OGSA Data Architecture (DRAFT)

D. Berry, NESC
Category: Informational Document

A. Luniewski, IBM

OGSA Data Working Group

September 1st, 2006
OGSA Data Architecture 0.6

OGSA(Data Architecture
Version 0.6.4
Dave Berry1, Allen Luniewski3
Mario Antonioletti5, Ann Chervenak9, Stephen Davey1, Peter Kunszt10, Simon Laws2, Mark Morgan4
20th November 2006
Acknowledgements

Ted Anderson3, Malcolm Atkinson1, Neil Chue Hong5, Abdeslem Djaoui7, Andrew Grimshaw4, Shannon Hastings6, Leo Luan3, Fred Maciel8, Susan Malaika3, Manuel Pereira3
1 National e-Science Centre, UK

2 IBM Corporation, UK
3IBM Corporation, USA

4University of Virginia, USA

5EPCC, UK

6Ohio State University, USA

7CCLRC, UK

8Hitachi, Japan
9Information Sciences Institute, USA

10CERN, Switzerland
Status of this Document
This document provides information to the community regarding the specification of the data architecture of the Open Grid Services Architecture (OGSA). It does not define any standards or technical recommendations. Distribution is unlimited.
Copyright Notice

Copyright © Open Grid Forum (2006, 2007). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

OGSA is a trademark of the Global Grid Forum.

Abstract
The Open Grid Services Architecture (OGSA) vision is of a broadly applicable and adopted framework for distributed system integration, virtualization, and management. This document, produced by the OGSA Data working group within the Open Grid Forum (OGF), gives a high-level description of the interfaces, behaviors, resource models, and bindings for manipulating data within the broader architecture. The functionality described covers the storage, movement, access, replication, caching and federation of files and databases.

The current status of this document is provisional, a draft, “straw man” architecture. Contributions, comments, and feedback are strongly encouraged.
Contents

51
Introduction

51.1
Terminology

51.2
Services and interfaces

61.3
Scope

71.4
Document structure

82
Overview

82.1
Levels of abstraction

82.2
Basic Structure

102.3
Usage Patterns

102.4
Composite entities

112.5
Policies

122.6
Protocols

122.7
Client Libraries

132.8
Metadata

132.9
Storage

132.10
Denotation of Architectural Components

143
Architectural Context

143.1
OGSA Profiles

153.2
Naming

163.2.1
WS-Addressing

163.2.2
WS-Naming

173.2.3
Directory Services: RNS

173.3
Management of distributed resources

173.4
Security

183.5
Notification of Events

183.6
Resource Discovery

183.7
Policies and Agreements

193.8
Provisioning

193.9
Execution Management Services

193.10
Reservation Services

203.11
Transactions

203.12
Sessions

224
Security

255
Data Description

265.1
Format Description

275.2
Resource Description

296
Data Transfer

306.1
Data Transfer Interfaces

317
Data Access

317.1
Security Considerations

327.2
WS-DAI

327.2.1
WS-DAI Defined Interfaces

347.2.2
WS-DAI Properties

367.3
ByteIO

377.3.1
RandomByteIO

387.3.2
StreamableByteIO

397.3.3
ByteIO Applications

408
Storage Resource Management

408.1
The Storage Resource and Service

418.2
Aspects of a Storage Service

428.3
Storage Properties

438.4
Storage Space Properties

448.5
Site and VO management

458.6
Security Discussion

468.7
Interaction of Storage and Transfer

479
Cache Services

4910
Data Replication

4910.1
Replication Modelling

4910.2
Creating Replicas

5010.3
Managing Entries

5010.4
Discovering Replicas

5110.5
Validation of Registered Replicas

5210.6
Replica Consistency

5310.7
Managing Replicas

5411
Data Federation

5511.1
Creation of Federations

5611.2
Expansion/Contraction of Federations

5711.3
Access to the Federation’s Data

5711.3.1
Updates to Policy

5811.4
Access to the State of the Federation

5811.5
Security Considerations

5911.6
Standardization Considerations

6012
Metadata Catalogue & Registries

6012.1
Operations

6112.2
Publication

6112.3
Query

6112.4
Currency

6212.5
Security and Hierarchies

6313
Appendix: Specifications referred to in this document

6313.1
Data Service Specifications

6313.2
Data Description Specifications

6313.3
Protocol Specifications

6413.4
Infrastructure Specifications

6413.5
API Specifications

6514
Glossary

6815
References

1 Introduction

This document is produced by the OGSA Data Architecture Working Group (OGSA‑D) of the Global Grid Forum (GGF). It describes and guides the design of the sub-set of the Open Grid Services Architecture (OGSA) that addresses the storage, movement, access and manipulation of data. The OGSA Data group works in conjunction with the OGSA Working Group, which guides the overall development of the OGSA architecture.
This informational document is one component of a set of documents that, over time, will fully define OGSA, both informatively and normatively. For an overview of the OGSA architecture, see the Open Grid Service Architecture version 1.5 [OGSA]. The full document set, the status, and the planned evolution of OGSA are described in Defining the Grid: A Roadmap for OGSA Standards [OGSA Roadmap]. Of particular relevance is a companion to the current document that describes data architecture scenarios [Scenarios], which will be described in section 1.3.

The authors intend that this architecture will incorporate and integrate relevant insights and documents from other groups, especially other GGF Working Groups. For example, it already incorporates work from the Grid File System Working Group and the Data Access and Integration Working Group, and we are in discussion with the Information Dissemination Working Group and the Grid Storage Management Working Group. However, the emphasis is on producing a coherent architecture, so we do not guarantee to adopt everything produced by these other groups.

Currently, this document describes a provisional, partially completed, “straw man” architecture. Contributions, comments, and feedback are strongly encouraged.

1.1 Terminology

The OGSA Data Working Group comprises members from many different organisations and communities. It is common for a word to have many different interpretations in these different communities. Even the term “data” is interpreted differently or at least given different emphases, as discussed in the “Overview” section below.

In the OGSA Data WG we take great care to define the terms that we use. In this document, as in other OGSA documents, italicised terms are defined in a glossary. (For particularly common terms, such as “service” or “interface”, only the first few occurrences are in italics). The relevant entries are given in a glossary section at the end of this document. Ultimately, these entries may be merged into the main OGSA Glossary document [OGSA Glossary].
1.2 Services and interfaces
In OGSA terminology, services are software components, participating in a service-oriented architecture, that provide functionality and/or contribute to realizing one or more capabilities. The operations that a service offers are specified by an interface. The OGSA architecture defines common interfaces for similar services, thereby hiding differences in their properties and operations, allowing them to be viewed and/or manipulated in a common way. These common interfaces virtualize the resources provided by the services.

[image: image1.emf]

 Data Service

Data Resource

 Data

Interface 1

Interface n

This document primarily describes the interfaces that virtualize the services and resources managing the transfer, storage, access and federation of data. It also describes interfaces for data location management services such as the staging, caching and replication of data. It discusses some of the underlying relationships that must be maintained by services implementing OGSA data capabilities. It also demonstrates how appropriate combinations of data services can realise these capabilities.

Virtualization also allows data functionality to be provided by computational or other resources. For example, a service might implement a query by calculating the result value on the fly - it is not relevant to the data access virtualization whether the data is generated on the fly or materialised and stored (although this may be revealed by a corresponding management interface).
If a data service is associated with more than one data resource, it is necessary to disambiguate the data resource to which messages are targeted at. The OGSA naming scheme can be used to name each resource provided by a service. Many existing data resources, such as database management systems, will already have established names and lifetimes both of which may not be controlled by the service layer. This may lead to an alternative mechanism for naming these resources.

1.3 Scope
The OGSA Data architecture presents a “toolkit” of data services and interfaces that can be composed in a variety of ways to address multiple scenarios. These services and interfaces include data access, data transfer, storage management, data replication, data caching, and data federation. Issues that are not data related are outside the scope of this document.
The components of the data architecture can be put together to build a wide variety of solutions. A companion document on data architecture scenarios [Scenarios] describes a number of such uses. This set of scenarios is intended to be exemplary, not all inclusive. However, it is a goal of this document to describe the data architecture in sufficient detail and specificity that interoperable data architecture implementations are the norm, rather than the exception.

This document builds upon the work of many other standardization efforts including, most prominently, the work being done in the Global Grid Forum. The data architecture builds directly upon the work being done in the OGSA working group to define an overall architecture for the Grid.
The scope of topics for a complete data architecture is enormous. To cover the entire scope of data would take far longer than is reasonable. Thus, this initial version of the document, and the architecture that it describes, is limited in scope. We expect this document to evolve over time, with future versions extending the scope of topics covered.

The primary focus of this version of the architecture is data that lives in file systems and data that lives in database systems. The document does not discuss data streams – a very important data source but one whose definition and incorporation is too major a topic to be attacked in this initial version. We also do not address sensor data, a very important sub case of data streams.
Similarly, this initial version of the document does not describe all the data-oriented services that may be required to build more advanced data Grid functionality. The omissions include common systems such as distributed file systems, “metadata” management systems, and distributed personal space management systems. We envisage that future versions of this document will extend the range of services described.
For a further vision of how data services could form part of a comprehensive Grid solution, from a database-centric viewpoint, see [DAIS].
1.4 Document structure
The rest of the document is structured as follows. Section 2 gives a brief overview of the various aspects of the data architecture. Section 3 then provides background for readers unfamiliar with the OGSA architecture in general, by describing the non-data parts of the OGSA architecture that are built on, referred to or used by the capabilities presented in this document. Readers familiar with the OGSA architecture should feel free to skip this section.
Section 4 discusses security issues, highlighting those that particularly apply to data. Next, section 5 discusses how data is described within the architecture. This includes the description of data formats, of data resources and of data services.

Then sections 6 to 12 each describe in detail one of the capabilities that is realised by the data architecture. These begin with the transfer of data between services or resources, move on to the accessing of data in resources, and then follow with the management of storage resources. Further chapters discuss data caching, replication and federation services, then metadata catalogues, personal data services and transformation services. For each of these capabilities, the relevant section explains how the capability is realised and gives a detailed description of the relevant services and virtualizations.

An appendix gives a guide to the specifications referenced in this document. Finally, the glossary gives definitions of the terms used in this document.
2 Overview

2.1 Levels of abstraction

We have found that different communities apply different emphases on the capabilities that Grid data services must address.

· For a provider of mass storage, data might be a set of files that are held on a storage device.

· For a library data Grid, data management concentrates on replicating data files for preservation and distributed access.

· For a particle physics Grid, data management is largely synonymous with file management: the Grid must stage data files to where they are required by a computation and then return the result file to the user’s file space.

· For many other scientific disciplines and for many business scenarios, data is explicitly structured and the emphasis is on querying and manipulating that structure via database management systems.

· For sensor Grids, data management focuses on the management and manipulation of data streams. (Data streams are out of scope for this initial version of the data architecture).
· Scientific workflows may also include streaming data, for example linking the output of a simulation process to the input of a visualisation system
These are just some of the requirements. For the OGSA architecture to be truly general, it must support all these capabilities. Fortunately, there are several commonalities among these functionalities that allow us to propose an integrated architecture.
When reading this document, it is important to remember that the term “data” covers the following levels of abstraction:

· A sequence of bytes, without name or interpretation of structure;

· Files, without interpretation of their contents;

· A set of structured data, which may be contained within (inter alia) a file, stream or a database management system.

2.2 Basic Structure
Figure 1 illustrates the basic entities of the data architecture. Resources are managed by services that may have interfaces for data access, for acting as sources or sinks of data transfer operations, and for describing the data via properties (data description). Some resources, such as file systems and databases, are storage based, and the architecture also includes interfaces for storage management.
Data access specifies the data that is of interest to a client of the data architecture while data transfer is the means by which the data of interest is moved from the source of the data to the consumer. Data transfer services control the transfer of data between resources and/or consumers and provide a transfer control interface. Data that is encoded in a syntax suitable for externalisation from a resource, ready for transfer, is called a data set. So, for example, a data access operation could select some data to be encoded as a data set and then invoke a data transfer operation to manage the transfer from the resource to the client or another consumer. Actual transfer of data uses appropriate protocols and takes as direct a path as possible.

All these interfaces are used by clients, which may be other services, or APIs such as SAGA, POSIX and NFS. Registries, which are described in the Information Services section of the main OGSA document, play an essential role in the data architecture.

[image: image2]
Figure 1: Basic entities in the data architecture
This diagram is necessarily schematic and abstract. In reality, some services may have only an access interface or only a transfer interface. Transfer operations are not restricted to linking stored resources to other resources but may transfer data from any resource with a source interface to any with a sink interface. Some operations may combine functionality from several interfaces: e.g. some access operations might specify that the results should be transferred to another resource; for particularly simple transfers, operations might not require a separate data transfer service.

Generic management and provisioning interfaces have been omitted, as have security services and their related permission decision points.

2.3 Usage Patterns

These basic facilities are often linked using one of the following patterns:

· Request-response: a client sends an access request and the generated data is included in the response sent back to the consumer. Alternatively, the request may contain the data which is to be added to the data resource and the response specifies the status of this operation.

· Third party delivery: the data request includes instructions for delivering the data to a third party via the data transfer mechanism. This allows large amounts of data to be transferred.

· Factory: the request sent by the consumer produces a new data resource that is populated by the results of that request. This is created by the service and is maintained at the service end. The data in this new data resource may be collected at some later stage by the same consumer or a third party.

· Bulk load: data is uploaded to a data resource through the service by a consumer or third party, via the data transfer mechanism.
2.4 Composite entities
Figure 2 shows how the basic services can be combined to achieve more complex behaviours. Replication services can use the interfaces provided by the basic service to maintain replicas of data, to improve availability and/or performance. Cache services can be combined with other services to produce a new service. Federation services can also form a new service, by combining several data services. These composite services can then be treated in the same way as any other service, and provide the same interfaces.

[image: image3]
Figure 2: Composite entities in the data architecture
As above, this diagram is necessarily schematic and abstract. For example, it does not show the data transfer operations between the services involved in a data federation or between a data caching service and its source. As before, generic management and provisioning interfaces have been omitted, as have security services and their related access decision points.

It is worth noting that some resources may provide capabilities such as data caching, data replication or data federation natively, outside the OGSA data architecture. For example, several commercial database vendors provide their own replication or federation functionality. To a client of the corresponding service, it is not relevant whether the capability is provided in a proprietary manner or by the composition of OGSA services; the implementation details are hidden behind the appropriate OGSA interfaces.
2.5 Policies
Policies are documents that describe or configure the behaviour of a service or resource. In the data services, policies may specify the availability, performance, consistency or other aspects of the services. They may specify who can access data, the kinds of access allowed and any restrictions on the transfer of that data.

The quality of service provided by data sources is an important subset of the policies that must be reflected in the data architecture. They include those related to performance, reliability, provenance and coherence.

