented by the DEPR. The DEPR is of type wsa:EndpointReferenceType and MUST NOT be null.

The implementation of the Web Service that mints and issues the DEPR element MUST provide at least one protocol contained within a [data transfer protocol] element describing how the data represented by the DEPR can be accessed. If more than one [data transfer protocol] element is specified each element MUST contain a different protocol. The [data transfer protocol] element is contained within the WS-Addressing [metadata] section of the [data EPR] element.

In effect, the [data EPR] element defines a profile on the [metadata] section of a generic WS-Addressing EndpointReference. However, this does not prevent the Web Service that mints the [data EPR] element from adding other metadata to the [metadata] element using the described extensibility mechanism, which is not defined within this specification.
4.2.2.2.1 XML Representation
When rendered in XML, the [source] or [sink] information element is described as follows:

<tns:DataEPR>

 <wsa:Address/>

 <wsa:ReferenceParameters/>?

 <wsa:Metadata>

 xs:any*

 <tns:Data protocol=”xsd:any” url=”xsd:any” />*

 </wsa:Metadata>?

</tns:DataEPR>

The following describes the attributes and elements in the Pseudo Schema given above:

/tns:DataEPR
This represents the [source] information element. Its XML type is defined as wsa:EndpointReferenceType.

/tns:DataEPR/wsa:Address

This represents the [address] element.
/tns:DataEPR/tns:ReferenceParameters

This represents the [reference parameters] element.

/tns: DataEPR/wsa:Metadata

This represents the [metadata] element.
/tns: DataEPR/wsa:Metadata/xs:any

This represents the extensibility point for further information about the data.

/tns: DataEPR/wsa:Metadata/tns:Data
 The [data] element describes a mechanism by which the data can be accessed. To access a particular data item a protocol needs to be specified and a protocol specific xsd:any string is provided to indicate the data to be access. For instance if the GridFTP protocol was being used the string would contain a GridFTP URL to the particualr data file.
4.2.2.3 [source credentials]
The [source credentials] contain security related information that is used to authenticate and authorize the requested data transfer against the Source.

As per section 3.3, The Data Transfer Component is agnostic to specific Security Frameworks such as PKIX, Kerberos, SAML based systems, Shibboleth, etc. It is not, however, ignoring the necessity to properly authenticate and authorize transactions. The [source credentials] carry such security information without actually knowing or understanding such information, but enable the Source to carry out proper authentication and authorization of the requested Data Transfer.

The type of the [source credentials] element is complex; i.e. it does not define or allow content other than child information elements. This specification does not specify the actual contents of [source credentials] – see the Security section later in this document for further discussion.
4.2.2.3.1 XML Representation
When rendered in XML, the [source credentials] information element is described as follows:

<tns:SourceCredentials> xs:any* </tns:SourceCredentials>

The following describes the attributes and elements in the Pseudo Schema given above:

/tns:SourceCredentials
This represents the [source credentials] information element. Its XML type is defined as xs:complexType.

/tns:SourceCredentials/xs:any

This describes any security information that is required to enable the Source to properly authenticate and authorize the requested Data Transfer. The format of such data must conform to the security framework employed in the current Grid infrastructure.
4.2.2.4 [sink credentials]
The [sink credentials] contain security related information that is used to authenticate and authorize the requested Data Transfer against the Sink.

The constraints for the [source credentials], as given in section 4.2.2.3 with respect to security frameworks also hold true for the [sink credentials].

The type of the [sink credentials] element is complex; i.e. it does not define or allow content other than child information elements. . This specification does not specify the actual contents of [sink credentials] – see the Security section later in this document for further discussion.
4.2.2.4.1 XML Representation
When rendered in XML, the [sink credentials] information element is described as follows:

<tns:SinkCredentials> xs:any* </tns:SinkCredentials>

The following describes the attributes and elements in the Pseudo Schema given above:

/tns:SinkCredentials
This represents the [sink credentials] information element. Its XML type is defined as xs:complexType.

/tns:SinkCredentials/xs:any

This describes any security information that is required to enable the Sink to properly authenticate and authorise the requested Data Transfer. The format of such data must conform to the security framework employed in the current Grid infrastructure.
4.2.2.5 [transfer requirements]
The [transfer requirements] information element describes various constraints on the data transfer request.

The data type of the [transfer requirements] element is complex, i.e. it does not define or allow content other than child information elements.

