Version 0.2 – 03 May 2005

1

1 Data Access
1.1 Introduction
One of the goals of grid data access is to provide different levels of virtualized access, in a manner consistent with SOAs, to data stored using many different types of format and contained within pre-existing storage infrastructures, data resources, which already provide their own standard access mechanisms. Grid access is not there to supplant existing forms of access but, rather, to operate in conjunction with and leverage off these. Grid data access adds value by providing different layers of abstraction that can be used to hide aspects, or all, of the underlying data model and/or its intrinsic access mechanisms to expose common interface for accessing data. This then allows different service layers to be built around data resources that can, more easily, be exploited and constructed on by other services.
There are intrinsic properties of data, the system that stores or produces that data and the credentials with which one may try to access the data via a service interface that affect the semantics and capabilities of the data access interfaces implemented by a data service. Some of these are:

· Data resource type (URI/String?): different storage systems have different capabilities that may be exploited or hidden. For instance a relational database will allow SQL queries to be performed to generate views of the data. One may hide the nature of the underlying storage system by only allowing pre-defined queries to be run. Different capabilities may be exposed by different interfaces.
· Writeable (boolean): the value taken by this property may result as a constraint imposed by the credentials used to access the data service or that the underlying type of data resource does not support any other kind of write access – e.g. the data may be coming from a DVD.
· ConcurrentAccess (boolean): describes whether the interface can process more than one message at the same time.

· TransactionInititation (enumeration): describes under what circumstances a transaction is initiated in response to messages. Can take the values:
· NotSupported: does not support transactions.

· Automatic: transaction initiated for each message.

· Manual: transaction context is under control of the consumer.

· TransactionIsolation (enumeration): describes how transactions behave with respect to other ongoing transactions. Can take the values:

· NotSupported: does not support transactions.

· ReadUncommitted: access uncommitted changes made by other transactions.

· ReadCommitted: access only committed changes made by other transactions.

· RepeatableRead: access only committed changes made by other transactions and ensure that no records read during the transaction are changed by other transactions.

· Serializable: access only committed changes made by other transactions, ensure that no records read during the transaction are changed by other transactions and ensure that result sets read during the transaction are not extended by other transactions.
· Sensitivity (enumeration): describes the sensitivity to change of data accessed indirectly through a data service/data resource relationship when compared with the data service that created it. Takes the values:
· NoSensitivity: there is no data resource to which this data resource can be considered to be sensitive.

· Insensitive: changes to the parent data resource do not affect the data presented by this data service/data resource.

· Sensitive: changes to the parent data resource are reflected in this data service/data resource.

For example, when reading forwards and backwards in a RowSet, “Insensitive” means that the same results will be read when reading forwards and then backwards regardless of any changes in the data resource that created the RowSet. “Sensitive” means that any changes in the data resource that created the RowSet will be observed.
· Lockable (boolean): describes whether a write lock can be obtained on the underlying data resource.

· Others?

The particular view of these properties presented to a client may arise from the credentials that are used to access a data service or a reflection of the intrinsic nature of the data resource that is being accessed which is reflected by the access interface or some other means.

Data is normally associated with, or bound to, a data resource. However there are instances where the data is extracted from the data resource and is served by a data service. This is referred to as a disconnected data set. The factory pattern may be employed to allow a different service interface to expose this data through a data service. This provides an extra degree of versatility in handling data derived from a data resource.
More required here.
Open questions/To Dos:

1. In order to perform any form of access there will usually be some sort of mapping from the grid credentials to any security required to access the data resource: e.g. a password/username for a database or file system, etc. Does something need to be said about that here?

2. Pulling data from data resources is more or less straightforward. The opposite of pushing data into a data resource needs a lot more care.
3. Scope the bounds of a data resource, data set, etc.

4. If there is a one-to-many relationship between data services and data resources how does one specify the data resource which the message is targeted at? Is an EPR always used for this?
5. Third party data delivery.

6. Delivery data sans SOAP.

1.2 WS-DAI

The WS-DAI specification produced by the Database Access and Integration Services Working Group, DAIS WG, proposes a generic, model independent way of providing access to structured data held in a data resource. The WS-DAI specification provides a set of basic patterns that are then specialized for particular types of data resources by related documents referred to as realizations. In general the DAIS interfaces expose intrinsic database capabilities already supported by the underlying data resource. No attempt is made to hide the underlying data model nor is the intent of DAIS to create a new universal query language that will cater for all types of structured data resources.

In the WS-DAI specification
 three main types of interface are proposed:

· Data description: provides metadata about the pertinent characteristics of a data resource that a service may wish to expose as well as any associated properties that affect the interaction between a service and the data resource.

· Data access: provides access to data through a service interface.

· Data factory: provides indirect access to data resources through new service interfaces.