Performance is a critical real world requirement for effective use of the Grid by real world applications. Performance properties include, but are not limited to: expected response time to an access or update request, throughput for data transfers, and number of access requests that can be handled per second.
Reliability properties reflect the ability of the data service to operate over long periods of time. For instance, what is the expected time between outages of the data service, the expected time a service will be down, the amount of data that might be lost if an outage occurs and the ability of the data service to continue operation in the face of disaster (e.g., the data center holding the data service is vaporized).

Provenance properties reflect the history of the data. Where did it come from? What processing was performed on it? What software was used to perform the processing? Which human being requested the processing?

Security is a key consideration in Grid systems. Security policies specify who may access particular data, the locations to which it may be moved and under what constraints. Section 4 will discuss security considerations in more detail.

Finally, there are many cases in which changes to one data service may need to be reflected in an associated service. Examples include replication services, cache services and federation services. More generally, it is expected that data services will be built into acyclic directed graphs in which derivative data resources will be logically constructed. The system will automatically maintain some degree of consistency between the data stored in the base and the data presented by the derived data services with this consistency maintained in the presence of updates to the base. The properties that describe the degree to which base and derived data services are kept in synchrony are called the coherence properties.
The following list suggests policies that a service must be prepared to enforce. This list must be extensible so the following is not a complete list. These properties will need to be formally defined and specified by a TBD standards body.

· Throughput: the number of access requests that can be satisfied per unit time

· Response time: the time allowed to satisfy an access request.

· Availability: the percentage of time that the service must be up.

· Recovery time: time allowed for the service to recover from a failure

· Data resiliency: a specification of the effort the service should make to ensure that data is not lost in the face of failures

· Access accuracy: if the primary source of some data is not available, how should the service act? Report an error? Find an alternate source (with potentially stale data)? Return partial answers? Another term for this policy might be degradation of answers.

· Currency of data: can the data used by the service, and the data returned, be out of date? If so, by how much?

2.6 Protocols

There are many places in the data architecture where protocols will be used, typically “on the wire”, to allow components of the data architecture to communicate and interact. The data architecture is, in general, protocol agnostic.

The protocols used for sending operations and notifications between components are those specified in the general OGSA architecture. For data transfer, rather than specify a single protocol, this document allows services to offer a range of protocols. Clients can specify or negotiate which protocols to use for a given operation. (The details of the negotiation mechanism are not discussed in this document).

However, some of the standards that the data architecture is built upon may choose to specify specific protocols of interaction, either for performance or interoperability reasons. In general the data architecture views such specificity as being undesirable but should a group defining a standard decide to be so specific, we do not preclude the use of such a standard in the data architecture.
2.7 Client Libraries
While direct access to data resources is possible using the service interfaces directly, we also expect that OGSA data services will be accessed via APIs. Client libraries will map the APIs to the corresponding messages in the SOA framework. Often these libraries will implement existing, legacy, APIs. This will allow easy integration of OGSA data services with existing applications for backwards compatibility.
The key idea here is a legacy front end to the data supported by an implementation that speaks to the service-oriented architecture. For example, a data Grid aware NFS V3 service will look like a standard NFS mount point, a caching service could be used by NFS or CIFS services, a POSIX interface could make remote files seem local, and a JDBC or ODBC interface will make Grid database resources appear local.

Other client libraries may be specifically written with Grids in mind. An example is Globus XIO [XIO], which provides a portable API to swappable IO implementations. This advanced interface can handle asynchronous operations in a threaded environment.
Although the architecture is designed to meet the needs of multiple client libraries, the definition of the library services that map from APIs to service operations falls outside the scope of this document.
2.8 Metadata
Metadata is a remarkably overloaded term. Its primary meaning is “data about data”, which can include descriptions of data structure, provenance information (i.e. where the data came from and how it was obtained) and third-party annotations. In the context of service-oriented architectures, the term is also used to describe properties of services or of the resources that they provide.

In this document, we attempt to minimise the use of the term “metadata”. Instead, we prefer to use more precise terms such as “data description”, “service description” or “resource description”. We do not yet address the description of data provenance.

2.9 Storage

Data resources, data services and other services described in this architecture will consume storage. This storage might be for data that represents the temporary, dynamic state of the resource. This storage might be long lasting, representing the persistent data of interest to users of the Grid. It may be long lasting data that represents persistent state maintained by and for the operation of the service.

As part of its specification, each service must describe what storage it will use for its transient and persistent storage. A service may choose to provide means as part of its creation and management interface to allow client control of the storage spaces used by the service. In the remainder of this document we call out specific places where a data service must consider how it will determine what storage to use.
2.10 Denotation of Architectural Components

There are a number of places in this document where it is necessary to name non-addressable entities that are part of the architecture. For example, there needs to be a means to name the query languages supported for access by a data service. These entities will be named by URIs (Universal Reference Identifiers [ref]). We do not mandate how these URIs are generated aside from insisting that each URI should denote a unique entity. We recognize that URIs will be generated in a distributed manner by different standards groups, by different vendors and even by different clients of the data architecture. To avoid duplication of these names, and to foster reuse of previously named entities, we encourage GGF to create a centralized registry of URIs where the URIs for architecturally significant entities can voluntarily be registered.
3 Architectural Context

This data architecture works within the framework provided by the Open Grid Services Architecture (OGSA), which is in turn built on Web Services. This section is intended for readers who are not familiar with the basic ideas of the OGSA architecture. It gives a brief overview of the elements of the OGSA architecture and underlying Web Service specifications that are particularly relevant to the data architecture. For more information about these areas, readers should consult the OGSA architecture document [OGSA].

The OGSA architecture sets out to achieve interoperability in dynamic and heterogeneous environments. Thus it supports resource virtualization, common management capabilities, and resource discovery, all using standard protocols and schemas. It also aims to achieve resource sharing across organizations, to which end it supports a global naming system, metadata services, site autonomy and the collection of resource usage data. It also makes explicit quality of service requirements and agreements.
Web Service specifications provide the default messaging layers and service specification languages for a service-oriented architecture. The OGSA architecture builds on these foundations with specifications for, amongst others:

· naming

· management of distributed resources

· security

· notification of events

· resource discovery

· policies and agreements

· reservation and scheduling

The OGSA data architecture describes particular data-oriented interfaces to resources and services within this overall framework. It also specifies dependencies on, and specializations from, other interfaces in the general architecture.

3.1 OGSA Profiles
The OGSA WG follows the lead of the (WS-I)
 organization by defining normative interoperability profiles—guidelines for ensuring consistent and interoperable use of selected specifications. By developing a comprehensive and consistent set of OGSA Profiles that together address all of the required Grid capabilities, they will eventually produce a normative definition of the OGSA architecture.

The first Profile is the OGSA WSRF Basic Profile [OGSA WSRF], which is based on the WSRF and WSN families of specifications. These specify mechanisms for defining and accessing properties, managing lifetimes, and sending notifications. Equivalent profiles based on the WS-Management specifications may be developed as a parallel activity. OGSA documents treat the underlying mechanism as orthogonal to the properties that are exposed. Thus an alternative architecture could replace the mechanism without affecting the specification of what information is made available. The architecture may be implemented on different underlying infrastructures simply by varying the choice of profile – although of course this will restrict interoperation between such implementations.

The OGSA WG is also specifying the OGSA Basic Security Profiles [OGSA BSP—Core]

 REF OGSABSPSecChan \h
[OGSA BSP—Secure]. As the OGSA WG agrees other such basic profiles, we expect that future versions of the data architecture will embrace them. Indeed, a future normative specification of the OGSA Data Architecture will take the form of a profile (in contrast to the current document, which is an informational document). The OGSA Profile Definition [OGSA Profile Definition] provides guidelines to be used when developing Profiles.
3.2 Naming
There are many reasons why we need to name entities. For example, we need to uniquely identify services that we interact with; to log operations for audit, to map data objects to storage, to map abstract names to (possibly multiple) physical locations, to persist entities in long-term storage, to record the provenance of data, to catalog and search for entities, and many other tasks besides.
Within the OGSA Data Architecture a large number of entities, such as services, resources, databases, results, etc. require naming. These include, but are not limited to:

	activities
	metadata
	roles

	caches
	namespaces
	schemas

	catalogues
	naming schemes
	schema mappings

	content identifiers
	networks
	security contexts

	data bytes
	people
	security tokens

	data formats
	policies
	service level agreements

	data streams
	queries
	service types

	database tables
	query result row sets
	services

	databases
	references
	storage (space)

	file directories
	registries
	times

	file locations
	replicas
	transactions

	files
	repositories
	transformations

	identities
	resolvers
	transport protocols

	languages
	resource locations
	user defined entities

	locales
	resources
	vocabularies

The OGSA work on naming recognises three levels of name: human-oriented, abstract names, and address. From the GGF OGSA glossary [OGSA Glossary]:

· “Name” – is an attribute used to identify an entity. In OGSA naming, there are three types of names: human-oriented names, abstract names, and addresses.
· “Human-oriented name” – is based on a naming scheme that is designed to be easily interpreted by humans (e.g. human-readable and human-parsable).
· “Abstract name” – is a persistent name suitable for machine processing that does not necessarily contain location information. Abstract names may be dynamically bound to addresses.

· “Address” – specifies the location of an entity.
And additionally,

· “Resolution” – Name resolution may occur at two levels. Human names may be dynamically mapped to abstract names; and abstract names may be dynamically mapped to addresses. It is this address, and only this address, that allows messages and operations to be directed at the named entity.

From a data services point of view, the ability to attach names (where possible both human readable and globally unique) to data resources is of key importance. It enhances readability of Grid applications and commands, provides flexibility of use and configuration of applications, and enhances the user experience.

There are a number of requirements on a naming scheme. For example, it should be autonomous, scalable, distributed, secure, reliable, trusted, and have global scope. In addition it is desirable that the naming scheme (and name resolution service) should be fast, efficient, extensible and be capable of being internationalized. It should also be remembered that there will be a requirement to name data that is being generated on the fly, as well as data that has already been materialised and stored. A naming scheme that is not practical to use and does not include these properties is less likely to gain widespread use.

3.2.1 WS-Addressing

The lowest level of naming is the notion of an endpoint name. The OGSA architecture uses a WS‑Addressing endpoint reference (EPR) to refer to a specific Grid endpoint. Because these endpoints can be highly dynamic in time and space (changing as resources migrate, fail and restart, etc.), thus changing the mapping from abstract name to EPR, it is expected that a naming scheme or any other binding agent will also include some sort of run-time bind and rebind semantic on top of this. WS-Naming provides such a mechanism for rebinding EPRs, as well as a mechanism for including abstract names within EPRs.

As noted in Section 1.2, many existing data resources, such as database management systems, have established names and lifetimes that are not necessarily accessible via the OGSA naming scheme. This may lead to an alternative mechanism for naming these resources.

3.2.2 WS-Naming
WS-Naming is a profile on top of the WS-Addressing specification, where additional elements AbstractName and an optional ReferenceResolver are included in the WS-Addressing Endpoint Reference. Abstract names provide a globally unique and static way of talking about specific resource endpoints, allowing Grid applications to compare and identify resources endpoints for the lifetime of that endpoint and beyond. It should be noted that the set of entities to be named by abstract names is enormous and constantly growing. Thus it is imperative that the mechanism used to generate abstract names scale appropriately.
Note that a WS-Name may specify a resolving service or their syntax may imply a resolving service. This name resolution service provides the mapping between the abstract name and the EPR (or EPRs).
3.2.3 Directory Services: RNS
At the topmost level are “human-oriented names” and as the name suggests these are intended to be read and used by people, and contain structure that is meaningful to humans. They are a primary interface for users and applications. Many of the names will be chosen by people, although this is not absolute; services may also generate human-oriented names. These names are not guaranteed to be either unique or static.

The Resource Namespace Service (RNS) addresses this human-readable level of naming. It encompasses a multi-faceted approach for addressing the need to access resources within a distributed network or Grid by way of a context-specific name that ultimately resolves to a meaningful address, with a particular emphasis on hierarchically managed names that may be used in human interface applications. Its inception is largely based in a file system realm but it is also intended to facilitate namespace services for a wide variety of Grid applications and can be employed to manage the namespace of federated and virtualized data, services, or effectively any resource capable of being referenced in a Grid/web environment.

Mappings between the human names and EPRs are maintained and accessed by the RNS services. These EPRs may be WS-Names, if they include abstract names (i.e. they conform to the WS-Naming specification), or they may simply be addresses.
3.3 Management of distributed resources

OGSA is in the process of defining an information model that describes a wide range of resources that may make up a Grid. These include databases, storage systems, files, catalogs and data sets, as well as jobs, processors, networks and others. This information model forms the basis of the OGSA management services.

These management services will be built on suitable Web Service specifications. They will provide operations for querying the status of resources and updating them as necessary. There are two proposals for management of resources in the Grid. The WS-DM standards from OASIS [REF] provide one set of management services. The WS-Management proposal from Microsoft [ref] provides a second. It is beyond the scope of this document to propose how to reconcile these two outstanding management proposals.

Management facilities depend upon an information model to describe the services being managed. The information model for data services needs to be defined by a TBD working group, perhaps the OASIS CIM TC, so that the OGSA management services can manage data services.

3.4 Security
Security is a key aspect of Grid systems. Businesses demand it, customers and consumers increasingly expect it and there is a growing set of government regulations worldwide that mandate security. Thus the data architecture must support security and privacy mechanisms that meet client needs in these areas. The OGSA architecture uses and extends security specifications for encrypting data, authenticating users, identity mapping, authorising operations, delegating access rights, secure logging and maintaining privacy.

Throughout this document we discuss security as it applies to data services. Section 4 will cover general security issues, describing existing work that we build on and also identifying areas where work remains to be done. Security as it applies to specific parts of the architecture is discussed in the relevant sections.
3.5 Notification of Events

In a dynamic Grid environment it is critical that components can request and receive timely notification of changes in one another’s states. The OGSA architecture specifies the use of suitable web service specifications that provide this functionality.

These services may be used by data services in many ways. For example, they may be used to notify clients and other services about management events, performance and resource issues, and to implement consistency mechanisms. They may also be used to externalize database triggers.
3.6 Resource Discovery

Discovery services are vital to the data architecture. The data services may use the discovery services not just for registering services themselves, but also for registering the data that are stored by those services. This requires languages or ontologies for describing data. Discovery services may also register the locations of schema definitions. Discovery services may be built upon metadata repositories – repositories that contain information about other entities in the Grid such as resources and services. Some discovery services may return the name of the service and some may return an EPR to the service. Some discovery services may take a description (e.g., much like a query) of the desired data as input and return the data itself.
3.7 Policies and Agreements

As described in section 2.5, policies are documents that describe or configure the behaviour of a service or resource. The OGSA architecture will specify a suitable format for the definition of policies
. The details of the policies that a service accepts are part of the specification of that service.