This element is optional when requesting a data transfer. When present, the DTI MUST use these values to drive the selection of the underlying protocols and services. If not specified then the DTI will use the default values.

Do the timing options define important points within the lifetime of the DMI Instance, or indeed the times when the bytes hit the wire?
4.2.2.5.1 XML Representation
When rendered in XML, the [transfer options] information element is described as follows:

<tns:TransferRequirements>

 <tns:StartNotBefore/>?

 <tns:EndNoLaterThan xsi:nillable=true />
 <tns:StayAliveTime/>?

</tns:TransferRequirements>

The following describes the attributes and elements in the Pseudo Schema given above:

/tnsTransferRequirements
This represents the [transfer requirements] information element. Its XML type is defined as xs:complexType.

/tnsTransferRequirements/tns:StartNotBefore

This represents the [startNotBefore] information element. The data transfer encapsulated by the DTI MUST not start before the date and time specified by this element. If not specified its default value will be the date and time that the DTI was created. The DTI MUST not enter the transferring state before this time unless the “Start” operation on the DTI is invoked.
/tnsTransferRequirements/tns:EndNoLaterThan

This represents the [endNoLaterThan] information element. The value MUST specify a date and time greater than or equal to the value of the [startNotBefore] element. The default value that will be used by the DTI will be null indicating that there is no date and time by which the data transfer must complete by.
If a value is specified for this element and the DTI has not reached the “Done:Success” state by the time the specified date and time is reached, then the DTI will be deemed to have failed and MUST enter the “Done:Failed” state. The DTI MUST attempt to halt the underlying data transfer using the selected protocol.

If the [undo] element exists then the results of the partial transfer at the sink MUST be removed so the DTI can enter the appropriate cleanup related state, i.e. clean, unclean, unknown.
/tns:TransferRequirements/tns:StayAliveTime
This represents the [stay alive time] information element. It is used to specify the minimum time, once the DTI has entered the “Done” state that the DTI will be maintained before it is automatically cleaned up. A value of zero indicates that the DTI will never be automatically destroyed.

4.3 Faults

This section needs revision to decompose fault semantics from the syntax (e.g. WSRF BaseFaults).
The Data Transfer Factory MAY throw faults if appropriate
.

4.3.1 UnsatisfiableRequestOptionsFault
This fault describes the situation when the options as resolved from [default options], [source options], [sink options] and [timing options] do not allow successful creation of a Data Transfer.

4.3.2 NoTransferProtocolAgreementFault
This fault describes the situation when attempting to negotiate a data transfer protocol has failed. A possible cause may be mismatching [source protocol] entries at the Source and [sink protocol] entries at the Sink; or different implementations of the same data transfer protocol that renders an interoperable use of that transfer protocol impossible.

Extensions of the fault MAY indicate that a re-request of a Data Transfer with identical values for all request parameters may succeed or not. The details how this is communicated are implementation specific.
4.3.3 CredentialsFailedFault
This fault describes the situation when the credentials given as [source credential] or [sink credential] were in sufficient to authorize the requested transfer at one or both ofhte source and the sink. This might arise if the supplied credentials are generally insufficient, invalid, cannot be authorized or authenticated or are of the wrong security framework.

Extensions of the fault MAY indicate that a re-request of a Data Transfer with identical values for all request parameters may succeed or not. The details how this is communicated are implementation specific.
4.3.4 CustomFault
This fault element MAY be used to describe any other situations that are unrelated to or specific to the implementation of the Data Transfer Factory.

5. Data Transfer Instance Port Type
This section defines the interface of the Data Transfer Instance (DTI). The purpose of the DTI is to monitor and control the data transfer between the source and the sink. Users can access the DTI to query the status and progress of the underlying data transfer.

The DTI exports a set of properties describing its current state and configuration. The set of properties is not limited to the attributes defined in this specification. Implementers may choose to compose in additional attributes as necessary. However the attributes defined in this document MUST be supported by any implementation.

The abstract interface definition is as follows:

The details of the Data Transfer Instance are described in the following sections.
5.1 Properties

The Data Transfer Instance exports the following properties. They are all informational properties, i.e. they can be accessed, but not modified. All properties are dynamic in the sense that their respective value may change during the lifetime of the Data Transfer Instance.
5.1.1 [undo strategies]

If one [undo strategy] element is specified then this is the policy that will be attempted. If more than one element is provided, then this forms an ordered list of undo strategies that the implementation will attempt before giving up completely.

