
WG Internal
OGSA-DMI

ogsa-dmi-wg@ogf.org 1

SRM Copy Use-case

Alex Sim, Arie SHoshani
Version 1: 21 November 2006

Status of This Document

This document provides information to the Grid community regarding use cases for
srmRemoteCopy functionality in the Storage Resource Manager. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2006). All Rights Reserved.

Contents

1. Abstract... 1
2. Introduction ... 1
3. Storage Resource Managers and srmRemoteCopy .. 3

3.1 Assumptions.. 3
3.2 srmRemoteCopy Input and output parameters... 3
3.3 srmRemoteCopyRequestStatus Input and output parameters ... 6
3.4 Operational Modes.. 7

4. Intellectual Property Statement .. 7
5. Disclaimer ... 8
6. Full Copyright Notice .. 8

1. Abstract

This document provides information about the srmRemoteCopy use-cases, and their
implementation with only high level details. Typically, large scientific datasets (order of terabytes)
are generated at large computational centers, and stored on mass storage systems. However,
large subsets of the data need to be moved to facilities available to application scientists for
analysis. File replication of thousands of files is a tedious, error prone, but extremely important
task in scientific applications. The automation of the file replication task requires automatic space
acquisition and reuse, and monitoring the progress of staging thousands of files from the source
mass storage system, transferring them over the network, and storing them on target disk
systems or archiving them at the target mass storage system. Storage Resource Manager
(SRM) technology has been used to achieve robust file replication for several scientific domains.
SRMs are now in regular use in High-Energy-Physics and Climate modeling experiments. The
SRMs allocate space, monitor the staging, transfer, and archiving of files, and are able to recover
from transient failures. Only a single command is necessary to request multi-file replication or the
replication of an entire directory.

2. Introduction

Modern supercomputer systems have ushered a new era of scientific exploration. High
granularity simulations of scientific phenomena are now possible, exposing details never possible
to observe before. The increase in precision has brought about a tremendous increase in the
amount of data generated. For example, currently a single Community Climate System Model
(CCSM) simulation at a resolution of 280 km for each side of a simulation cell over 100 years
generates about 0.75 TBs. The increase of resolution to 70 km along with 3 times higher
resolution in time points, and better chemistry in the model is predicted to increase the amount of

WG Internal
OGSA-DMI

ogsa-dmi-wg@ogf.org 2

data by a factor of 100-1000. Measurements, using high-precision, more sensitive devices, such
as devices mounted on satellites, are now producing terabytes of data, and are expected to grow.
Experiments, such as high energy physics (HEP) experiments, are already producing hundreds of
terabytes of data. Future HEP experiments, such as ATLAS, scheduled to be launched in 2007,
are predicted to generate many petabytes of data. Such applications point to the need of
supporting robust massive data movement over wide-area networks.

The scientific exploration process typically consists of two phases: data generation and data
analysis. In the data generation phase, large volumes of data are generated at supercomputer
centers or collected by experiments, and stored on large mass storage systems (MSSs) that
archive data on robotic tape systems. Future MSSs may not have robotic tape storage, but they
will still exist. It is predicted that the next generation of storage devices will consist of thousands
of disks (disk farms) each holding a few terabytes of data. The MSSs will continue to be the
primary storage facilities of these huge datasets, and will require routine maintenance. In the
data analysis phase, large subsets of the data need to be moved to one or more analysis sites,
which can consist of a large regional center or a small cluster at some university. This process of
moving hundreds of gigabyes to a few terabytes to the scientist for analysis turns out to be one of
the more tedious, time consuming tasks that wastes the scientist’s time. Why is this seemingly
simple, boring task so difficult? Why aren’t there simple solutions available?

One of the most common practices for moving large data volumes consisting of thousands of files
is to write a simple script that reads each file in turn from the source storage system, issues an
FTP (File Transfer Protocol) request to transfer the file, and repeats till all the files are moved.
The problem with this approach is that the script has to run for hours, and invariably something
goes wrong: the mass storage system may have a transient failure or a scheduled maintenance,
the network may have a transient failure, power failures may disrupt operations, etc. Thus, the
script has to be monitored, the failures discovered, the files already moved need to be checked
for their integrity, and the process resumed from the point where it failed.

Another problem is the efficiency of the process. Using simple FTP for large volume of data is
very inefficient, because FTP servers are set to break each transfer into small blocks (called
windows) of about 2-10 Kbytes. This introduces too much overhead, and therefore larger window
sizes (in the order of 1-10 Mbytes) need to be used. Also, one can set an FTP session to support
multiple parallel streams to increase throughput. But, most users do not know the details of
dealing with such efficiency issues. In addition, getting more than one file concurrently from a
mass storage system requires writing a multi-threaded program – again too complex for most
scientists. Thus, the transfer process takes longer than necessary even if the network capacity is
high.