Policies are used in two ways in the OGSA architecture. A policy can be provided by a data service to describe its quality properties. This allows clients to choose services according to their needs. Some data services may allow a client to use a management interface to request that the service provide QoS according to a policy of the client’s choosing. The service may abide by that policy, reject that policy or engage in a negotiation with the client to find a mutually agreeable policy to govern the service’s operation. In both cases the same policy description applies.

Agreements are time-limited contracts between a service and a client, or between a group of services and/or clients. They may, for example, state that a certain policy will apply to a given operation. The OGSA architecture will specify a format and negotiation protocol for agreements. A possible candidate is the proposed WS‑Agreement [WS-Agreement] standard.
Quality of Service is a key area where policies and agreements are used in the data architecture. QoS will typically be specified via policies that are at the heart of the agreements that will be agreed to between clients and data services to govern the interaction of the client and the data service.
3.8 Provisioning

To automate the complicated process of resource allocation, deployment, and configuration, it must be possible to deploy the required applications and data to resources and configure them automatically, if necessary deploying and re-configuring hosting environments such as OS and middleware to prepare the environment needed for job execution. It must be possible to provision any type of resource not just compute resources, for example, network or data resources.
3.9 Execution Management Services
The Execution Management Services (EMS) in OGSA control the scheduling and placement of units of work on appropriate services and thus the resources they represent. Their functionality generalizes the notion of executing a compute job; suitable implementations may schedule any unit of work, such as a database query or a data transfer. EMS services use data services in order to stage the necessary data to the execution server or to access that data remotely. Data services may also be required to provide necessary information to enable these services to produce satisfactory schedules.

An Execution Planning Service is a service that builds mappings (“schedules”) between jobs and resources. The service will typically attempt to optimize some objective function such as execution time, cost, or reliability.
A Candidate Set Generator determines the set of resources on which a unit of work can execute. It typically provides input to an Execution Planning Service.

A Job Manager is a higher-level service that encapsulates all of the aspects of executing a job, or a set of jobs, from start to finish. Examples include queue managers, portals or workflow enactment engines. Jobs are specified using the Job Specification Description Language [JSDL].
Currently, more work is needed to integrate the scheduling services with data services. Scheduling services can use monitoring information such as bandwidth, utilization patterns and packet size to choose the best approach for moving a given data set to suit the agreed quality of service. Conversely, the EMS may need to request that data services reserve capacity and/or capability to ensure that a job will be able to execute and achieve its (optimization) goals.
3.10 Reservation Services

A Reservation Service presents a common interface to all varieties of reservable resources on the Grid. Reservable resources could include (but are not limited to) computing resources such as CPUs and memory, graphics pipes for visualization, storage space, network bandwidth, special-purpose instruments (e.g., radio telescope), etc.
Currently, OGSA describes the reservation services as one of the EMS services. This needs to be generalised to cover all OGSA services. Data services are likely to need to reserve certain resources in order to operate. For example, a data transfer operation will require storage space and network bandwidth, while a data federation service may require compute power in order to perform join operations. Conversely, the EMS may need to request that data services reserve capacity and/or capability to ensure that a job will be able to execute and achieve its (optimization) goals. Similar considerations apply when the provision of a data service must be scheduled for a certain time.
3.11 Transactions
This architecture does not define a transaction mechanism per se. We expect this functionality to be provided by other developments in the Web Services community. Currently there are two families of specifications under development. On the one hand, there is WS‑Coordination [WS-Coordination] and two of its coordination types, WS‑AtomicTransaction [WS‑AtomicTransaction] and WS‑BusinessActivity [WS‑BusinessActivity]. On the other hand is the WS Composite Application Framework family (WS‑Context [WS‑Context], WS‑Coordination Framework [WS‑Coordination Framework] & WS‑Transaction Management [WS‑Transaction Management]).

Although we do not define a transaction mechanism, nor do we choose from existing ones, we do need to ensure two things. First, that the transaction mechanism satisfies the needs of data. Second, we must ensure that whatever transaction mechanism(s) we endorse properly flow through the architecture.

Both transaction systems noted in the first paragraph of this section meet the known needs of data. They have been developed by the relevant communities and have been endorsed by various database vendors which gives us assurance that they have adequate functionality for the purposes of data.

In both cases, the transaction specification depends upon carrying a transaction context along with every port call. It is the responsibility of the implementation of each port to honor the transaction context, or to ignore it. There is no need to explicitly change the signature of a port to accommodate transactions. Thus, for the purposes of the data architecture, we assert that transactions layer on top of the basic data architecture in a transparent fashion. We strongly suggest that the descriptive information for the implementation of a port include information on how it handles this transaction context.

Finally, it must be observed that it is up to the clients of a particular port to decide if the decision of a particular implementation of that port to honor transactions, or not, is sufficient for the needs of that client.
3.12 Sessions
Operations on data tend to be asynchronous. Applications also tend to issue sequences of operations against data sources. Both of these argue for the creation of the notion of a session to contain the context for the interactions between a client and a (set of) data services.

A session should allow a client to start an operation at a data service and have control immediately return to the client. At a later time, the client can use the session to ask the data service about the status of its previously issued request(s).

Sessions can also be used to optimize certain sequences of interaction between a client a (set of) data services. For example, security requires that every requestor of an operation on a data service be authenticated and that the particular operation being requested be authorized for that requestor. Doing this on every operation request could be quite expensive. A session provides one means for doing this authentication and authorization once and, in essence, caching the result for the duration of the interaction between the client and the service. Other examples might include quotas on uses of resources at the data service and reservation of resources at the data service.

These examples show that the notion of session will be vital to creating a well performing data architecture. At the moment we are not aware of any work going on in GGF or other standards bodies to define a session mechanism.
4 Security
Security is pervasive and must be addressed at all levels of the Grid system. Failure to properly support security at any level of the Grid system raises the prospect of compromising security in other parts of the Grid system. Therefore to ensure security of the data architecture, security must be ensured in all other parts of the Grid system.
There are environments that are inherently secure. In such environments it may not be necessary to impose security on communications, authenticate users, authenticate requestors of service or enforce access checks. In these environments, the remainder of this section may be ignored in whole or in part. However, there are many environments that are not inherently secure. The remainder of this section describes the mechanisms needed to achieve privacy and security goals in these environments. It should be noted that there may be environments that are partially secure. In such environments, some or all of the security mechanisms may not be needed to achieve specified security and privacy goals.
Security begins at the communication level of the system. The “OGSA Basic Security Profile – Secure Channel 1.0” [OGSA BSP—Secure] describes a security profile that ensures secure, authenticated communication between clients of web services and the web services. The OGSA WG is also preparing an alternate security profile that is applicable in environments where secure communication is not necessary. We would expect any OGSA profile for data services to require compliance with one of these profiles.
Authentication of users is a prerequisite for proper authorization to use a data facility. The secure channel profile (see above) ensures that services are properly authenticated. Data requires that the users
 of the data facility be properly authenticated. Thus use of a standard authentication mechanism such as the Grid Security Infrastructure, X.509 certificates or Kerberos is essential.
Once a user is authenticated, the user must be authorized to perform the operation being requested. This authorization must be done in at least two areas: is the user allowed to invoke the operation at all? And, is the user allowed to perform the indicated operation on the data denoted, directly or indirectly, by the parameters to the operation? The former is no different for data than for other aspects of the overall Grid architecture. Thus the security mechanisms defined for operation access
 apply to the data architecture with no additional requirements.

Authorization to perform an operation on a specific set of data is a requirement that is above and beyond the authorization requirements for operation invocation. For instance a user may be allowed to query some tables in a relational database but not all. A user may be able to open some files for reading, some for read/write and some not at all. Due to the generality of operations in the data architecture, the implementation of a particular operation must be able to use the authentication information supplied as part of the operation invocation and basic Grid system authorization mechanisms as input to a decision making process to determine if a particular operation on a particular set of data is permissible. Translation of the identity of an invoker of an operation to an identity known to the internals of a data service, the data resource, will be a key requirement in many data service implementations. The identity federation and translation mechanisms provided as part of the overall Grid security mechanisms should be designed so that they can be used to address this need.
Authorization must also take into account user roles. A particular user may be able to perform administration operations when acting as a system administrator but would not be able to access certain data. That exact same user, when acting as, say, a payroll specialist would be able to access payroll related data but would not be allowed to perform system administration functions. Thus the basic Grid system authentication and authorization mechanisms must support roles.
In some environments (e.g., government) there is a requirement for non-discretionary, multi-level, access controls (e.g., categorizing data as public, secret, and top-secret). Many data systems support this class of access control today. The authorization and authentication mechanisms of the Grid system must, at a minimum, be compatible with this class of access control. Direct support of non-discretionary access control may be required in some environments and would impose yet more requirements on the authentication and authorization mechanisms of the Grid system.
Authorization must also take into account sequences of access requests. It is possible that individual access requests are allowed but the result of a sequence of operations results in unauthorized access to information. The Data implementation must be able to prevent this release of unauthorized information not only from a security perspective but also from a privacy perspective.
Privacy is related to security. There is an increasing body of government laws and regulations around the world that mandate privacy. The data architecture in particular and the Grid system in general, must adhere to these privacy requirements. Some issues/examples that need to be addressed:

1. The set of access requests from a user may need to be private to that user. This impacts the logging of those queries by the data service.

2. Privacy of data needs to be assured when at rest (e.g., on disk or tape). This may require encryption of data when it is at rest.

3. Privacy of data in transit (e.g., the result of a data access request) must be ensured. This may require encryption in the communication channel.

4. A data service needs to advertise the degree of privacy that it supports.

If a data service needs to access a data resource, be it another data service or a non-service data resource, that access will be governed by security and privacy mechanisms. The data service will need to supply the required information so that the access can be authorized. The data service is responsible for determining what security credentials to use for the access. These may the credentials of the application calling the data service or the credentials may be an inherent part of the state of the data service.

When a data service returns data, it must take measures to ensure that the security and privacy characteristics of that data are noted. It will use a TBD mechanism to attach this information to the returned data. It is beyond the scope of the data service to ensure that this security information is honoured. It is the responsibility of the Grid security infrastructure to provide suitable mechanisms for ensuring that these security and privacy controls are honoured.

In some environments, the physical location of the entity receiving data is crucial (e.g., areas that are allowed to hold top secret data). This may restrict the ability of the data service to return data to an otherwise authorized requestor. We are not aware of any standards work that addresses this requirement.

Finally, the ability to log and audit actions is an inherent part of a secure system. Thus, not only must a data service enforce security and privacy concerns, it must also take measures to ensure that its actions are auditable (and this generally means that they are logged). A data service must also ensure that the requests of its clients are auditable. Again, this generally means that the requests are logged. The OGSA architecture will specify secure, tamper-proof logging services. These may in turn use data services to store and query the logs. Existing standards work in the logging and auditing areas may need to be extended.

These aspects of security impose requirements in every component of the data architecture. Ideally, every service in an actual realization of the data architecture would actively support and implement the standards that exist, or will exist, for these requirements. However, we recognize that some services may not provide this support. Recognizing this, we strongly suggest that all services:

· Advertise the degree to which they adhere to security requirements

· Accept security related information in their interfaces. We anticipate that much of such information will come as part of a standard header that is part of every service invocation.
· Pass security related information such as security credentials in all service requests from this service. This security information may be held within the service or may have been provided as part of an invocation of this service.
The above considerations identify a number of areas where we are not aware of work being done. To provide a secure data architecture, working groups need to define the following areas:
· The syntax and semantics of security policies needs to be defined. These policies need to be attached to data and also need to be the subject of negotiation between data services and their clients.
· A mechanism is needed to attach security policies to data in motion.

· A means to specify the geographical location of requester and resource is needed. Geographical location must be an optional part of security policies.

· A specification of the reason for access to data needs to be defined. This reason needs to be part of security policies.

· A means to specify authorisation of sequences of access requests is needed. As noted above, there are situations where individual access requests are valid but a sequence of requests results in unauthorized release of information.
5 Data Description
The OGSA Data Architecture manages heterogeneity in data types and in the resources and services that contain them. Effective discovery, interpretation and association of data in the OGSA environment rely on the availability of suitable descriptive information. This aspect of the architecture concerns the specifications available to describe data itself and the resources that store data.

[image: image4.emf]

 Data Service

Data Resource

 Data

Interface s

Status and Capabilities

Format

Data transfer

The data itself is managed by a data resource that is outside the scope of this architecture to describe. Access to the data, to the capabilities of the data resource and to the current status of the data resource and the data itself, is provided by a data service and the operations and properties that it supports. It is the data service that provides the architected interface to the data.

The capabilities of these entities are described by properties in the interfaces supported by the service. Thus there are three main classes of properties that describe, and may affect, the behaviour provided by a data service
:

· Properties pertaining to the capabilities of the service itself, e.g. supports concurrent access to the underlying data resource.

· Properties pertaining to the underlying data resource(s) that the data service provides access to, e.g. the name of the data resource, can it process SQL, etc.

· Properties pertaining to the relationship between the service and the underlying data resource
.

Some of these properties will be read only; others may be settable. Settable properties may affect the behaviour of the service interface and thus the way that a client interacts with that service. It is worth noting that the property values presented to a particular client may be affected by the security credentials presented by that client.
Some descriptive information is made available with the data itself, and accessed through messages of the data service. Some descriptive information may also be made available by third parties such as a registry service. The various descriptions may overlap or be distinct. They may be kept in synchrony or be managed separately, depending on the design of the particular system.

[image: image5.emf]

Data Service

Data Resource

 Data

 Registry

The following sections discuss the description of data formats and the data resources themselves. The data services that expose them to the Grid are described using the standard OGSA mechanisms (e.g. WSDL). The use of a registry is discussed in section 12.

5.1 Format Description

In its electronic form data is ultimately stored as a series of 1s and 0s. In order to make use of the data its encoding, structure, classification and organization must be understood. Here we use the term data format in place of these various terms. Only by understanding the relevant format can the data be usefully employed.

Data format descriptions must provide support for:

· Different encodings of data, e.g. binary, text, etc.

· Standard formats, (e.g. JPEG, TIFF, CSV) and application specific formats.

· Data which is stored using specific data models, e.g. relational, XML documents, files, etc. within a storage infrastructure such as a DBMS, XML database, a file system, etc.