5.1.2 [scheduled start time]
The [scheduled start time] information element describes the point in time that marks the start of the current attempt of the data transfer, i.e. when the DTI initiates the transfer through the selected protocol. Implementations MUST support the [scheduled start time] attribute.

An implementation of this specification MUST guarantee the [scheduled start time]. If the data transfer does not start at the scheduled start time then it MUST enter a DONE:FAILED state.

If scheduling information is not present or available for the current Data Transfer Instance, then the value of the [scheduled start time] element is null.

The data type of the [scheduled start time] element is a composite of a Gregorian calendar date and a time on that day.
5.1.2.1 XML Representation
When rendered in XML, the [scheduled start time] information element is described as follows:

<tns:ScheduledStartTime xsi:nillable=”true”>

 xs:dateTime

</tns:ScheduledStartTime>

The following describes the attributes and elements in the Pseudo Schema given above:

/tns:ScheduledStartTime

This represents the [scheduled start time] information element. Its XML type is defined as xs:dateTime. The cardinality of the XML element is 1, i.e. it MUST be present at all times. If no meaningful value is available, i.e. the Data Transfer has not been scheduled yet, then this MUST be reflected using the attribute and value xsi:nil=”true” as defined in [1].
5.1.3 [estimated completion time]
The [estimated completion time] information element describes a point in time that marks the projected point in time when the Data Transfer may finish, i.e. when the underlying transfer protocol has reported completion of the data transfer.

Support for the [estimated completion time] attribute is OPTIONAL for all implementations of this interface.

The [estimated completion time] is only of informative nature. That is, if an implementation supports this attribute, then the implementation is not obliged whatsoever to guarantee the completion of the underlying Data Transfer at the given date and time. An implementation MAY change the value of this attribute at any given time until the Data Transfer has completed.

The data type of the [estimated completion time] element is a composite of a Gregorian calendar date and a time on that day.
5.1.3.1 XML Representation
When rendered in XML, the [estimated completion time] information element is described as follows:

<tns:ExtimatedCompletionTime xsi:nillable=”true”>

 xs:dateTime

</tns:ExtimatedCompletionTime>

The following describes the attributes and elements in the Pseudo Schema given above:

/tns:EstimatedCompletionTime

This represents the [estimated completion time] information element. Its XML type is defined as xs:dateTime. If supported, the cardinality of the XML element is 1, i.e. it MUST be present at all times. If no meaningful value is available, i.e. no meaningful estimation can be given, then this MUST be reflected using the attribute and value xsi:nil=”true” as defined in [1].
5.1.4 [total data size]

The [total data size] information element is an OPTIONAL attribute that records in bytes the total size of the data transfer that is currently underway.

5.1.4.1 XML Representation
When rendered in XML, the [total data size] information element is described as follows:

<tns:TotalDataSize> xs:positiveInteger </tns:TotalDataSize>

The following describes the attributes and elements in the Pseudo Schema given above:

/tns:TotalDataSize
This represents the [total data size] information element. Its XML type is defined as xs:positiveInteger.
5.1.5 [bytes transferred]
The [bytes transferred] information element records how many bytes have been transferred to the sink as part of the data transfer activity represented by the DTI. Support for the [bytes transferred] attribute is OPTIONAL for all implementations of this interface. No requirements are imposed on the underlying data transfer and the implementation as to how frequently this figure should be updated.
5.1.5.1 XML Representation
When rendered in XML, the [bytes transferred] information element is described as follows:

<tns:BytesTransferred> xs:positiveInteger </tns:BytesTransferred>

The following describes the attributes and elements in the Pseudo Schema given above:

/tns:BytesTransferred
This represents the [bytes transferred] information element. Its XML type is defined as xs:positiveInteger.
5.1.6 [status]
The [status] information element describes the status of the DTI at the time it is queried for its status. It MUST be supported by all implementations of this port type.
The data type of the [status] information element is a character sequence constructed using URL construction rules. Hence [status] values look like URLs but they are not.