The data access types of interface return the data produced by a client’s request, or the status of that request, in the service response to the client. Thus, for instance, an SQL query sent to a data service associated with a relational data resource will return the results of that query back to the consumer in the response message. The data factory types of interface, on the other hand, provide a way of holding data at the service end thus avoiding unnecessary data movement. A potentially different service, possibly supporting a different set of operations from that service which the client originally contacted, acts as an end point from which the derived data is accessible. This can then be consumed by, or delivered to a third party. Initially a data management was considered to manage the relationship between a service and the data resource that it exposes however this type of interface has been deemed as being out of scope for the current set of specifications.
In addition, a set of properties are associated with each of the base interface types that dictate the behavior of its operations, and hence, their semantics. For instance, for a data access type of interfaces there will be a boolean property dictating whether the operation can read from the data resource while another one determines whether the operation can write to the data resource. The base properties proposed on the WS-DAI specification are inherited and further extended by the realizations if required. Finally, the core specification defines a generic set of message patterns for the data access and data factory interfaces that should be followed by the realizations. Through the imposition of these constraints any DAIS realization that extends the WS-DAI specification will have a certain degree of commonality with the other DAIS realizations.

As yet, none of the proposed DAIS interfaces are mandated for a DAIS data service, nor is an implementation model described in the specifications. The relationship between a consumer, data service and data resource is fairly free as described in the diagram below.

[image: image1.emf]

0 - *

0 - *

Consumer

Data Service

Data Resource

0 - *

0 - *

0 - *

0 - *

This structure is not exposed through the Data Service interface to the C onsumer .

Figure 1: Relationship between consumers, data services and data resources in DAIS
DAIS has thus far concentrated its efforts on providing access mechanism for databases producing specializations for relational database, WS-DAIR, XML databases, WS-DAIX, and a new realization that will extend WS-DAI core for object databases is in the process of being produced. A file realization also exists but this is not currently being actively developed.

1.3 ByteIO (stuff below stolen from an early paper for GGF13 by Mark and Andrew with some small modifications – NEEDS TO BE UPDATED)
The ByteIO interface represents a small subset of functionality that captures an important, common case for data access. While access to data can span a large gambit of possible scenarios (access to files, access to databases, access to repositories of metadata, etc.), a very common rendering for data access is through a simple file interface. Further, grids should provide access through the use of readily available, common protocols in order to facilitate the adoption of grid technology. This document describes a prototype interface for a ByteIO port type – a simple web service port type which is reminiscent of a POSIX-like interface. This prototype addresses the various requirements for a simple, basic data access layer which NFS and CIFS modules can easily be written to interface with.

The ByteIO interface (which is described in UML in Figure 2) contains four “POSIX-like” functions. It’s important to note that this interface implies a session-less communication semantic, but that this design does not prohibit session capable client semantics. In fact, we assume that a number of common file interface APIs will be implemented in client libraries to provide convenient mechanisms for data access (for example, true POSIX style functions, C++/Java/C# streams, etc.). Further, applications which would benefit from a more session oriented service structure can easily achieve this functionality via a web service wrapper on top of the existing session-less semantics given below.

[image: image2.png]ByteIO

read (offset: long, length: long): byte[]
write (offset: long, data: byte[]): void
append (data: byte[]): void

truncAppend (data: byte[]): void

Figure 2: UML for ByteIO Interface

read

Input:

long offset

long length

Output:
byte[]

Faults:
IOFault

The read function is used to retrieve a block of data from a given ByteIO service resource. The client specifies an offset in the file at which to start reading and the number of bytes to read. The result from this call is a byte array with 0 or more elements (up to the limit given by the client). Clients should be aware that short arrays can be returned if the end of the file is reached.

write

Input:

long offset

byte[] data

Output:
None

Faults:
IOFault

Clients use the write function to write a given block of data into a ByteIO service resource. The client may write to any offset within the file (greater then or equal to zero) and if the offset specified is larger then the file size, the semantics are to grow the file as needed.

append

Input:

byte[] data

Output:
None

Faults:
IOFault

The append function is used to append a block of data to the end of a ByteIO service resource. This function should be considered atomic.

truncAppend

Input:

byte[] data

Output:
None

Faults:
IOFault

The truncAppend function is used to both truncate a ByteIO resource and append data to that freshly truncated endpoint. In other words, the file is first truncated, and then any data contained in the input data array (which is allowed to be of size 0), is appended to the empty file. This operation should be considered atomic.
1.4 Other Stuff in the original document
This was already there

· A data service to access a data resource is identified.

· Consumer consults resource properties regarding:

· data structure,

· query formats,

· data/result format and size.

· Consumer constructs a suitable query message and sends it to the data service.

· The data service executes the query and returns the results of the query in the response.
The structure of the data is described using an appropriate schema: CIM for relational databases, XML Schema for XML, DFDL for binary data. The query structure is also defined using an appropriate specification, e.g. SQL 99 or Xquery. The result structure also needs to be specified, e.g. using WebRowSet.

Most, if not all, of the access mechanisms will explicitly allow an indication of how the results of the query are to be represented (e.g., plain text or XML) and handled (e.g., returned directly or held as a result set by the federation).

� This classification originated from the OGSA Data Services document.

_1154961204.doc

[image: image1]

Data Service

Data Resource

0- *

0-*

0-*

0-*

Consumer

This structure is not exposed through the Data Service interface to the Consumer.

0-*

0-*