To complicate matters for the scientists, they have to deal with security issues, as well as
firewalls set in front of the various sites. Here again, they need to get help from administrators
before they can even proceed to transfer files.

What is needed is a utility that has the following features: (1) a simple way to invoke the file
transfer, similar to a “remote copy in recursive mode” in unix (rcp –r) from a directory in one site
to a directory in another site; (2) because the transfer may take many hours, this utility needs to
be asynchronous; that is, after the call is made and accepted, the user can quit; (3) there needs
to be a guarantee that the transfer will succeed even when transient failures of the systems and
the network are involved; and (4) there needs to be a dynamic update on the state of the transfer
available to the user in order to monitor the progress. These are the basic requirements for an
effective srmRemoteCopy function.

Achieving a solution to this problem is a difficult task, especially having to deal with a variety of
file systems and mass storage systems. However, to achieve this goal, one can take advantage
of software components called Storage Resource Managers (SRMs) [1, 2]. These components
were developed for the purpose of supporting access to storage systems on the Grid, but could
readily be applied to this difficult problem. An SRM is a software module placed in the vicinity of
a storage system; that is, on a machine that is on the same local area network. Since these
modules are designed to access mass storage systems as well as disk systems, we can extend

WG Internal
OGSA-DMI

ogsa-dmi-wg@ogf.org 3

SRMs to make multi-file transfer requests. The main requirement is that entire directories or
subdirectories can be moved in a single command, using a simple command-line interface. The
advantage of using SRMs is that they all use the same interface (protocol) to communicate with
each other regardless of the type of storage system they access. We note that simply using an
efficient file transfer service does not address dynamic space allocation or recovery from failures
when accessing storage systems.

The srmRemoteCopy function is designed as a high level request to copy multiple files (or a
directory). It uses URLs for the source and destination sites and directories. The SRMs use
URLs (Uniform Record Locators) to refer to the source and target files (or directories). For
example, the URL “srm://hpss.lbl.gov:3003/tmp/fileX” represents a file fileX in the directory tmp of
the machine hpss.lbl.gov and managed by the SRM. The SRM is on port 3003. Note that the
protocol “srm” is used to specify that file access is managed by an SRM. After the file is staged,
the SRM returns a “transfer URL” to the client. The transfer URL contains the location of the file,
and the protocol to be used for transfer. For example, if the SRM stages the file to its disk space
into location /home/xyz/ on its machine cs.lbl.gov, and chooses to use GridFTP as the transfer
protocol, then the transfer URL is: “gridftp://cs.lbl.gov:4004/home/xyz/fileX”. This provides the
client all the necessary information to issue the GridFTP transfer request.

The implementation of the srmRemoteCopy function can take many forms. It is the choice of an
implementation which techniques to use. However, at a high level, all SRM implementations
have to allocate space at the target site, manage multiple file transfers concurrently to gain
efficiency, monitor file staging, transfer, and archiving for completion, recover from transient
failures, and proceed iteratively until the entire request is satisfied. Since the request can be
long lasting, it is made asynchronously, and therefore SRMs provide the function
srmRemoteCopyRequestStatus.

3. Storage Resource Managers and srmRemoteCopy

Storage Resource Managers (SRMs) are middleware components whose function is to provide
dynamic storage space allocation and file management of shared storage components on the
Grid. Introductory information about SRM concepts and the design of their functionality can be
found in http://sdm.lbl.gov/srm-wg/papers/SRM.book.chapter.pdf. The functionality of
srmRemoteCopy is being standardized through the OGF Grid Storage Management Working
Group (GSM-WG).

srmRemoteCopy function is used to copy files from source storage sites to target storage sites.
Source and targets site URLs (SURLs) pairs can be provided for multi-file copies. For copying
entire directories, an SURL pair can be specified from a source directory to a target directory.
This specifies a recursive directory replication. If a specified target space token is provided, the
files will be placed in the targeted space associated with the space token. Space may be
allocated dynamically or reserved ahead of time. This function is asynchronous, and thus a
request token is returned. The status may be checked through srmRemoteCopyRequestStatus
with the returned request token.

3.1 Assumptions
• The fundamental unit of transfer is always the file.
• The VO role is assumed to be outside of the scope of SRM. The client’s role is pre-assigned

before the client makes a request to the SRM, and SRM will honour the role supported by the
VO are known to the SRM.

• The source storage and/or the target storage need to be managed by an SRM.