The following values are defined for the [status] information element, representing the statuses as described in section 0.

http://www.ogf.org/ogsa-dmi/2006/03/im/status/created

This identifier describes the status “Created” as described in section 5.4.1.1.

http://www.ogf.org/ogsa-dmi/2006/03/im/status/negotiating

This identifier describes the status “Negotiating” as described in section 5.4.1.2.

http://www.ogf.org/ogsa-dmi/2006/03/im/status/scheduled

This identifier describes the status “Scheduling” as described in section 5.4.1.3.

http://www.ogf.org/ogsa-dmi/2006/03/im/status/transferring

This identifier describes the status “Transferring” as described in section 5.4.1.4.

http://www.ogf.org/ogsa-dmi/2006/03/im/status/unsatisfiable

This identifier describes the status “Failed” as described in section 5.4.1.5.

http://www.ogf.org/ogsa-dmi/2006/03/im/status/failed
This identifier describes the status “Done” as described in section 5.4.1.7.
http://www.ogf.org/ogsa-dmi/2006/03/im/status/done

This identifier describes the status “Done” as described in section 5.4.1.6.
http://www.ogf.org/ogsa-dmi/2006/03/im/status/suspended
This identifier describes the status “Suspended” as described in section 5.4.1.8.
5.1.6.1 XML Representation
When rendered in XML, the [status] information element is described as follows:

<tns:Status> xs:anyURI </tns:Status>

The following describes the attributes and elements in the Pseudo Schema given above:

/tns:Status

This represents the [status] information element. Its XML type is defined as xs:anyURI.
5.2 Operations

The DTI interface does not specify any operations of its own. Instead, operations of already existing frameworks are used to allow Client to access and process the information represented by the Data Transfer Interface.
5.2.1 Start

This operation is used to manually start the data transfer represented by the DTI. The DTI will move to the “Transferring” state from the “Scheduled” state on successful completion of this operation. If the DTI is not in the “Scheduled” state then this operation has no effect.

5.2.2 Stop

On invoking this operation the DTI will if in the “Transferring” or “Suspended” state move into the “Done:Failed” state by attempting to stop the underlying data transfer. Depending on the success of terminating the data transfer the DTI will move into one of the qualifiers – “Clean”, “Unclean” or “Unknown”. If the DTI is not in the “Transferring” or “Suspended” state then the operation has no effect.

5.2.3 Restart

On invoking this operation the DTI will if in the “Suspended” state attempt to move to the “Transferring” state. If the DTI is not in the “Suspended” state then this operation has no effect.

5.2.4 Suspend

On invoking this operation the DTI will if in the “Transferring” state attempt to move to the “Suspended” state. If the DTI is not in the “Transferring” state then this operation has no effect.

5.2.5 GetState

5.3 Faults
As the DTI interface does not define any operations, it cannot indicate an error condition by throwing a fault.

However, as the Data Transfer Instance MAY take over the negotiation phase from the Data Transfer Factory, the semantic conditions of the faults described for the Data Transfer Factory (see section 4.3) also hold true for the Data Transfer Instance when in state “Negotiating”.

5.4 Lifecycle
The lifecycle of the Data Transfer Instance (DTI) reflects the overall progress of the underlying data transfer activity, starting from its creation to it being destroyed.

Figure 4 outlines the states and allowed transitions.

5.4.1 Lifecycle States

This section defines the semantics of the states as outlined in Figure 4.
5.4.1.1 Created
The “Created” state describes the configuration of the DTI after it has been created.
5.4.1.2 Negotiating
The “Negotiating” state describes the configuration of the DTI when it is performing the negotiation and configuration of the employed data transfer protocol using the user supplied configuration options.

[image: image1.emf]

Created

Negotiating

Suspended Scheduled

Unsatisfiable

Transferring

create

negotiate

activate

suspend

resume

destroy

destroy

Done Failed Undo {clean, unclean, unknown}

Figure 4: Data Transfer Instance State diagram

5.4.1.3 Scheduled
In state “Scheduled” the DTI has identified a viable set of underlying data transfer services compliant with the specified requirements and, if required, negotiated sufficient resources to make an attempt to transfer the data. The transfer itself has not yet started as it is not yet due to start (i.e. awaiting an agreed resource reservation) or is to be started manually.
5.4.1.4 Transferring
A DTI is in state “Transferring” if the data transfer through the underlying protocols selected during the “Negotiating” phase has been initiated.