There are almost as many data formats as there are data sets and often one format relies on another. For example, an XML document that is valid with respect to an XML schema must also necessarily be well formed with respect to the XML specification [XML] and will be presented in a specific character encoding, for example, UTF-8 [RFC3629]. We need URIs to name these data formats, following the guidelines discussed in Section 2.10.
The format of data may be well known or discovered at run time. Some data is formatted in accordance with well known and accepted standards, For example, a Portable Network Graphics (PNG) file is a binary file structured in accordance with the PNG specification [RFC2083]. All that is required to describe the format of the file is a simple code. This could take the form of a file name extension, a code in the header of the binary file itself or, for example, a mime type (image/png). Knowing that the file is a PNG file allows the appropriate software to be used in order to interpret the binary file in accordance with the correct PNG standard.

Alternatively, while a well formed XML file abides by the rules of the XML specification, it is only valid with respect to some schema. We might be able to tell an XML formatted file from other file formats by, for example, its file name extension or by its mime type (text/xml). This is not sufficient to understand the valid structure of the contents of the file. In the case of XML this means referring to the appropriate schema document. The name and location of the schema document may be carried explicitly by the XML file. Alternatively this information may be provided implicitly, for example, a WSDL file describes the schema of the XML messages that pass to and from service endpoints. Given a message name the appropriate schema can be implied by looking up the message name in the WSDL file.

In summary two pieces of information are required to describe the format of data. Firstly the well known or static format of the data can be stated. Given this basis any optional dynamic format information can be provided.

In some situations data services will provide this information as part of the resource description, for example, a data service exposing an XML collection implicitly manages XML formatted documents and may list the schemas to which contained XML documents conform.

Alternatively a data service that exposes a file system may simply provide byte IO access and rely on the service consumer to establish each file’s format based on factors such as the file name extensions or the contents of the file itself.

When data is created, updated, transferred between resources, or deleted, any corresponding data descriptions may also need to be updated, depending on the policy in force at that time. Scenarios that compose data services to implement a particular functionality must take account of such constraints.
5.2 Resource Description

The term data resource refers to the entity that holds the actual data. A data resource is, ultimately, the source and sink of data. Data resources can take many forms from file systems and computer memory to databases in database management systems and messaging systems. In this architecture data resources may be exposed for management or access reasons by one or more data services.

The description of a data resource is embodied in a series of properties, or annotations. These properties describe the data resource’s capability and status. The properties for a data resource will typically describe the format of the data in the data resource and provide specific information about the resource itself, for example

Resource name and type

Ownership and version information

Capabilities, e.g. max capacity, query languages supported, behaviour

Structure of data within the resource, e.g. DB Schema, XML Schema, DFDL

State, e.g. lifetime, used and free capacity

There is work required here to define a set of generic data service properties. Currently we are not aware of any standards body looking into this.
All of these properties will be exposed in the data architecture by a data service. Some descriptions held in resource properties will be read-only.

Some properties are managed by the service that manages the data as described previously. Other properties are managed separately by third parties. This is often the case when the properties can change dynamically or are generated by consumers who do not own and manage the original data service.

Examples of such annotations include;

Descriptive information, e.g. human readable text

Classification, e.g. Dublin Core [Dublin Core]

Relationships, e.g. RDF

Provenance
This separation of concerns is useful as, for example, regardless of how many classification annotations are made, as there may be many as the data is classified by different people in different ways, the size of the data will remain constant. Generally this architecture expects that these types of annotation are managed separately from the fixed properties of the data resource. This is not of course a hard and fast rule.

6 Data Transfer
	Factory Operation
	Description

	Create Transfer
	Initiates a transfer between a source and a sink. Returns an EPR to a Transfer service that is managing the transfer.

	Data Resource Operations
	Description

	Get Handle
	Returns a WS-Name for the transfer related operations provided by that service

	GetSupportedProtocols
	Returns the set of transfer protocols supported by this data resource.

	SetupTransfer
	Returns a protocol specific URI which can be used to initiate and mange the transfer.

	Transfer Service Operation
	Description

	PauseTransfer
	Temporarily stops an in-progress transfer.

	ResumeTransfer
	Resumes a paused transfer.

	StopTransfer
	Stops an in–progress transfer. The Trasnfer service is destroyed as part of this operation.

The transfer of data is a key attribute of the data architecture – without it, data simply can not be accessed! Data transfer is the movement of data from a source of data to a consumer of that data – ultimately, the movement of bytes of data from one computer to another over a network. Data transfer happens when a data access interface returns a result to the client or a third party, when data is staged to an execution server, when a replication server copies data to a replica and in general whenever multiple data services need to exchange data.

In the request-response pattern, as described in section 2.3, the data to be transferred will be contained in the messages exchanged between a client and a data service. This form of data transfer is described by the basic message exchange and operation invocation standards. Typically such exchanges will be used for small amounts of data.

In other cases, the amount of data to be transferred can be quite large. For example, a file containing the results, perhaps terabytes in size, of an experiment at a particle accelerator might need to be staged to a computational node where the raw data is to be analyzed. A database might be hundreds of gigabytes, or even terabytes, in size and need to be replicated to a second site to ensure availability. Whatever the reason, the amount of data may be very large. This class of transfer is discussed as part of the data architecture.

The data transfer mechanism must meet the following requirements:
1. Performance. Data transfers must operate at high efficiency. This may mean that the data transfer implementation must be able to take advantage of lower level, unarchitected, features of the data resources involved.

2. Protocol agnostic. The data transfer mechanism must be able to use various transfer protocols as appropriate. This is required to allow evolution of the transfer mechanism as new technologies arise.
3. Data transfers should, in general, be controlled by a data transfer service.

4. Data services, other than those managing the transfer itself, should not be aware of the transfer protocols being used. Failure to do this would result in every data service needing to understand all transfer protocols.

5. Data transfer should not be tied to the type of the data. Data might be in many forms (e.g., flat files, relational databases, image files) and the data transfer mechanism must handle all such files.

6. Data transfers must be manageable by the client requesting the transfer. The client should be able to monitor status, adjust performance and terminate the transfer early if needed.

7. Policies and agreements will govern the negotiated behaviour of a data transfer initiated by a client.

8. Data in transit will be secured by the data transfer mechanism in accordance with negotiated security goals.

9. A data transfer service may provide the ability to transform data as it moves from source to sink.

The most basic level of data transfer operation simply transfers bytes across the network without interpreting them in any way. Higher-level transfer services can perform transformations on the data in order to preserve the meaning as the data is transferred between services.
As part of the data architecture we require that all data services provide a set of interfaces that allow for the standardized transfer of data between data services and data resources. In order to understand these interfaces, we first describe the interactions that must occur between a data transfer service, a source of data and a sink (destination) for data.
The DMIS working group in the GGF is working on a specification for managing data transfer (without any transformations). The authors are collaborating with the DMIS working group to ensure that their specifications will fit into the OGSA Data Architecture.
6.1 Data Transfer Interfaces

·
·
·
·
Each potential source or sink for a data transfer operation must provide the following operations:

Get Handle () which returns a WS-Name for the transfer related operations provided by that service.

GetSupportedProtocols () returns the set of transfer protocols supported by this data resource. It takes the following argument:

· SinkOrSource: an enumerated indicating whether the data resource will be used as a source or sink for the data transfer operation

SetupTransfer () which takes the following arguments and returns a protocol specific URI which can be used to initiate and mange the transfer:

· Protocol: an indication of what protocol is to be used for the transfer operation

· SinkOrSource: an enumerated indicating whether the data resource will be used as a source or sink for the data transfer operation
In addition a data service may provide protocol specific operations to allow the CreateTransfer operation to determine protocol specific capabilities of the data resource.
There is a CreateTransfer factory operation that initiates a transfer between a source and sink and creates a transfer service to mange that transfer:

Create Transfer () which takes the following arguments and returns an EPR to a Transfer service that is managing the transfer:

· Source: a WS-Name for the source of the transfer
· Sink: a WS-name for the destination (sink) of the transfer
· QOS: An indication of the quality of service required of the transfer operation. This might indicate, for instance, the required time of delivery, desired transfer speed, maximum bandwidth to be consumed and the maximum cost to be incurred.
This operation will use the GetSupportedProtocols operation to determine an appropriate transfer protocol between the indicated sources. It will then use SetupTransfer to create the actual transfer and begin the actual movement of data.
A Transfer service provides the following operations to allow clients to manage a transfer operation.
PauseTransfer (): temporarily stops an in-progress transfer. A fault is raised if the transfer is not currently in progress.
ResumeTransfer (): resumes a paused transfer. A fault is raised if the transfer is not in a paused state.
StopTransfer (): stops an in–progress transfer. The Trasnfer service is destroyed as part of this operation.

In addition we suggest that a Transfer service provide operations to determine the current state of a transfer, how much progress has been made and how much data/time remains for the transfer.
In addition, we need URIs to name data transfer protocols, following the guidelines discussed in Section 2.10. Some such work has been done by the GGF’s ByteIO working group, producing URIs such as:

· http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/simple
· http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/dime
· http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/mtom
7 Data Access
Data access is the means by which a client of data service denotes the data that the client wishes to use. The access mechanism may then use the data transfer facility, if appropriate, to return the data to the client or other consumer. Grid data access needs to provide support for:

· Different encodings, structures and models of data, as described in Section 5.1.

· Data which uses standard formats, application specific formats, combinations of these, or even data for which the format is not known at the time the access operation is invoked.

· Data which varies in the size and number of data items.

· A mechanism for specifying which data is to become available through an access interface and also for adding data to an underlying data resource. This could be an iterator that returns a number of data items such as a number of bytes or a specific query language, such as Xpath, Xquery, or SQL.

· URIs to name these data query languages, following the guidelines discussed in Section 2.10.

· A way to specify how the results of a data access operation are to be represented (e.g., the format to be used) and handled (e.g., returned directly or held as a result set).

A Grid access mechanism may provide different levels of abstraction of the underlying data model and formats used. The level of abstraction offered by a service to the underlying data will vary according to the capabilities and performance required by a consumer. In general, Grid data access interfaces are not intended to supplant existing native forms of access but rather to operate in conjunction with and leverage them. It is important, if Grid access mechanisms are to be useful, that they should add little performance overhead to any native access mechanisms provided by a data resource.

The data architecture currently describes two specifications for data access: WS-DAI and ByteIO. These have been created by the DAIS and OGSA ByteIO working groups of the GGF. Other data access interfaces may be added as the need arises.

7.1 Security Considerations

In most instances the data resources that require access to be provided to will already employ a security model with various policies. It is important that any Grid access mechanisms interoperate with, and observe, any existing security models that are already provided by the underlying data resource. In practice this will usually mean that external Grid credentials have to be mapped to roles required to access the underlying data resource. Additional security may have to be layered at the service level if those provided by the underlying data resource are thought to be insufficient.

It may also be necessary to be able to bind a security policy with data that is derived from some underlying data resource but managed by the service. For instance, if the data access factory pattern is used data will be derived from some underlying data resource and treated as a data resource that is managed by a data service.

7.2 WS-DAI

The WS-DAI specification [WS-DAI] produced by the Database Access and Integration Services Working Group, DAIS-WG, proposes a generic, model independent way of providing access to structured data held in data resources. The WS-DAI specification provides a set of basic patterns that are then specialized for particular types of data resources, such as relational databases or XML databases, in related specification documents referred to as realizations. In general, the DAIS interfaces expose intrinsic capabilities already supported by the underlying data resource, for instance the ability to run SQL queries or Xpath expressions on the data held in the data resource. No attempt is made to hide the underlying data model – a client has to know whether the underlying data resource has the capabilities that it requires, e.g. can it run SQL queries. DAIS is not creating a new universal query language that will cater for all types of structured data resources.

The WS-DAI specification
 classifies its interfaces into three main types, which it calls data description, data access and data factory.
The data description types of interface define properties that describe the pertinent characteristics of a data service and the data resources that it manages.

The so-called data access types of interface implement the request-response pattern described in section 2.3. For instance, an SQL query sent to a data service exposing a relational data resource will return the resulting data from the query in the response message.

The data factory types of interface implement the factory pattern described in section 2.3. This creates a new, derived resource at the service. A different service, possibly supporting a set of different access interfaces from the service that originally produced the data, may act as the end point from which the data is accessible. The data may then be consumed by, or delivered to, a third party.

7.2.1 WS-DAI Defined Interfaces

Figure 3 provides a schematic representation of the interfaces defined in the WS-DAI specification. The WS-DAI specification also defines a generic set of message patterns for the data access interfaces that need to be implemented by all realizations.

 The optional CoreResourceList interface defines operations that allow information about the data resources known to a data service to be queried. The GetDataResourceList operation returns a list of abstract names and their corresponding addresses..The Resolve operation allows a data resource name to be mapped to an address.

[image: image6.png]wsdai:CoreDataficcess

wsdai:DataDescription

wsdai:CoreResourceList

+ GetDataResourceProperty)
+ DestroyDataResource()
+ GenericQuery)

+ DataRestourceAbstiaciName
+ ParentDataResource

+ DataResourceManagement
+ Cancurtentccess

+ Datasetiiap

+ Configurationhap

+ LanguageMap

+ DataResourceDescription
+Reatahle

+Writeahle

+ Transactioninitiation

+ Transactionlsolation

+ ChiligensitiveToParent

+ ParentgensitiveToChild

+ GelDataResourceList)
+ Resahve()

Figure 3: WS-DAI properties and operations. The CoreResourceList provide an additional set of operations that can be used to query the data resources that are available through a data service
The DataDescription interface defines the base properties that are inherited and extended by all realizations where required. The DataDescription properties shown in the diagram are described in Section 7.4.1.2.

Although no operations are present in the DataFactory interface the WS-DAI specification defines a set of message patterns are that must be used by any DAIS realizations that seeks to extend the core properties and operations for a particular type of data model: this is done by [WS-DAIR] for relational data resources and the [WS-DAIX] specification for XML data resources. This ensures that different realizations have a level of functional commonality.

A base set of operations are specified to allow generic access to a data resource without having to implement any realization:

· GetDataResourcePropertyDocument: returns the core property document values associated with a named data resource. For a number of reasons the DAIS standards provide this operation as an alternative to using the facilities of an OGSA Basic Profile.
· DestroyDataResource: destroys the relationship between a data service and a named data resource; future messages directed at that data resource produce a fault. Whether the data itself is destroyed depends on the nature of the particular resource.
· GenericQuery: a general message for passing queries that can be represented as a string to a data resource. There is an underlying assumption that data can be generated in this manner by the data resource. URIs that can be used to represent valid languages, associated with a given message type, are provided using one or more LanguageMap properties.