3.2 srmRemoteCopy Input and output parameters

In Out

WG Internal
OGSA-DMI

ogsa-dmi-wg@ogf.org 4

User ID
Authorization ID
Copy File Requests {
 Source SURL,
 Target SURL,
 Directory Option
}
User Request Description
Source Storage System Info
Target Storage System Info
Desired Total Request Time
Desired Target SURL Lifetime
Target File Storage Type
Target Space Token
Target File Retention Policy Info
Flag for streaming
Overwrite Mode
Flag for Removing Source Files
Flag for Checksum

Request Token
Request Status {
 Status information
}
Remaining Total Request Time
SURL Statuses {
 Source SURL,
 Target SURL,
 Status information,
 File Size,
 Estimated Wait Time,
 Remaining File Lifetime
}

 (underlined parameters are required)

Input parameters

• User ID (required)
 User authentication identifier.
• Authorization ID

User authorization information. The Authorization ID may be NULL.
• Source Storage System Info
 Information specific to the source storage system that is associated with the Source

SURLs. The Source Storage System Info may be NULL.
• Target Storage System Info
 Information specific to the target storage system that is associated with the Target

SURLs or Target File Storage Type. The Target Storage System Info may be NULL.
• User Request Description
 Description of the request. It may be used for later retrieval of the rquest token.
• Desired Total Request Time

Desired Total Request Time means: if all the file transfer for this request must be
complete in this Desired Total Request Time. Otherwise, the request is returned as failed
at the end of the Desired Total Request Time, and an error of
SRM_REQUEST_TIMED_OUT must be returned as the request status code with
individual file status of an error SRM_FAILURE with an appropriate explanation. All files
that whose transfer completed must not be removed, but the status of the files must be
returned to the client. If Desired Total Request Time is unspecified (specified as NULL),
the request will be retried for a duration which is dependent on the SRM implementation.
If Desired Total Request Time is 0 (zero), each file request will be tried at least once.

• Desired Target SURL Lifetime
Desired life time of the Target SURL in seconds once when the file is in the target SRM.
SRM may assign a default lifetime, if not provided.

• Target File Storage Type
Target File Storage Type indicates which type of storage that Target SURLs are copied
into in target SRM.

• Target Space Token (advanced option)
An advanced option when Space Management feature is supported. A token associated
with the space if a particular space in file storage type is to be used. The Space Token is
acquired separately (e.g. through srmReserveSpace).

WG Internal
OGSA-DMI

ogsa-dmi-wg@ogf.org 5

• Flag for streaming
Boolean indication of streaming mode. When streaming mode is on, full space at the
target storage does not have to be prepared to hold all files in the request.

• Overwrite Mode
SRM needs to replicate the file according to the Overwrite Mode on the target that SRM
brings the files into.

• Flag for Removing Source Files
Boolean indication of file removal at the source (Source SURL) after the copy is
performed.

• Flag for Checksum
Flag for Checksum indicates that checksum calculation for all files in the request needs to
be performed when files get into its designated target space.

• Copy File Requests (required)
Input parameter Copy File Requests consists of SURL information that client wants to
copy from one site to another.
• Source SURL (required)

Source SURL
• Target SURL

Target SURL
• Directory Option (advanced option)

An advanced option when Directory Management feature is supported.
It includes Flag for Source Directory, Flag for All Level Recursive and Number Of
Recursive Levels: Flag for Source Directory is a boolean indicator if Source
SURL is a directory. Flag for All Level Recursive is a boolean indicator if Source
SURL is a directory and all files under the SURL must be retrieved. Number Of
Recursive Levels is a positive integer indicator for how many levels of the
recursive directory must be browsed and all files in those directories to be
retrieved.

Output parameters

 Request Token (required)

Output parameter string token is associated with the request for the later asynchronous
status request.

 Request Status (required)
Output reporting the success or failure of the request. Textual description of explanation
for what happened to the request, specially in case of any failures, would help client
diagnose the case. Status information is required and it is recommended to return as an
enumerated codes separated as status code and error code, so that when client is a non-
human program, response to the status information can be pre-programmed.

 Remaining Total Request Time
Output parameter indicates the remaining total request time.

 SURL Statuses
Output reporting the success or failure of the each SURL requests. SURL Statuses may
be empty and NULL. If returned to the client, SURL and its Status information are
required to return.
 Source SURL (required)

SURL that client has requested to copy the file from.
 Target SURL (required)

SURL that client has requested to copy the file to. If the client did not provide
SURL at the time of request, SRM server generates a reference SURL that SRM
server and client can refer to the file.

 Remaining File Lifetime
It indicates the remaining file lifetime on the SURL when the file is copied into its
destination target. File lifetime is assigned after file copy is completed.