5.4.1.5 Unsatisfiable
A DTI reaches the state “Unsatisfiable” if the currently available environment (i.e. the source and sink services, available bandwidth, etc.) is unable to meet the requirements specified as options in the creation of the DTI through the factory. It is not possible to recover from this state with the currently available resources. The resources accessible through this service, and the availability of the resources themselves, may change in the future and thereby allow a feasible solution, but this can only be ascertained by creating a new DTI.
A non-normative description of this state might be “Sorry, I give up, it is useless to even try further for now.”
5.4.1.6 Done
A DTI reaches the state “Done” (from the “Transferring” state) when the protocols selected to undertake the data transfer have signaled completion.
5.4.1.7 Failed

5.4.1.8 The “Failed” state indicates non-recoverable problems in the underlying data transfer. A Data Transfer Instance may transition to state “Failed” anytime while it is in the states “Transferring” or “Suspended”.
5.4.1.9 Transitioning onto state “Failed” activates any specified [undo strategy] and the outcome is reflected in the “Clean”, “Unclean” or “Unknown” sub-states (?)

5.4.1.10 Suspended

The “Suspended” state indicates that the underlying data transfer has been halted. This may not be supported by all data transfer protocols in which case the state will not be reached when triggered by the suspend event.

5.4.2 Lifecycle Events
5.4.2.1 Create
By invoking the factory operation, a DTI is created during this event, and assumes state “Created”.
5.4.2.2 Negotiate
The “Negotiate” event triggers the DTI to enter a negotiation phase with the currently available Source and Sink services. The specified the user-supplied options MUST be used in this phase and to constrain the number of viable solutions. Some of the services MAY only support certain users or only have available capacity at certain times, thereby further reducing the number of viable solutions.
The details of how the DTI discovers the available Source and Sink services and carries out the negotiations and reaches agreements (if required) are implementation details.
5.4.2.3 Activate
When receiving the “Activate” event, the DTI enacts the data transfer using the protocols and service instances (and any resource reservations) selected earlier.

5.4.2.4 Destroy
The “Destroy” event causes the DTI to clean up its own used resources and liquidate itself.
5.4.2.5 Suspend

The “Suspend” event causes the DTI to attempt move from a “Transferring” state to a “Suspend” state. This requires that the underlying data transfer protocols are able to halt and resume the data transfer on demand. If this capability is not available in the underlying protocol the DTI will remain in the “Transferring” state. If the capability is available and is successfully applied then the DTI enters the “Suspended” state. If the capability is available and the protocols fail to halt the transfer then the DTI enters the “Failed” state.
5.4.2.6 Resume

The “Resume” event causes the DTI to attempt to move from the “Suspended” to the “Transferring” state. If the data transfer fails to be resumed the DTI enters the “Failed” state.

6. Security Considerations

<< TBD >>
DMI needs to support the use case of separate identities at the source and sink.
It is of paramount importance that the transfers created and mediated by DMI protect the data being transferred from being viewed or modified in unauthorized ways. As of the writing of this document, security considerations in a grid environment are still under investigation. Thus this document can not provide security related specifics. Instead, we will discuss security related requirements here.

The following are the security related requirements that DMI must meet:

· The [source credentials] must authorize reading the data being transferred at the source.
· The [sink credentials] must authorize the storing of the data being transferred at the sink.

· While in transit, DMI must use the facilities of the protocol being used for the transfer to ensure that the data can not be modified not can it be read by any agent other than those directly involved in implementing the transfer protocol.

· The [sink credentials] must allow the sink to enforce appropriate access controls on the data once it has been successfully transferred to the sink.
· There must be no requirement that the [source credentials] and the [sink credentials] be identical or in any way represent the same authenticated entity.
· The source and sink MUST evaluate the credentials supplied to them. The source and sink MUST say “no, not allowed” if the provided credentials not understood or if they do not permit the requested transfer.
· DMI must be agnostic to the security infrastructure being used in the environment hosting DMI.
Some security infrastructures are based upon notions such as user identity and role. DMI must support these notions if the security infrastructure requires it We conjecture that the [source credentials] and [sink credentials] are sufficient to meet these needs but this will need to be confirmed once a security infrastructure has been defined.

·
·
·
·

·

7. Contributors
Michel Drescher
Fujitsu Laboratories of Europe, Ltd.

Hayes Park Central, Hayes End Road

Hayes, Middlesex UB4 8FE

United Kingdom

Allen Luniewski

IBM Corp.

Mario Antonioletti

EPCC

Steven Newhouse

Microsoft

<< TBD >>
Contact information for authors. You can also use this section to recognize contributions by people who are not listed on the title page, but made a useful contribution (it’s OK to mention the nature of the contribution).