Other than for the optional CoreResourceList interface all properties and operations as well as any message patterns (where applicable) must be used by any DAIS realization. Figure 4 shows how the WS-DAIR specification extends the WS-DAI base set of interfaces and properties to allow various forms access to relational data. Further details are available from the WS-DAIR document [WS-DAIR].
[image: image7.png]wsdai:CoreDataficcess

+ GetDataResourceProperty)
+ DestroyDataResource()
+ GenericQuery)

wsdairSOLRowsetficcess

wsdail

OLResponsefccess

wsi

ataDescription

+ GetSQLPropertyDocument)
+ SQLExecuteq

+ GetSOLRowsetPropertyDocument)
+ GetTuples)

wsdai-DataFactory

wsdairSQLAccessFactory | | wsdair:

QL ResponseFactory

+ SQLExecuteFactory)

+ GetSOLRowsetF actory)

+ GelSQLResponseProperyDocument)
+ GetSQLResponseltem(

+ GetSQLRowset)

+ GetSQLUpdateCount)

+ GetSaLRetumvalueq

+ GetSOLOutpUParameter()

+ GetSQLCommunicationsAreag

+ DataRestourceAbstiaciName
+ ParentDataResource

+ DataResourceManagement
+ Cancurtentccess

+ Datasetiiap

+ Configurationhap

+ LanguageMap

+ DataResourceDescription
+Reatahle

+Writeahle

+ Transactioninitiation

+ Transactionlsolation

+ ChiligensitiveToParent

+ ParentgensitiveToChild

i

wsdair:SOLResponseDescription

wsdairzSQL RowsetDescription

wsdairzSQL AccessDescription

+ SQLResponssiiem
+ Number0faQLRowsets

+ Number0f3QL UpdateCounts

+ Numberof3QLReturmvalues

+ Number0f3QL OutputParameters

+ NumberofaaL Communicationsreas

+Rowschema
+ NumberoRows

+ CIMDescription

Figure 4: WS-DAIR extensions to WS-DAI

In a similar fashion Figure 5 illustrates how the WS-DAIX specification extends the WS-DAI interfaces and properties to cater for various XML data resources. In this case, as there is as yet no ubiquitous query language like SQL for relational data resources, various XML query languages are currently supported: Xpath, Xquery, Xupdate. These are either de facto standards or documents that are in the process of becoming standards. In addition, some collection utilities are provided to interact with collections in XML repositories. Further details are available from the WS-DAIX document [WS-DAIX].
[image: image8.png]+ GenericQuery)

il

+ GetDataResourceProperty)
+ DestroyDataResource()

wsdai

MLSequenceAiccess

wsdaix:XUpdateAccess

wsdaix:XQueryAccess

wsdai

XML Collectionccess

+ GebMLSequenceProperyDocument)
+ Getiiens()

+XupdateExecuteq

+XQuenyExecte)

+XPathExecute)

wsdai-DataFactory

—

wsdai

MLCollectionFactory

+XQuenyExecuteF actory)

+ CollectionSelectionF actory)
+ DocumentSelectionF actory)

+XPathQuenfF actory)

+ GetCollectionPropertyDocument)
+ AggDacument)

+ RemoveDocuments()

+ CreateSubcaliection(
+RemoveCollection)
+AddSchemag

+ RemaveSchema()

wsdai:DataDescription

+ DataRestourceAbstiaciName
+ ParentDataResource

+ DataResourceManagement
+ Cancurtentccess

+ Datasetiiap

+ Configurationhap

+ LanguageMap

+ DataResourceDescription
+Reatahle

+Writeahle

+ Transactioninitiation

+ Transactionlsolation

+ ChiligensitiveToParent

+ ParentgensitiveToChild

AL

wsdai

XMLSequenceDescription

wsdai

ML CollectionDescription

+ Numberoftems

+ TopLevelCollection
+ Numberoocuments

+ SupportsCollections

+ SupportsCollectionesting
+ SupportsSchemas

Figure 5: WS-DAIX extensions to WS-DAI

7.2.2 WS-DAI Properties

This section discusses those properties defined in the WS-DAI specification. Each WS-DAI resource will have the following properties. The first group provide general information about the resource..
· DataResourceAbstractName: a URI giving the name of the data resource.

· DataResourceDescription: human readable content describing the data resource and its contents.

· Readable: a Boolean indicating whether the data service is able to return data in response to query operations; otherwise has the value false.

· Writeable: a Boolean indicating whether the data resource accepts write requests to its data. The value taken of this property may result either as a constraint imposed by the credentials used to access the data service or as a basic restriction of the underlying data resource – e.g. the data may be coming from a DVD.

· DataResourceManagement: an enumeration that describes whether the data resource is managed by the data service or whether it is externally managed. The lifetime of the data within the resource is only be controlled through the service interface if the service manages the resource itself.
· ConcurrentAccess: a Boolean describing whether the interface can process more than one message at the same time.
The following properties describe various aspects of the formats and interfaces supported by the resource.
· DatasetMap: A mapping between the type of message going into a service and the URI of a dataset format that is to be used in the response. This allows a service to specify the types of return formats it supports. DAIS does not specify a set of canonical URIs for dataset formats.
· ConfigurationMap: allows a service that supports a factory interface to specify the types of interfaces that may be associated with a data resource created by a factory message. This property also provides a set of initial value for the properties for the new data resource.
· LanguageMap: a mapping between a message type and a URI representing an expression language. For example, a message pertaining to the GenericQuery operation which supports SQL queries may allow such queries as dais:SQL-1999 expressions or dais:SQL-2003 expressions to be specified informing the service of what it’s payload is (there is no requirement for the service to verify this information). DAIS does not specify a canonical set of URIs to be used for expression languages.
The following pair of properties deal with the resource’s support for atomic transactions. The behaviour described by these properties do not imply support for distributed transactions across multiple resources.
· TransactionInititation: describes under what circumstances a transaction is initiated in response to messages. Can take the values:

· NotSupported: does not support transactions.

· Automatic: an atomic transaction initiated for each message.

· Manual: transaction context is under control of the consumer.

· TransactionIsolation: describes how transactions behave with respect to other ongoing transactions.

The following properties concern data resources that are derived from another data resource.
· ParentDataResource: if this is a derived data resource then this property will have the abstract name of the parent resource from which the data was derived.

· ChildSensitiveToParent: describes the sensitivity of the derived data to changes made in the original data from which it was derived, i.e. this can indicate whether the derived data is a copy of the original or a reference to it (although more complex policies could also be at play).

· ParentSensitiveToChild: the converse to the previous property. It describes whether changes made in the derived data resource will be seen in the parent data resource.

These then constitute the base set of properties that are required for any DAIS realization. Realizations may extend these to cater for the data model that they are catering for.

7.3 ByteIO

The ByteIO specification [OGSA ByteIO] describes a set of interfaces that provide users with a concise, standard way of representing data resources as POSIX-like files. This provides a level of access transparency which is important in a distributed system. Clients can leverage these interfaces to provide users with a convenient way of interacting with data in a way which does not require them to adapt to a new model of data access or, in some cases, does not even require them to realise that their data resources are indeed on the Grid.
ByteIO is divided into two separate and distinct interfaces – RandomByteIO and StreamableByteIO – each addressing a unique set of use cases. The first of these supports the notion that a data resource is directly accessible and that clients can handle the maintenance of any session state (such as size and position). This is specifically designed to ease the burden of service authoring by pushing much of the management to the client libraries. The other interface is useful for clients that wish for more session-like semantics in their data interactions. In this latter case, resources implementing the interface do not represent the data source/sink directly so much as an open session between the client and the data. The operations of these interfaces are schematically shown in Figure 6.

[image: image9.png]RandomBytel0 | [streamableByteolo

+ read(+ seekRead()
wite) + seekiviite)
+ append(

+ truncAppend

Figure 6: UML for ByteIO Interface

The ability to retrieve various properties for ByteIO resources is an important part of the specification. The description of each interface includes a non-normative list of properties that it might have. This list is by no means exhaustive and implementers are free to add their own properties as they see fit. Neither should the names for properties in these descriptions be taken as absolute – they are merely textual identifiers attached to conceptual properties which must be specified by the appropriate normative rendering document.

7.3.1 RandomByteIO

The RandomByteIO interface allows clients to access bulk data sources in a session-less, random way, much like the back end of a local file system would work – in other words, clients ask to read or write blocks of data starting at given offsets. The operations on the RandomByteIO interface are defined as follows:

· read: The read message is sent to a RandomByteIO implementation when a client wishes to obtain blocks of data within the resource.

· write: The write message is sent to a RandomByteIO implementation when a client wishes to set data within the resource.
· append: The append message is sent to a RandomByteIO implementation when a client wishes to append a block of bulk data to the end of an RandomByteIO resource.

· truncAppend: The truncAppend message is sent to an RandomByteIO implementation when a client wishes to truncate an RandomByteIO resource’s bulk data to a given offset and optionally also append a block of bulk data to the end of the truncated RandomByteIO resource.
All four RandomByteIO operations must happen atomically on the service side of the call.
The non-normative list of RandomByteIO properties is as follows:
· Size: The total size (in bytes) of the RandomByteIO resource.

· Readable: A Boolean indicating whether or not the resource will allow clients to read information from this resource (using the read message exchange).

· Writeable: A boolean indicating whether or not the resource will allow the write messages (write, append, and truncAppend).

· TransferMechanisms: A list of URIs indicating the transfer mechanisms supported by the ByteIO resource in question.

· CreateTime: The timestamp for when this resource was created (relative to the hosting environment). Creation time is loosely defined as the time at which a client could first use any of the methods on a resource, and receive a valid, non-error response.

· ModificationTime: The timestamp for when this resource was last modified (relative to the hosting environment). Modification time is defined as any time after which any client having previously read a block of data (with the read method), or having accessed the Size or ReadOnly properties, could now expect to receive different results were it to call the read method or access the properties again.

· AccessTime: The timestamp for when this resource was last accessed (relative to the hosting environment). The last access time is defined as the last time when any of the methods described in the RandomByteIO specification were last called.

7.3.2 StreamableByteIO

The StreamableByteIO interface allows clients to access bulk data sources via a stateful session resource – in other words, clients will open (through means not normatively described by ByteIO) a session resource to a data source/sink and will then read and write to and from that stream as required. The operations on the StreamableByteIO interface are defined as follows:

· seekRead: The seekRead message is sent to an StreamableByteIO implementation when a client wishes to read a block of data from the resource.

· seekWrite: The seekWrite message is sent to an StreamableByteIO implementation when a client wishes to write a block of data to the resource.
These operations are combined with the notion of a seek operation to allow for a smaller number of messages to be sent in the common case for a seek (the common case being that almost all seek requests are immediately followed by read or write requests). Note that both singleton seeks (without reads or writes) and non-seek reads and writes are available with this interface by filling in appropriate values for the seek parameters and/or read/write parameters.

For a non-seekable stream, the offset for the operations is 0, and the seekOrigin parameter indicates the current position. Both operations must happen atomically on the service side of the call.
The non-normative list of StreamableByteIO properties is as follows:

· Size: If available, this describes the current total length of the stream.

· Position: This property describes the current position of the stream pointer.

· Readable: A boolean value indicating whether or not reads are allowed to this stream. This value is most likely dependent on both the underlying resource as well as possibly the flags used during creation (opening) of the stream.

· Writeable: A boolean value indicating whether or not writes are allowed to this stream. This value is most likely dependent on both the underlying resource as well as possibly the flags used during creation (opening) of the stream.

· Seekable: A boolean value indicating whether or not non-zero seek values are permitted for this stream.

· TransferMechanisms: A list of URIs indicating the transfer mechanisms supported by the ByteIO resource in question.

· EndOfStream: A boolean property which must be set to true when the end of the stream has been reached. Once this property becomes true, all attempts to read without first seeking back into the stream results in 0 bytes being returned to the caller. Note that for writeable streams, this property does not indicate that further writes would fail.

· DataResource: This property, if available, is a WS-Addressing EndpointReferenceType which indicates the data source/sink from/to which the stream is connected.
7.3.3 ByteIO Applications

It is expected that many implementations of either interface will wrap implementations of the other. For example, a StreamableByteIO resource could be a session between a client and a non-stream RandomByteIO resource. It is also expected that the ByteIO interfaces will mostly be used in conjunction with other interfaces to aid client access. For instance, a RandomByteIO interface may be made to allow access to a BLOB returned as the result of a database query through the WS-DAI interfaces. As another example, ByteIO can be used as the control channel for a data transfer implementation which uses a non-SOAP protocol as the data channel.

8 Storage Resource Management
	Space Management Operations
	Description

	ReserveSpace
	Facilitates negotiation of space reservation.

	GetSpace
	Returns space tokens for currently allocated spaces.

	ReleaseSpace
	Releases an occupied space.
Depending on local settings and policies, all files may need to be released in the specified space before the space can be released.

	Directory Management Operations
	Description

	ListFiles
	Returns a list of files and information about them.

	ReleaseFiles
	Releases the files in a storage space.
The files are not necessarily deleted immediately, but the space occupied by the released files is eligible for removal if space is needed.

	RemoveFiles
	Removes files from a storage space.

	CopyFiles
	Copies files, either within a storage space or between (local) spaces.

	MoveFiles
	Moves files either within a storage space or between (local) spaces.

	MakeDirectory
	Creates a directory in a local storage space.

	DeleteDirectory
	Deletes a directory in a local storage space.

Along with computing and networking resources, data storage resources are one of the basic building blocks of a distributed computing infrastructure. There are many kinds of storage resources to consider, ranging from a memory stick to a multi-petabyte tape silo. Different storage resources offer different levels of Quality of Service, and have different semantics for data access, both for reading and writing.

In a Grid environment the data and its availability is managed by the Grid middleware. The middleware interfaces to storage need to be rich enough to be able to take into account the possible semantic properties of the underlying storage hardware. At the same time its usage should be simple enough so that clients of the storage do not need to be experts in the handling of storage.
The storage resource provides space to store data. That space may be used for storing files or it may be used as a raw device that can be formatted and mounted or used as a block device. The basic ‘resource’ that storage has to offer is therefore storage space. The space is managed through the management interface provided by the storage service.
8.1 The Storage Resource and Service
Data is typically stored in storage hardware controlled by software. The combination of the storage hardware and this unarchitected software is the storage resource. To make the storage available in the data architecture, the storage resource is wrapped by a storage service. The storage service provides the architected interface to the storage.

[image: image10]
The interface to data storage needs to find the commonalities of data stores while allowing the usage of specific features that may be available only on a small subset of storage resources. The three basic functional interfaces that are coupled to storage are basic data access, transfer and storage management. A storage service may additionally provide a set of optional interfaces (see below).
Data storage services on the Grid provide storage space to clients, and storage services manage storage spaces for files. A storage space has the following basic attributes (see also Storage Space Properties below for details):

· Total size (in bytes say).

· Type. File storage, raw device or streaming device.

· Lifetime (in seconds say).

· Ownership and access control.

· Access properties (protocol, bandwidth, latency, etc).

· Data Retention (indicating what retention mechanism is applied to data in a given storage space).

