
For the strawman, my feeling is that we should do the following;
a) First propose a set of ‘standalone’ XSD constructs/elements (e.g. DMI-Common) and

document those as a re-usable element set. These elements should all be defined in a single
schema under the same namespace. DMI-Common should include all the common/reusable
elements that would provide generic value, such as the BulkDataCopy, DataCopy, DataEPR,
Credentials, InstanceAttributes (which is currently defined in the WS rendering schema? not
sure why), Standard fault types (again, these are currently defined in the WS rendering
schema), TransferRequirements, BulkDataCopyStatus? etc.

b) Secondly, document how the DMI-Common element set should be composed in order to be
compatible with the DMI v1/v2 (DMIB) ‘usage’ profile(s). These usage profiles could either
be presented as a set of separate documents, or as sub-sections in the strawman document.

In doing part 1) above, other activities/projects are then free to re-use the DMI-Common element
set as required without having to support the DMI-specific ‘usage’ profiles. I think this would
facilitate maximum re-use and the most widespread adoption (e.g. a new BES-DMI profile could then
choose which elements to re-use, this would not impact the DMI profiles).

Comments on your questions:

- "xsd:any" elements in the DMI Functional specification: We agreed to put xsd:any elements in the
existing schema wherever it is required, because the current specification lacks structure for
extensibility and more complex requirements.
Agreed (some examples below). There are potentially some more when I start putting together the
new strawman. New xsd:any as a child of ‘dmi:DataType’ complex type and new xsd:any as child of
‘dmi:DataLocationsType’ complex type.

<!--

dmi:Data

-->

<complexType name="DataType">

<annotation>

<documentation>

The dmi:Data element describes for each data transfer protocol

(using the normalised values defined for dmi:SupportedProtocol)

the specific information that must be used to access the data.

</documentation>

</annotation>

<sequence>

 <element name="Credentials" type="dmi:CredentialsType" minOccurs="0" />

 <!-- new xsd:any definition -->

 <any namespace="##other" minOccurs="0" maxOccurs="unbounded" />

</sequence>

<attribute name="ProtocolUri" type="anyURI" use="required" />

<attribute name="DataUrl" type="anyURI" use="required" />

</complexType>

<element name="Data" type="dmi:DataType" />

- Instead of defining new DTF service, we can extend the DataTransferFactory interface by changing
parameters to support DataBulkCopy elements.
Agreed: I think the DTF interface could be extended to support a single BulkDataCopy document as
suggested in Figure 6 in the paper.

- We need to have DTF service properties such as SupportedProtocols
Ok.

- We don't need to record BulkDataCopy's Status property, may be TotalTranferredBytes are worthy
enough.
Not sure? If we are treating the bulk copy activity as a single ‘atomic’ activity, then maybe we do
need to report the status of the BulkDataCopy when considered as whole? At present, I think we
need to support elements similar to the <BulkDataCopyStatus/> with nested <DataCopyStatus/>
elements as suggested in Figure 7.

- We can keep the current DMI state model without introducing new or reusing BES state model
Not sure? I don’t think DTS/dataMINX will support the ‘dmi:start’ and ‘dmi:activate’ steps since the
DTS job will be scheduled and started following submission of the request. Could these states
therefore be made optional?. Also, I think other profiles should be able to re-use the XSD constructs
and element definitions that we are proposing for use within other profiles (such as BES). Therefore,
I guess my feeling is that we should a) first propose a set of ‘standalone’ XSD constructs/elements
and document those as a re-usable element set, and b) secondly profile how these elements can be
used within the DMI v1 (and DMIB v2?) ‘usage’ profile(s). In doing this, other activities (e.g. BES) are
free to re-use the standalone elements as required without having to support the DMI-specific
‘usage’ profiles. I think the definition of the standalone elements/constructs would facilitate
maximum re-use (inc. BulkDataCopy doc, InstanceAttributes, Standard fault types,
TransferRequirements, BulkDataCopyStatus? etc) .

- DataEPRs: can be the same as they are in the current specification
Agreed (provided we add the additional extension points). Also, we may need to introduce an
optional identifier for the DataEPR if we are going to support element referencing (Figure 5 in the

<!--

dmi:DataLocations

-->

<complexType name="DataLocationType">

<annotation>

<documentation>

This element serves as a container aggregating one or more

dmi:Data elements. This container item MUST appear in the

wsa:Metadata section of the SourceDEPR and SinkDEPR as defined

in the OGSA-DMI Functional Specification 1.0.

</documentation>

</annotation>

<sequence>

 <element name="Data" type="dmi:DataType" maxOccurs="unbounded" />

 <!-- new xsd:any definition -->

 <any namespace="##other" minOccurs="0" maxOccurs="unbounded" />

</sequence>

</complexType>

<element name="DataLocation" type="dmi:DataLocationType" />

paper). In summary, I believe we should support ‘in-line’ XML document construction that use direct
element nesting as a minimum (as per the current spec). We should also then consider whether to
additionally support element references in conjunction with ‘in-line’ definitions (if you have used the
Spring framework; much like the bean element references). I’ll canvas opinion on this design choice
at OGF.

- Transfer Requirements
 Single out transfer requirements from individual elements. In the current proposal it is referenced
by all data copies elements. One could specify general transfer requirements in the Resources
section which will be valid for all the individual datacopy elements, but if any of the child DataCopy
elements needs to have separate transfer requirements then it must reference them explicitly from
the Resources section. This model can be improved a bit to have more user convenience.
Agreed, but I think there will be some finer points to address. E.g. Transfer Requirements element
defines a ‘batch window’ using ‘dmi:StartNotBefore’ and ‘dmi:EndNoLaterThan’ elements.
Therefore, should each DataCopy element be able to override the global TransferRequirements with
its own TransferRequirements definition with different StartNotBefore and EndNoLaterThan values?
Maybe we need two transfer requirement elements, e.g. a mandatory
<BulkCopyTransferRequirements/> and an optional <DataCopyTransferRequirements/> so that we
can have finer grained control. Also, I think we could propose some more child elements for the
TransferRequirements, e.g. including ‘FileSelector’ elements used to define a RegEx for the purposes
of selecting files that match a particular name or that have a particular file extension(s).

- Credentials
They can be considered in the same manner as transfer requirements.
Agreed.

- Bulk data copy
 - no need to name have datatransferinstance (may be an optional service)
 - properties of individual transfer can be represented as instance properties
Agreed. Sounds good.

Additional / Misc:

Should the state and attempts be made optional as below.

 <!-- Supplementary elements -->

<complexType name="InstanceAttributesType">

<sequence>

 <element ref="dmi:StartTime" minOccurs="0"/>

 <element ref="dmi:State" minOccurs="0"/>

 <element ref="dmi:CompletionTime" minOccurs="0" />

 <element ref="dmi:TotalDataSize" minOccurs="0" />

 <element ref="dmi:BytesTransferred" minOccurs="0" />

 <element ref="dmi:Attempts" minOccurs="0"/>

 <any namespace="##other" minOccurs="0" maxOccurs="unbounded" />

</sequence>

</complexType>