The actual Authors (or Editors) listed on the title page are those committed to taking permanent stewardship for this document – receiving communication in the future and otherwise being responsive to its content. The GFSG recommends at most three Author/Editors be listed on the title page, unless there are compelling reasons to list more.

8. Glossary

<< TBD >>
Recommended but not required.

9. Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the OGF Executive Director.

10. Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all warranties, express or implied, including but not limited to any warranty that the use of the information herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.

11. Full Copyright Notice

Copyright (C) Open Grid Forum (2007). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the OGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the OGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or assignees.

12. References
Note that only permanent documents should be cited as references. Other items, such as Web pages or working groups, should be cited inline (i.e., see the Open Grid Forum, http://www.ogf.org). References should conform to a standard such as used by IEEE/ACM, MLA, Chicago or similar. Include an author, year, title, publisher, place of publication. For online materials, also add a URL. It is acceptable to separate out “normative references,” as IETF documents typically do. Some sample citations:

[BIRON] Biron, P. et al. XML Schema Part 2 (Second Edition). October 2004. http://www.w3.org/TR/xmlschema-2/
[BRADNER1] Bradner, S. Key Words for Use in RFCs to Indicate Requirement Levels, RFC 2119. March 1997.
[BRADNER2] Bradner, S. The Internet Standards Process – Revision 3, RFC 2026. October 1996.

[BRAY] Bray, T., Hollander, D., Laymann, A., Tobin, R. Namespaces in XML 1.0, http://www.w3.org/TR/REC-xml-names/. W3C, 16 August 2006.
[CATLETT] Catlett, C. GFD-1: Grid Forum Documents and Recommendations: Process and Requirements. Lemont, Illinois: Global Grid Forum. April 2002.

[COWAN] Cowan, J. et al. XML Information Set (Second Edition) February 2004. http://www.w3.org/TR/xml-infoset
[RESCORLA] Rescorla, E. Guidelines for Writing RFC Text on Security Considerations. RFC 3552. July 2003.

[THOMPSON] Thompson, H. et al. XML Schema Part 1: Structures (Second Edition). October 2004. http://www.w3.org/TR/xmlschema-1/
OLD REFERENCES -- Revisit

1. WSDM Oasis Standard Specifications 1.0; Vambenepe, W. et al, March 2005;
http://www.oasis-open.org/committees/wsdm/
2. WSRF OASIS Standard Specifications; Snelling ,D., Robinson, I., Banks, T. et al, April 2006; http://www.oasis-open.org/committees/wsrf
3. Web Services Resource Properties 1.2 (WS-ResourceProperties); Graham, S., Treadwell, J.; April 2006;
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
4. Web Services Base Faults 1.2 (WS-BaseFaults); Liu, L., Meder, S.; April 2006;
http://docs.oasis-open.org/wsrf/wsrf-ws_base_faults-1.2-spec-os.pdf
5. Web Services Base Notification 1.3 (WS-BaseNotification); Graham, S., Hull, D., Murray, B.; October 2006;
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
6. GridFTP v2 Protocol Description, GFD.47; Mandrichenko, I., Allcock, W., Perelmutov, T.; May 2005; http://www.ogf.org/documents/GFD.47.pdf
7. Hypertext Transfer Protocol – HTTP/1.1, RFC2616; Fielding et al; June 1999; http://www.ietf.org/rfc/rfc2616.txt
8. File Transfer Protocol (FTP); Postel, J., Reynolds, J.; October 1985; http://www.ietf.org/rfc/rfc959.txt
9. Web Services Addressing 1.0 – Core; W3C; Gudgin, M., Hadley, M., Rogers, T.; May 2006; http://www.w3.org/TR/ws-addr-core/
10. Web Services Security: SOAP Message Security 1.1; Nadalin, A., Kaler, C., Monzillo, R., Hallam-Baker, P.; February 2006;
http://www.oasis-open.org/committees/wss
13. Renderings

13.1 Mandatory compositions
13.1.1 NextGRID Basic Profile

An implementation of this interface MUST also implement the NextGRID Basic Profile Facilities:

· Service Description, i.e. WSDL 1.1

· Control Channel, i.e. HTTP(S) and SOAP 1.1

· Architecture Profiling, i.e. OGSA WSRF Base Profile 1.0

· Resource Access, State and Properties, i.e. WSRF 1.2

When implementing these facilities, all normative statements given in each facility MUST be followed; i.e. all MANDATORY elements and operations MUST, and all OPTIONAL elements and operations MAY be provided by the implementation of this specification, respectively.