WG Internal
OGSA-DMI

ogsa-dmi-wg@ogf.org 6

Behaviors

• Abort: When aborted, client needs to provide Target SURLs. When srmRemoteCopy
is aborted, it is propagated to the remote site by aborting the srmRrepareToGet or
the srmPrepareToPut request, correspondingly. Furthermore, if the abort function
has the remove flag set, then the propagated abort should have this flag set, too. In
the case of copy-push, the srmPrepareToPut gets aborted with the remove flag set,
which has the effect of removing the already-copied files from the remote SRM. In
the case of a copy-pull, the srmPrepareToGet to the remote site is aborted, but the
remove flag affects only the local site that already-copied files from the remote SRM
to the local storage will be removed.

• Third party copy is not supported, from a remote location to another remote location.
Either source or target must be local to the SRM where the request is submitted.

• When Flag for Removing Source Files is true, SRM removes the source files on
behalf of the client after the copy is done through SRM interface.

• The default value of “lifetime” for volatile or durable file types must be equal to or less
than the lifetime left in the space of the corresponding Space Token.

• Empty directories must be copied as well.
• If a Target SURL is provided with some directory structure, the directory structure

must exist, and SRM will not create the directory structure for the Target SURL. In
such case, an error SRM_INVALID_PATH must be returned. srmMkdir may be used
to create the directory structure.

• If the Source SURL and Target SURL are provided as directories (copying
directories) when SRM implementation supports, then all sub directories will be
copied over from the source to the target, and complete sub-directory structure will
be created only if Directory Option indicates them.

3.3 srmRemoteCopyRequestStatus Input and output parameters

In Out
User ID
Authorization ID
Request Token
Source SURLs
Target SURLs
offset
count

Request Status {
 Status information
}
Remaining Total Request Time
SURL Statuses {
 Source SURL,
 Target SURL,
 Status information,
 File Size,
 Estimated Wait Time,
 Remaining File Lifetime
}

 (underlined parameters are required)

Input parameters

• User ID (required)
 User authentication identifier.
• Authorization ID

User authorization information. The Authorization ID may be NULL.
• Request Token (required)
 A handle associated with the previously submitted srmRemoteCopy request. The

Request Token was returned by the function initiating the request (srmRemoteCopy).
• Source SURLs

WG Internal
OGSA-DMI

ogsa-dmi-wg@ogf.org 7

 Selective Source SURLs to check the status.
• Target SURLs
 Selective Target SURLs to check the status.

Output parameters

 Request Status (required)

Reports the success or failure of the request. Textual description of explanation for what
happened to the request, especially in case of any failures, would help client diagnose
the case. Status information is required and it is recommended to return as an
enumerated codes separated as status code and error code, so that when client is a non-
human program, response to the status information can be pre-programmed.

 Remaining Total Request Time
Output parameter indicates the remaining total request time.

 SURL Statuses
Output reporting the success or failure of the each SURL requests. SURL Statuses may
be empty and NULL. If returned to the client, SURL and its status information are
required to return.
 Source SURL (required)

SURL that client has requested to copy the file from.
 Target SURL (required)

SURL that client has requested to copy the file into. If the client did not provide
SURL at the time of request, SRM server generates a reference SURL that SRM
server and client can refer to the file.

 Remaining File Lifetime
It indicates the remaining file lifetime on the Target SURL when the file is in its
destination. File lifetime is assigned after file copy is completed.

3.4 Operational Modes

There are two cases for remote copies: 1. Target SRM is where client makes a srmRemoteCopy
request (PULL mode), 2. Source SRM is where client makes a srmRemoteCopy request (PUSH
mode).

• PULL mode

Upon the client’s srmRemoteCopy request, the target SRM prepares a space at the target
storage, and makes a request srmPrepareToGet to the source SRM. When TURL is ready at the
source SRM, the target SRM transfers the file from the source TURL into the prepared target
storage. After the file transfer completes, srmReleaseFiles is issued to the source SRM.

• PUSH mode

Upon the client’s srmRemoteCopy request, the source SRM prepares a file to be transferred out
to the target SRM, and makes a request srmPrepareToPut to the target SRM. When TURL is
ready at the target SRM, the source SRM transfers the file from the prepared source into the
prepared Target TURL. After the file transfer completes, srmPutDone is issued to the target SRM.

4. Intellectual Property Statement

WG Internal
OGSA-DMI

ogsa-dmi-wg@ogf.org 8

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

5. Disclaimer
This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use
of the information herein will not infringe any rights or any implied warranties of merchantability or
fitness for a particular purpose.

6. Full Copyright Notice

Copyright (C) Open Grid Forum (applicable years). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the OGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
OGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