The storage space is negotiated between a data storage service and clients using storage related policies and agreements. Each storage space created is referenced by an abstract name and an EPR.
Storage is tightly coupled to all other aspects of the Grid Data Design. Data access and data movement needs to take the capabilities of the storage resource into account. Storage space that is made available through storage services may be accessed through the mechanisms described in the Data Access chapter (see section 7). Or the data may be transferred between Storage services using the Data Transfer mechanisms also described in this document (see section 6). The management interface is described in this chapter.

It is important to note that the Storage Backend that is considered here is limited to file storage.
Database storage management per se is not covered by a Grid storage resource. Databases may use file based storage or they may have their own way of managing their storage. These are private to the implementation of the database system and are not standardized. However, file space or a raw storage device provided by a Grid Storage service may well be utilized by a database to store its data. The database system may also directly use storage provided by the storage resource.

Storage services are tightly coupled to Grid scheduling. Grid schedulers need to be able to take the data requirements of a job into account: the amount of space needed for output, data needed for input, data access properties, storage QoS, etc. In order for the scheduler to be able to do the co-scheduling, the storage services need to publish their properties, perhaps into the OGSA Discovery service, and make it available through the appropriate OGSA mechanisms.
And last but not least, like any other service, storage services need to be monitored, audited and its usage has to be accountable in a standard way. Thus storage services must fit into, and comply with, the overall OGSA architecture.

8.2 Storage Service Interfaces

·
·
·
·
·
·
·
There are 2 key sets of Storage Management interfaces:

Space Management Operations -
· ReserveSpace() - facilitates negotiation of space reservation.
· GetSpace() - returns space tokens for currently allocated spaces.
· ReleaseSpace() - releases an occupied space. Depending on local settings and policies, all files may need to be released in the specified space before the space can be released.
Directory Management Operations -
· ListFiles() – returns a list of files and information about them.
· ReleaseFiles() - releases the files in a storage space. The files are not necessarily deleted immediately, but the space occupied by the released files is eligible for removal if space is needed.
· RemoveFiles() – removes files from a storage space.
· CopyFiles() – copies files either within a storage space or between (local) spaces.
· MoveFiles() - moves files either within a storage space or between (local) spaces.
· MakeDirectory() - creates a directory in a local storage space.
· DeleteDirectory() - deletes a directory in a local storage space.
The interfaces a storage service may provide also include the basic OGSA interfaces for managing properties and negotiating agreements, and interfaces for delegation of identity. A storage service may therefore optionally provide the following management interfaces:

· Online data management interface, with agreement negotiation.
· Quota management interface, also with agreement negotiation.
· Permission (Authorization) management interface.
·
· User management interface.
· Request Administration Functions, such as abort, suspend and resume.
· Storage Namespace Management interface, for mapping Logical File Names to Storage URLs and Transfer URLs.
Each of these additional interfaces should be standardized by working groups in the OGF or some other standards body.
There may also be other specific interfaces that a storage service implements and supports, which should be discoverable through standard OGSA mechanisms.
Transfer interfaces, to initiate the transfer of data to/from the storage, are described in section 6 of this document.

Data Access interfaces are described in section 7 of this document.

8.3 Storage Service Properties

The properties of data storage services are listed below.

Supported Space Types. Data storage offers storage space to clients. Storage space may be requested in terms of size and type. At present three types of storage are defined:

File space. The storage space contains files. It is a valid file system with appropriate semantics. The possible types for the file system are TBD but certainly include POSIX file systems.
Raw device. The storage space is provided in raw format. It may be formatted, mounted, used as a block device, etc. The interfaces for doing this are TBD.
Streaming. The space supports only streaming mode access, reading and writing, to the data in the space. This interface needs to be defined although the ByteIO streaming interface may be appropriate.
But this set of space types is extensible and additional types could be added at a later time.
Lifetime Management. If the storage service does not support explicit lifetime management, all returned space allocations are allocations of temporary space, the default lifetime being defined by the resource properties of the storage service. If lifetime management is supported, each allocated space will have properties that define how its lifetime is managed.
Quota Support. If the storage service supports quota management agreements for space allocation then space may be refused if the requestor or the requestor’s organization is running out of quota.
Online Space Management Support. Indicates whether the storage service exposes an interface to manage those files that are to be kept online in the given space. This only applies to file space types as raw and streaming spaces are defined to be always online. See below for a definition of online and nearline storage in this context.

Security Support. Indicates whether spaces available from this storage service can be requested as ‘secure’ spaces or not. The security semantics are governed by the corresponding OGSA security profile. For file space types this may offer say basic UNIX style security support, or a fine-grained ACL control of the files in the given space and its corresponding namespace perhaps. For raw and streaming storage the available operations to be controlled are only reading and writing.

Before even starting to negotiate an agreement for space with the given data service, these properties may be checked by clients to see whether the data service is actually capable of offering storage with the necessary semantics.
8.4 Storage Space Properties

A particular Storage Service will divide its storage resources into a number of Storage Spaces. Each storage space has a set of properties, as listed below. These are subject to negotiation through the agreement mechanism.

Size. The size of the space in bytes.
Space Type. The actual type of the given space. This can be for example ‘file’, ‘raw’, or ‘stream’. The file space type can be considered as a block of (not necessarily contiguous) file system space into which files can be copied to or retrieved from. An additional parameter for file space type is the largest single file that may be put into the given space. The raw space type is a block of space that can be used as a raw device, formatted, mounted as a file system, etc. The stream space type offers continuous streaming in or out of it (usually WORM semantics).
Online. Indicating whether the space is always online (low latency) or whether it may also be nearline (i.e. on tape where the access may involve some considerable latency).
Lifetime. If the space supports lifetime management then this property indicates the time until which this space is assured to be available.

There are also many other possible properties such as
Maximum Access Bandwidth, Average Access Latency, Cost, etc. Plus, whether the space is being kept on a hierarchical storage system (HSM), i.e. there may be considerable latencies in access times if the data has to be staged in from tape say before access is possible. Some of these properties may be negotiated upon space creation.

Retention Type. Indicating what retention mechanism is applied to the data in this storage space. This can be permanent, volatile or durable. This property describes the behavior of the storage space when the lifetime of the data expires. Either lifetime has no effect (the data is permanent), it has the effect of the data being removed (volatile) or a notification is sent to the client so that it can take some action (durable). There is an additional timeout on the reaction time of the client after which the space will be freed. DELETE ??

8.5 Site and VO management

Like any other service, data storage services need to take into account that they are managed both by the site owning the service and by the Virtual Organizations that have access to it. Usually sites providing storage services have the following needs and constraints while running a service:

· Ease of provision The site that provides a storage resource to be accessible by the Grid via a storage service wants to be able to do so with minimal effort. It should be easy to start and stop a Grid storage service.

· VO Management. Sites own the storage resource and service. When making available the storage service to ‘the Grid’, sites need to be able to sign agreements with VOs, assign quotas to VOs, restrict Quality of Service to a VO, etc.

· Local accounting. The sites have to be able to charge their users for the resource usage or otherwise account for their resources, for which they usually need the information locally. It is normally sufficient to account on a per VO basis, although some sites have stricter policies.
· Transparent user management. A site may trust all users that are members of a given VO with which it has an agreement to provide storage. It is possible for sites to require that individual users be audited and accounted as well as individually banned from using the site resources. Some sites have policies that require everyone using their services to be personally registered (by getting an account and signing an agreement form), so this has to be possible as well if needed.

· Local access control. A site may have a local policy or even legal obligations to be able to track who is accessing its services and resources and they need local control to be able to control the access granted to specific users. This does not go against the previous necessity of transparent user management – the possibility to blacklist certain users and the ability to simply track access is usually enough.

· Quality of Service. The site is the defining authority for the quality of the data storage service. It is up to the site to publish the actual policies for all aspects of the storage service including data safety, data backup, availability and service capability.

The Virtual Organizations are responsible for the following aspects of the storage resource management and have the following constraints and needs:

· User Management. It is normally the responsibility of the VO to manage its users. It must be able to propagate user information to the storage service, so that users are properly authorized. The management of the actual user authorization information is the responsibility of the VO.

· User Prioritisation. Inside a VO some users have more rights than others. VOs need to be able to assign different priorities, quotas, abilities to each user, depending on the semantics of the actual storage service (these may be very different for a database storage service and a simple file store).

· Data Sharing. It is up to a VO and its users to define with whom and what other VOs the data stored in a given storage is allowed to be shared (if the data store is capable of securing the data at all).

8.6 Security Discussion

As stated above, storage spaces may support different security mechanisms. In order to enforce these, all storage interfaces to a given storage resource must be consistent in their security semantics.

The security semantics between the Data Access interfaces and the actual underlying storage space security has to be completely consistent. In some cases security can be handled by the data access facility. In other cases, it is necessary to involve the security mechanisms of the underlying storage system.
The storage services in a VO may provide many different security semantics for storage spaces (file type). The owner of a VO must carefully consider whether to allow this diversity to show to clients of the storage services of the VO or if a single set of security semantics should be chosen. The former provides a great deal of flexibility but it may lead to problems. For instance, to provide transparent data replication, different replicas of the same file must have the same access semantics on different sites. The scenario where the very same data is accessible to a given Grid user at one site but inaccessible at another one should be avoided. However, this is unavoidable if different security semantics are used for storage within the same VO. For example, if a VO uses storage spaces at one site with POSIX ACL semantics but has a storage space with no security at another site, then all data which are stored on the insecure storage are de facto insecure at all other sites as well.

8.7 Interaction of Storage and Transfer

Storage resources play an important role in optimizing the transfers to and from a given storage space. One important special case is when a space is linked to a Hierarchical Storage Manager where all data is staged in and out to, e.g., tape or other media. In this case, it matters greatly to performance in what order the files are being accessed or are being transferred to tape.

Therefore it makes sense to define a transfer management interface for storage spaces. It can be a very simple interface that simply reorders a transfer request based on the current known state of the underlying storage. The interface has the following methods for storage spaces that support files:
orderTransferFromStorage(File[]) : RankedFile[]

orderTransferToStorage(File[]) : RankedFile[]

The File structure contains a name
which identifies the file on storage. The array which is passed in is then ordered and ranked. The RankedFile structure contains the name of the file as well as a ranking value, i.e. with what priority the file should be transferred. Lower ranking values indicate higher priority to transfer the file. Ranking values range from 0 to 10. Several files in the return list may have of course the same ranking value. The same request may return a different result at different times.
9 Cache Services
A cache service maintains a local copy of remote data in order to improve performance. It provides the same data access interface to the client as the remote service, so most clients can access the data without worrying about cache behaviour
. When the client accesses the remote data, a copy may be kept in the local cache, possibly along with further prefetched data. Subsequent accesses return the data from the cache without accessing the remote data. The cache service is responsible for enforcing the security policies of the remote data.
Updates are propagated from the remote data service to the cache according to a cache coherence policy. This may be predetermined by the cache service, be negotiated when the cache is created or, if the service supports it, it may be selected using a management interface.
In general, the cache service will support a number of policies either through its management interface or agreement negotiation. These policies may allow control of cache placement, cache coherence strategy, how updates directed to the cache are handled and cache flushing.
There are two typical uses of a cache service. In the first, the cache service is created by the remote data service to form a composite data service. The cache is purely an internal building block of the composite service, there to improve its performance. This composite service controls the cache parameters (i.e. it manages the cache). Unless the management interface of the data service provides operations that affect the cache, the clients of the composite service have no direct access to the cache at all Thus when a client accesses the data service, the implementation of that service may choose to access the cache to improve performance. The cache may be configured so that cache misses are automatically directed by the cache to the actual data source

In the second use, the cache service is known to the client, which may be the hosting environment, the application, a workflow enactment engine, or some other type of service. In fact, a likely scenario is that the client created the cache. The cache parameters are set by the client and the remote service will typically have no knowledge of the cache service. The cache service is deployed to increase the performance of a particular workflow, host or application. In this case the client will direct access requests to the cache service. The cache service may be configured to automatically direct cache misses to the remote data service.
In either case, the existence of the cache may be registered with the appropriate registry or discovery service. In both cases, the cache is a service and thus has its own name.
A cache service is similar in practice to a replication service. The differences lie in intention and in the size of data element. A cache is purely about performance. A replication service is primarily for increasing the availability of the data or for creating snapshots for off-line processing (as in a data warehouse). In practice, replication services may be used to enhance performance, but this is not their primary aim. Also, replication services typically replicate well defined sets of data such as entire files or database tables.
 Cache services may maintain partial, dynamically changing, copies, storing just the part of the data that has been (recently) accessed by the client.

The cache service, including its operational and management interfaces and supported policies, needs to be defined by a TBD standards group.

A cache consumes storage to hold the data in the cache. If the data in the cache is either large, or will persist for along time, the creator of the cache may wish to control what storage is used by the cache service. For this reason, a cache service may provide as part of its creation operation parameters that specify the storage space(s) where the cache may store the cached data. A cache service may also provide a management interface to change these locations. A cache service may provide the ability to control the use of temporary storage for other reasons.

10 Data Replication
	Factory Operation
	Description

	CreateReplica
	Returns an EPR to a newly created replication service.

	Replica Service Operation
	Description

	ValidateReplica
	Returns an indication of whether or not the replica is identical with the primary data source.

	ModifyReplicatedContents
	Changes the data being replicated.

	SynchronizeReplica
	Forces (temporary) consistency of a replica.

Data items are replicated in Grids for at
least three reasons: fault tolerance, load balancing and to create a copy of data so that it can be processed off-line. There are a variety of different replication-related services that may be deployed in a Grid depending on the publication, discovery and coherency requirements for data.

The remainder of this section discusses how replication is modelled in the data architecture and presents requirements on replication. These requirements need to be accepted by a TBD standards working group as input into a replication standardization effort.

10.1 Replication Modelling

Replication has three logical components in a real world system. There is the primary data source. This is the actual data, managed by a data service, commonly known as “the truth”. Then there are one or more replicas. These are copies of some or all of the data in the primary data source. A replica will typically reflect the state of the primary data source at some point in the past. Finally there is a replication service that is responsible for moving data between the primary data source and the replicas to ensure that agreed upon degrees of consistency are maintained between the primary and replicas. The OGSA data architecture will model all three components. Each of these will be discussed later in this section.

Another model for replication is a peer-to-peer environment in which there are no primary data sources, but, rather, all replicas are considered equivalent. In this model, a replication service creates new replicas from existing data sources and maintains the required level of consistency among replicas.
A replica should maintain the security policies of the source data. That is, when the replication service creates a replica it must ensure that the proper security controls are in place (which is not to say that an administrator of the machine holding the replica could not make “inappropriate” changes to the security properties of the replica). We distinguish between managed replicas of data and copies. If an application creates a copy of the data that is not managed as a replica, then the application owns that data and can enforce whatever security it desires. Note that in a non-discretionary security environment, the system may impose restrictions on what access the copy may permit.