The properties described in section 5.1, i.e. [scheduled time], [estimated completion time], [progress], [attempts] and [status], if supported, MUST be exposed as ResourceProperties as defined in [3].
13.2 Optional compositions
13.2.1 NextGRID Basic Profile
An implementation of this interface MAY also implement the following NextGRID Basic Profile Facilities:

· Authentication, i.e. X.509

· Authentication + Confidentiality, i.e. SSL/TLS

· Resource Access, State and Properties, i.e. WS-Transfer

· Resource Access, State and Properties, i.e. ResourceTransfer

When implementing these facilities, all normative statements given in each facility MUST be followed; i.e. all MANDATORY elements MUST, and all OPTIONAL elements MAY be provided by the implementation of this specification.
13.2.2 WS-BaseNotifiication
An implementation of this interface MAY also implement the NotificationProducer interface as defined in WS-BaseNotification [5]. When implementing WS-BaseNotiffication, , all normative statements given in that specification MUST be followed; i.e. all MANDATORY elements MUST, and all OPTIONAL elements MAY be provided by the implementation of this specification.
13.2.3 WSDM (WS-DistributedManagement)
An implementation of this specification MAY also implement the WSDM family of specifications [1]. When implementing the WSDM family of specifications, then all MANDATORY WSDM sub-specifications MUST be implemented, and all OPTIONAL WSDM-sub-specifications MAY be implanted.

All normative statements given in each sub-specification that is implemented MUST be followed; i.e. all MANDATORY elements MUST, and all OPTIONAL elements MAY be provided by the implementation of this specification.
[image: image2.png]

� EMBED Word.Picture.8 ���

Figure � SEQ Figure * ARABIC �1�: Overview of the functional architecture

Data Transfer Factory�
�
[supported protocol]*�
�
[service instance] requestDataTransferInstance([source DEPR], [source credentials],

 [sink DEPR], [sink credentials],

 [transfer requirements]) �
�
Figure � SEQ Figure * ARABIC �21�: Functional Data Transfer Factory interface

Data Transfer Instance�
�
sequence of [undo strategy] (1 .. n)

[data source]

[data sink]

[scheduled start time]

[estimated completion time]

[total data size]

[bytes transferred]

[status]�
�
Start

Stop

Restart

Suspend

�
�
Figure � SEQ Figure * ARABIC �32�: Functional Data Transfer Instance interface

�These are the service boxes right?

�Also require the source and sink services right? A factory service is not much good without these – right?

(revisit

�May possibly need to define this – a data transfer can be a single file or a composite but it must be possible to represent the data as a single EPR? Is that a condition? Can the instance be re-used or is it only good for a single transfer?

(not solved yet

�Isn’t it more correct to say that an undo strategy describes the strategy to be used by the DTI if the data transfer protocol should fail for?

�Again this needs to be defined much more precisely.

�Mario, I think you mixed up the semantics of the three URIs. We need to sort this out on the call.

�Is this relevant here. I would consider Undo not to be a user specifyable part of the policy. Effectively they need to know what protocol will be selected in order to select the undo policy.

�The “first group of faults” is missing.

�I’m not convinced that you can have multiple undo strategies that cascade over from one to another. A DTI has a single undo strategy. The undo strategy itself may have cascading behaviour.

�Would it better to say that this is the number of bytes to be transferred in this operation? “size of the data transfer” is a bit vague for me.

�We haven’t yet been very clear about this. Are these values of an attribute? Or are these modeled as sibling sub-states of “Failed”?

�CUT

�I intentionally did not add further lifecycle events. The figure currently mixes lifecycle events with DTI operations, and we need to fix that.

ogsa-dmi-wg@ogf.org

2

_1243851817.doc

Failed

Undo {clean, unclean, unknown}

Done

destroy

destroy

resume

suspend

activate

negotiate

create

Transferring

Unsatisfiable

Scheduled

Suspended

Negotiating

Created

_1242402151.doc

[image: image1]

create()

control()

manage()

negotiate()

Native data

transfer

data

delegate()

Client

control()

manage()

initiate()

Factory

Port Type

User

Instance

Port Type

http

file

GridFTP

data

file

GridFTP

Services capable of placing data at the sink

Services capable of retrieving data from the source

DEPR

DEPR

OGSA-DMI protocol

Native data transfer protocols