The discussion in the remainder of this section considers two possible scenarios for the replication service. In the first scenario, the replication service is only responsible for creating the replicas of data; it is independent of other functionality, such as replica discovery services. In the second scenario, the replication service hides other logic for replica creation, discovery, etc., and offers a more opaque interface to users that handles all replica creation and access.
10.2 Creating Replicas

Replicas are created via a factory operation, CreateReplica, which is defined as follows:

CreateReplica: which takes the following arguments and returns an EPR to a newly created replication service:

· Primary data source. In the case of peer to peer replication, this will be any one of the pre-existing replicas of the data.
· Target location(s) where the replica(s) will be created. This might be a data resource, a data service or a storage service. In all cases it denotes the place where the replica will be stored. Note that replication may need to perform a provisioning operation at the remote location in order to create the replica
· Specification of the data items to be replicated. This may be all or a subset of the data in the primary data source. Different types of sources may have different capabilities for defining subsets. The items to be replicated might include files, databases or subsets of those. Most, but not all, data sources will support replication as sources or targets. If a primary or target does not support replication, an error will be returned.

· Consistency requirements between the primary and the replica(s) (or, in the peer-to-peer case, consistency requirements among the replicas). These will be discussed in detail in a later section. There is no guarantee than a given consistency requirement can be met. If it can not, an error may be returned by the creation service.

· An indication of whether the replica read-only or can be modified.
· An indication of the lifetime of the replica. A replica might have an indefinite lifetime or it might be created with a known time when it will be destroyed.
· Should the replica be created synchronously or asynchronously?

· Replication catalogue(s), if any, where the newly created replica should be registered. This may default to a well known replica registry. It is possible to declare that the replica should not be registered in a catalogue. Note that the best way to name complete and partial replicas is an open issue.

The result of the CreateReplica operation is to create replicas of the specified data from the primary in the target location(s). For synchronous creation, the replica has been populated with all required data from the primary when the factory operation returns. For asynchronous creation, a handle to a replica creation service is returned to allow management of the creation process. Finally, if required, a replication process has been created to ensure that the specified consistency between the primary and replica(s) is maintained. The operation may fail, and errors will be returned, if the primary or target can not be accessed or if the desired consistency can not be maintained.

For asynchronous creation, the replica creation service will support operations to inquire about the state of an in-progress replication creation, to cancel the creation, or to modify the list of data items to be replicated or the consistency requirements. Once creation of the replica has been achieved, these modification operations will always return an error.
10.3 Validation of Registered Replicas

For many scientific applications, published
data is accessed in a read-only fashion. Since replicas never change, no updates to data contents need to be propagated in the Grid. However, data items registered as replicas may become corrupted over time, either because of data transfer errors during replica creation, faults in the storage media that cause corruption after the data are stored, or because data items are modified on a remote storage system by a user or administrator in ways unknown to the publishers of the data.

For other applications that do perform data updates, these updates must be propagated to replicas by the replication service. If errors occur during update propagation, replicas may become inconsistent with the primary data source. It is necessary to detect these inconsistencies and resolve them.

To detect replicas that become corrupted or inconsistent, it is useful to have a validation operation that can be used to check replicas and verify that they are truly replicas according to the definition of replication imposed by the Virtual Organization. For example, the VO may require that all registered replicas have the same MD5 checksum. If the validation service discovers that a registered replica is not valid, then it can repair the replica or destroy the replica, perhaps removing it from replica catalogues.

The ValidateReplica operation performs this check on the replica:

ValidateReplica () – takes no arguments and returns an indication of whether or not the replica is identical with the primary data source. If the replica is writable, this operation returns a fault.

ValidateReplica checks that the data in the replica is identical to that in the primary and returns an indication of the validity.
In some cases it might be desirable to have replicas checked on a regular and automatic basis. This can easily be done using ValdiateReplica as the heart of that repetitive process.
10.4 Other Operations on a Replication Service

A replication service is destroyed by the DestroyReplica operation:

DestroyReplica () which destroys the replica and the replication service managing that replica.

DestroyReplica will return all of the resources consumed by the replica to the appropriate resource pool.

The data to be replicated may need to be changed. This is done via the ModifyReplicatedContents operation:

ModifyReplicatedContents ():

· Data to be removed from the replica, if any

· Data to be added to the replica, if any

· An indication of the newly added data should be added synchronously or ansynchronously
After this operation returns successfully, the indicated data will be part of the replica. If synchronous addition has been requested then the indicated data has been initially loaded into the replica. If asynchronous addition has been specified then the replication service may be queried to determine when the added data is available. If the data to be added can not be added given the consistency requirements enforced by the replica, a fault will be raised. If the data is not accessible, a fault will be raised. If removal of the indicated data results in a replica with no data in it, a warning indication will be returned.

A replication service autonomically maintains an agreed upon degree of consistency among the replicas and the primary data source, if any. However, there may be times when an application needs to force (temporary) consistency of a replica. This is done via the SynchronizeReplica operation:
SynchronizeReplica () takes no arguments and returns no results. It raises no faults.

SynchronizeReplica forces synchronization of the data in the replica(s). If there is a primary data source, the replica is updated with the latest data from the primary before this operation returns. Note that by the time this operation the data in the replica may already be out of date. In the case of peer to peer replication, all of the replicas are updated to have the same data before this operation. In this case, the replication service may hold all access operations until the synchronization completes.

10.5

10.6 Discovering Replicas

Replica discovery services
are used to query for the existence of replicas in a Grid environment. These services might be integrated with other general data discovery services, but they may have additional attributes that are specific to replica management.

In Naming, we discussed three types of names for data items: human-oriented names, globally unique abstract names, and low-level addresses that specify where to access a data entity. Data discovery services maintain mappings among these different names to allow discovery and access of data replicas. The discovery service must be capable of registering and searching for replicas that represent subsets of original data sources. As already mentioned, the best way to name and discover these partial replicas is an open issue.

A variety of data discovery services have been implemented for Grids, without a clear standard yet emerging. A typical scenario for file-oriented data is that there are two levels of discovery catalogues: a metadata catalogue that maintains associations between human-oriented names and globally unique names, and a replica catalogue or replica location service that maintains associations between globally unique names and physical addresses for data items. Discovery services may support the use of standard WS-names, which can be resolved to EPRs for specific data items.

· Operations to create or update mappings between globally unique names and physical addresses for data items

· Query operations to discover the physical addresses of data items associated with a globally unique name

· Query operations to discover the globally unique name(s) associated with a physical address of a data item

· Operations to associate attributes with globally unique names or physical addresses of data items

· Query operations to discover globally unique names or physical addresses of data items with specified attributes

How do these operations related to OGSA-naming/RNS? Do the attributes stored in WS-Directory make it a metadata catalog?
10.7

10.8 Replica Consistency
Applications accessing replicas of data need to know the degree of consistency between the replica(s) and the primary (or among replicas in a peer-to-peer system). The key problem is updates to the data.

For some applications, updates to the data do not happen. In this case, the read only situation, consistency is trivial – it is identity. Once the replica has been created, there is no need for any activity to maintain consistency since the data does not change.

A second class of data allows the data to be updated. In this case, the degree to which the primary and target must be consistent needs to be specified. For this purpose, the replication service must propagate updates among replicas and ensure that replica contents are valid with respect to the agreed consistency requirement. For example, a consistency requirement might specify that all replicas should reflect all changes that have been applied to the primary data source before a specified point in time, for example, all changes within the last ten seconds.

The replication service is responsible for maintaining consistency between a primary data source and one or more replicas (or among replicas in a peer-to-peer system). One possible implementation of a replication service is to use data versioning. Updates to a data item are made at the primary data source and the data is assigned a new version number. The new version is propagated to all replica locations by the replication service. It is necessary to specify the allowable latency between the time changes are received by the primary and when the updated versions of the data are available at the replica sites. Note that in this case, old versions need not be deleted, but may, instead, be deprecated in favour of later versions.

Another alternative is to have a master-slave model in which a primary replica (or the primary data source) receives any updates to a data item and the replication service then updates the other replicas to reflect these changes. In a Grid environment, these updates are typically performed asynchronously, since synchronous updates using, for instance, a two-phase commit protocol are likely to be extremely heavy-weight and slow in the wide area network. In addition, some replicas may be unavailable for update at a given time, making a two-phase commit impossible. Asynchronous updates require the specification of consistency constraints. In particular, it must be possible to specify the allowable latency between changes being made to the primary and those same changes being seen at the replica.

If updates are allowed at the replica(s), consistency constraints must be specified to control the speed and manner with which these updates are propagated to the primary. Updates to the replica may be applied there and then propagated asynchronously to the primary. Updates may be applied to the primary first then to the replica before the update is acknowledged to the application. Or, the updates may be required to be applied simultaneously to the primary and the replica (e.g., via a two phase commit protocol). Finally, these options must be specified in an environment of a single primary and multiple replicas.

In a peer-to-peer environment, updates must be propagated to all the replicas. Maintaining consistency in these environments can be challenging, since conflicting updates can be made to multiple replicas simultaneously, and the consistency service must detect and resolve these conflicts. If the system acquiesces, then the consistency service can identify conflicts and possibly force replicas into a consistent state.

10.9 Managing Replicas

As described in Replication Modelling, replication consists of two or more end points and a replication service that is responsible for maintaining the replicas. The replication service is a manageable service that can be managed by the OGSA mechanism. It must be possible to inquire about the state of the replication: what is the current consistency requirement, what resources is the replication service consuming, what is the current degree of consistency, etc. It must also be possible to control the operation of the replication service. For instance, it must be possible to change the consistency constraint governing operation of the replication. It should be possible to control actions taken when the replication service detects errors, inconsistencies or failure to meet consistency constraints. These operations are examples. Others may be required by this document, while specific replication services may provide operations not defined here.
10.10 Replication Properties
The following are the properties of a replication service:

· Source – the primary source of data. This is null in a peer to peer replication.
· Target(s) – the replicas, the services/data resources that hold the replicated data
· Replicated data – a specification of the data being replicated
· Consistency – a specification of the degree of consistency to be maintained between the primary data source and the replicas. In the case of peer to peer replication this indicates the degree of consistency among the peer replicas.
· Read/write – an indication of whether the replicas are read only or not.
· Lifetime – the lifetime of the replica. A replica may have finite ifetime or indefinite lifetime
· Security Policy – the security policy enforced on access to the replica(s)
· Security Policy Propagation rules – an indication of how security policies should be propagated to new replicas and to the data accessed form a replica
· Replica catalogue used (optional) – the set of replica catalogues that the replication service has registered these replicas with. Note that there is no guarantee that the catalogue service still has this registered data nor that the replicas have not been registered in other catalogues.
11 Data Federation
	Factory Operation
	Description

	CreateFederation
	Returns an EPR to a newly created, empty, federation service.

	Federation Service Operations
	Description

	AddResourceToFederation
	Adds one or more new input sources to a federation.

	AddAccessMechanismToFederation
	Adds a new access mechanism to a federation.

	UpdateFederationProperties
	Changes the various properties of a federation.

	RemoveResourceFromFederation
	Removes an input resource from a federation.

	RemoveAccessMechanism
	Removes a specified access mechanism from a federation.

For the purposes of this document, we define federation to be the integration of multiple data services or resources so that they can be accessed as if they were a single data service.

A data federation is a data service that consists of:

· A collection of potentially distributed input data resources or data services. For instance a federation might federate a relational database, an XML database and a data service that provided a SQL interface.
· A set of filters on the data from those sources. For example, when including information from an employee database, it might be desired to exclude salary informati
· A set of transformations of that data. For example, if the federation were combining information from two geographical databases, one in France and the other in the United States, it would be necessary to do a English/Metric units conversion on one set of data or the other to ensure that distances were in the same units.
· A means to combine that data. For example, the federation might do a relational join across two of its data sources.
· A filter on the resulting data. There might be a need to exclude some of the data that results from combining the data. For example it might be necessary to exclude information about employees who live in Kansas and make more than $200,000 per year.
· A set of access mechanisms (e.g., SQL, POSIX I/O, Xquery) that can be used to access the data rovided by the federation. It is explicitly permitted for a federation to support multiple access mechanisms.

· A requested quality of service policy and a set of policies that govern the operation of the federation. A federation is responsible for managing QoS as negotiated with its clients. QoS might include specified response times, guarantees on availability, currency of data, resilience to disasters (e.g., recovery time objective, recovery point objective). Other policies might control aspects of operation such as resources consumed and security.
The implementation of the federation is responsible for providing the specified access mechanisms, with the specified QoS, to its clients while accessing, filtering and transforming data from the input sources as specified. Each of these is represented by a property of the federation.
Security and privacy are issues. A federation will access the constituent data services using normal Grid mechanisms. This means that the access will be governed by security policies. Thus the federation will need to supply security information (e.g., identity, security tokens, etc.). This may come from the security information provided by the application requesting service from the federation, it may come from the creator of the federation or it may come from an identity “owned” by the federation through some other means. Note that a federation may need to perform activities asynchronously with respect to invocations of its operations. This would seem to mean that the federation to have some identity or security information of its own.
11.1 Creation of Federations

Federations are initially created empty – that is with no input sources and it exports no data. Thus the creation operation for a federation is:

CreateFederation: which takes no arguments and returns an EPR to an empty federation. It is possible that specification of the storage spaces used by the federation may be specified as part of this operation.
The client then uses the AddResourceToFederation operation to create a federation that “exports” data from a collection of OGSA services. This is the case that we describe in the next section since it falls within the OGSA architecture. It is of course also possible to create a federation “out of band” and provide an OGSA interface onto that federation as a simple service, but that is not considered further.
Finally, there is the case of a federation that combines both OGSA services and “raw” data sources (that is, sources not wrapped with an OGSA service interface). Again, this is not described as a formal part of the architecture.

11.2 Adding Input Sources to a Federations

The set of sources of data that a federation uses should be changeable. An application should be able to dynamically add, or delete, an input source from a federation. Similarly, an applications should be able to add or remove an access mechanism from the set of access mechanisms supported by the federation.. Due to the generality of a federation, the operations are very generic:

The AddResourceToFederation operation is used to add one or more new input sources to a federation. Adding a new resource to a federation can require changes to many of the aspects of the federation.
AddResourceToFederation: takes the following arguments:
· The input sources to be added, specified by EPR(s)

· The filters to be applied to the data from the new input sources
· The transformations to be applied to the data from the new input sources.
· An update to the combination mechanisms to be used to combine all of the data now in the federation.
· An update to the QoS requirements enforced by the federation and the policies that govern the federation’s operation.
· An update to the access mechanisms provided by the federation
·
·
The federation will raise errors if any of the sources do not support an access mechanism needed by the federation, if any of the sources can not be used due to some restriction imposed by the federation, if any of the sources could not be found or if there is a problem with the requested way to incorporate the new sources into the federation.
When adding a new input source to a federation may require specifying some or all of the items mentioned in the definition of a federation above. In addition, this operation may take parameters that specify storage spaces where the federation may store either temporary data or data that represents the persistent state of the federation service.

The input sources are a list of sources of data. They may be OGSA services, as specified by
the OGSA naming mechanism. An input source may also be a logical denotation of the source that permits the federation flexibility in choosing from equivalent input sources. This operation may fail if an input source either does not exist or does not support an access mechanism required by the federation.

The output access mechanisms are a set of data access interfaces as defined in the data access section of this document.

The policy terms are a set of policies specified using a standard OGSA policy mechanism, which represent the desired behaviour of the federation. Some of these policy terms will be defined in the specification of a data federation service while others will be specific to the particular federation being modified (that is, they are defined by the service providing the federation factory operation). These terms will include quality of service (e.g., transaction rates, response times), currency of data (i.e., how stale may the data returned by, or used by, the federation may be), security, accounting and transactional characteristics. This list is intended to be suggestive rather than all inclusive.

A federation may need the services of a sophisticated policy engine to determine if the policy terms can be met. That same policy engine might be used dynamically during federation execution to monitor and/or enforce the policy terms.

The remaining parts of a federation represent a computational engine that takes data from the input sources and makes data available via its output access mechanisms. In between, an arbitrary computation may take place. This computation will retrieve data from the input sources and then transform that data into the data provided by the federation. This computation may involve work required to bridge the differences in schema among the input data sources. It may be necessary to filter the input data so that not all of it used by the federation. Transformation of the input data (e.g., currency conversion) may be required prior to it being used to create the federated data. An arbitrary computation may be performed on the data that results from this schema transformation, filtering and transformation in order to produce the data provided by the federation. Finally, filtering of the data that results from this computation may be needed before exporting the data. These computations might be done statically at the time the federation is created or they may occur dynamically when the federated data is accessed. The consistency policies that govern operation of the federation will determine which is appropriate.

It is tempting to try and specify that transformation in a declarative manner. This, however, does not appear to be technically possible, in the general case of a federation, due to the complexity of the potential transformations that arise from the diversity of potential input sources, the large variety of schemas possible in the input sources, the difficulty of defining how data provided by these schemas can be combined (either declaratively or by relying on an automated mechanism to do the schema integration, which is an unsolved research problem)
 and the diversity of potential access mechanisms that could be supported. In the specific case where the input sources are suitably constrained (e.g., all relational databases) and the access mechanism is also constrained (say, also, to be relational) then one can imagine building a factory operation that takes a declarative specification of the transformation from input to output. Such a specification is, however, beyond the scope of this document. There will certainly be specific (classes of) federation for which a declarative specification is possible and desirable.

It is also tempting to have this operation take an executable piece of code and embed that in a generic federation engine. Such an embedding would require the specification of the programming interface between the engine and the embedded transformation engine. The diversity of potential input and output sources makes it difficult to define suitable interfaces to make the federation work correctly and with suitable performance. Thus, we defer this to future work.

If it is desired to add a primitive source to a federation, that must be done in a federation specific manner and is not specified here. However, we anticipate that such operations will have much the same form as that specified here.
11.3 Other Changes to a Federation
Other changes are possible to a federation. They are described in this section.

It is possible to add a new access mechanism to a federation. This is done via the AddAccessMechanismToFederation operation:

AddAccessMechanismToFederation: adds a new access mechanism to a federation. This may imply other needed changes to the federation so that the following arguments are required:

· The new access mechanism to be supported.

· Updates to the combination mechanisms used by the federation
· Updates to the QoS requirements enforced by the federation.

· Updatesto the policies that govern the operation of the federation
Upon successful completion of this operation, the federation will now support the new access mechanism. Thus, in some sense, the type of the federation service has changed in that it now supports additional interfaces. A fault will be raised if the specified access mechanism can not be supported or if the updates to the federation properties can not be supported. If the operation fails, no changes are made to the access mechanisms provided by the federation

The various properties of a federation need to be updated at times. Thus there is an UpdateFederationProperties operation to change the items in a federation:

UpdateFederationProperties ()
· Update to the filters used by the federation

· Update to the combination mechanisms used by the federation\

· Update to the set of access mechanisms exported by the federation

· Update to the QoS supported by the federation

· Update to the policies that govern the operation of the federation
Note that in some cases not all of these will need to be updated so the various arguments are all optional. UpdateFederationProperties will raise a fault if the specified arguments are either invalid or are not supported by the federation.
Updates to policies and QoS have some special considerations. There are emerging standards for policy
 that specify how a service and its clients can determine, via an agreement interaction, the policies that govern the service’s operation. For the purposes of this version of the data architecture, we only require that the federation either agree or disagree with a requested change to the QoS and policies that govern its operation. The federation is not required to participate in any agreement negotiation. As agreements and agreement negotiation are standardized, we would expect this architecture to be updated to reflect the standardized agreement mechanisms and that federations would e
Removing a source from an existing federation is done via the RemoveResource operation:

RemoveResourceFromFederation () removes an input resource from a federation. It takes the following arguments:

· The input resource to be removed

· Update to the filters used by the federation

· Update to the combination mechanisms used by the federation\

· Update to the set of access mechanisms exported by the federation

· Update to the QoS supported by the federation

· Update to the policies that govern the operation of the federation
It will raise a fault if the sources are not part of the federation, if removal of the source would result in a federation that can not be supported by the federation or if the updated federation properties can not be supported by the federation.
Removal of a primitive source from a federation must be done in a federation specific manner and is not specified here. However, we anticipate that such operations will have much the same form as that specified here

·
·

Removing a set of access mechanism from an existing federation is done via the RemoveAccessMechanism operation:

RemoveAccessMechanism (): removes a specified access mechanism from a federation. This may require changes to some of the federation properties. This takes the following arguments:

· The access mechanism to be removed

· Update to the filters used by the federation

· Update to the combination mechanisms used by the federation\

· Update to the set of access mechanisms exported by the federation

· Update to the QoS supported by the federation

· Update to the policies that govern the operation of the federation
A fault will be raised if the specified changes to the federation’s properties can not be supported given the set of access mechanisms that would result after removal of the specified access mechanism. Upon successful completion of this operation, the federation will no longer support access via the indicated access mechanisms. Applications that use this federation via one of the removed access mechanisms will now fail with a suitable error raised from the service infrastructure. If a fault is raised, no changes are made to the federation.
11.4 Access to the Federation’s Data

The data provided by the federation is available to applications through the set of access mechanisms supported by the federation. These access mechanisms are specified elsewhere in this document.
A federation may choose to support partial results. That is if satisfying an access request requires data from one or more input resources that are not currently available, the federation may choose, if the policies governing federation operation permit it, to return a partial result. In this case the federation must also return an indication to the requestor that partial results have been returned as well as an indication of which resources were not available. The requestor should have the ability to request, either as part of the access operation or by changing the federation’s governing policies, that no partial results be returned. Note that supporting partial answers may require extensions to standardized access mechanisms.
To support optimized data access, including the important case of access via query, we expect that the basic access mechanisms provided by the input sources will be extended with additional operations to facilitate this optimization. For instance, a federation that takes relational sources as input might desire those sources to provide operations to describe available indices, sizes of tables and estimations of the size of result sets. A federation that supports transactional semantics might require facilities from its input sources that support distributed, two phase commit.

11.4.1

11.5 Access to the State of the Federation

Clients may need to have access to parts of the (internal) state of a federation. This section enumerates those properties that are available. The actual mechanism for accessing this state is specified in an OGSA profile.
The properties of the federation, as described earlier, are accessible via standard OGSA mechanisms
·
·

A federation may choose to create replicas of data and cache data from one or more of its input sources. A federation may choose to make the existence of these known to its clients either as state provided by the federation or by registering a replica or cache with an appropriate registry.
11.6 Security Considerations

A federation must take suitable measures to ensure the security and privacy of the data that it provides. Being a Grid service, the implementation of a federation has its operation limited by security and privacy considerations. The generality and complexity of a federated environment, and the many potential federation patterns, makes it impossible to explicitly discuss all possible cases. Thus this section will outline general principles that a federation must adhere to.

A federation will access the constituent data services using either normal Grid mechanisms or via some native, non-Grid, access mechanism. In either case this means that the access will be governed by security policies. Thus the federation will need to supply security information (e.g., identity, security credentials, etc.) to the data source that it is accessing. This security information may come from one of several sources:

· The security information may be provided by the application requesting service from the federation.
· The identity of the requesting application might be used directly.
· The federation might have its own identity and use that to access the data sources. This identity might have been supplied when the federation was created or it may have been provided as a (changeable) property of the federation.

In any of these cases, this security information will govern what data the federation can access.

Note that a federation will frequently perform activities asynchronously with invocations of its operations. This would seem to imply that the federation must have some inherent identity or security information in order to perform those operations when they involve access to either other Grid services or to its input data sources..
The data federation is responsible for attaching security and privacy controls to the data that it returns, using the normal Grid security and privacy mechanisms discussed in section 4. The nature of these controls (e.g., the access control lists for the data) may come from one or more of multiple sources. The federation may have one or more properties that, in union, define the access allowed to the data coming out of the federation. The federation may attach a security policy to the exported data that is a function of the access controls on the data extracted from its data sources
. Clearly the data federation can not, in and of itself, enforce these attached security controls. This is the responsibility of the security mechanisms being used.
11.7 Standardization Considerations
The description above is of great generality. At this time it appears as if the work required to standardize federations has considerable research content. Thus we recommend formation of a GGF research group to explore federation. This working group would be responsible for identifying those parts of federation that are ready for standardization as well as attempting to resolve the remaining issue. This research group should also attempt to identify specializations of federations that are of high value to the community and which are well enough understand to be amenable to standardization. For instance, one quite likely specialized federation is one that takes multiple relational sources as input and supports relational access to the federation. Such a specialization can build upon the work of research projects such as OGSA-DAI and existing products such as IBM’s WebSphere Information Integrator.

12 Metadata Catalogue & Registries
A meta data catalogue or registry is any third party service that provides mechanisms for publishing annotations relating to services, their capabilities and the resources they represent.

[image: image11.emf]

Consumer Provider

Registry (3 rd party)

Metadata 1

Metadata 2

3 rd Party

 Satisfying the requirements of such a service a registry provides interfaces for:
· managing the MR and its own metadata

· publication and removal of metadata

· discovering services and resources and obtaining metadata relating to services and resources

· annotation of metadata

· subscribing for notification of changes in metadata

The registry may aid service discovery by providing for the standard categorization of the meta data that it holds. (ref UDDI).
12.1 Operations

The following operations for annotation publication should be provided.

· Publish

· It should be possible to publish metadata securely (you are the owner of the metadata and the only person that can modify it) or anonymously (the metadata has no owner)
· Update

· Allows modification of the metadata. The owner of the metadata may update that metadata..

· Classify

· A classification needs to be defined to allow categorization of the data contained in the catalogue.

· Augment

· Add to the meta data already stored for a service by someone else.
· Delete

· Allows the owner of a piece of metadata in the catalogue server to delete that metadata from the catalogue.

Operations should be provided that allow consumers to search the stored annotations

· Find

· Find services given a query against the registered metadata. The query language is TBD but Xquery should be considered.
· Subscribe

· Allows a client to subscribe to any changes in the metadata available for a service. This operation needs to be reconciled in a TBD fashion with notification work such as WS-Notification and the Info-D working group of GGF.
The registry may also expose operations that allow it to be managed

12.2 Publication

Annotations may be published by the services themselves, may be indexed by an automatic discovery mechanism (say a gridbot) or may be replicated from other registries.

[image: image12.emf]

Metadata Service

Data Service

Gridbot

Client/Service

Client

12.3 Query

Information provided by a registry is exposed in XML format and is queried using Xpath or Xquery statements. The result of such a query will generally be references to services that satisfy the query.
If the result of service or resource discovery through the registry is an address it can be used directly to locate the service providing access to the data resource. When the result comprises a service or resource name further work must be undertaken to retrieve the address associated with the returned name, possibly using another registry.

12.4 Currency

When annotations are cached in a registry the information should be refreshed using selectable strategies. For example,
· Don’t cache, i.e. always read directly from the service

· Cache once, i.e. I know the data is static and will not change

· Cache timeout, i.e. it is not vital that the data is absolutely up to date so refresh every n seconds

· Update on event, i.e. update the cache whenever the data changes.

· Update on age, i.e. give the information an age and provide policy to drive updates to aging data.

The precise set of policies that govern metadata catalogue operation, including these currency properties, needs to be defined. The lifetime management provided by the OGSA WSRF Basic Profile (or equivalent) should be used to manage the currency of information in a registry.
In addition there will also be annotations about the registry itself – e.g. the age of a particular entry, capabilities, etc.

12.5 Security and Hierarchies

Registries may employ a variety of trust models. In order for a service to publish annotations with a registry it may have to pre-register with the registry. This reassures a client that the annotation comes from a trusted source. The content that may be queried may depend on the credentials used by a client. The trust model used within a Virtual Organisation may be implicit, i.e. members of that VO are automatically trusted. However as annotations may be replicated from one registry to another as in the figure below, other VO domains may be less trusted and the amount of information replicated may be a subset of that available at the original registry. A registry client may have to drill down through the services in order to obtain the full information

Registries that span VO boundaries are out of scope for this version of this document.

[image: image13.emf]

Virtual Organization

Virtual Organization

R

R

R

DS

DS

.
13 Appendix: Specifications referred to in this document
The role of this document is to explain how relevant specifications can fit together to create a coherent Grid architecture for data based on web services. This section briefly lists the relevant specifications. Each of these specifications describes a different part of this architecture. Some have much wider applicability; for example the descriptions of data formats are used in a wide variety of systems.

Some of these specifications already exist, some are in development, and others will need to be created to complete the architecture.

13.1 Data Service Specifications

	Specification
	Description
	Defining body

	WS‑DAI
	Virtualisation of queries over structured data
	GGF DAIS WG

	SRM
	Management of mass storage resources
	GGF GSM WG

	ByteIO
	POSIX-like operations for Grids.
	GGF OGSA ByteIO WG

	
	
	

	
	
	

13.2 Data Description Specifications

	Specification
	Description
	Defining body

	CGS
	CIM-based Grid Schema
	GGF CGS WG

	DFDL
	Describing binary data
	GGF DFDL WG

	XSD
	XML schema description
	W3C

	
	
	

13.3 Protocol Specifications

	Specification
	Description
	Defining body

	GridFTP
	
	GGF GridFTP WG

	MTOM
	
	

	SwA
	SOAP with attachments
	

	
	
	

13.4 Infrastructure Specifications

	Specification
	Description
	Defining body

	WSRF
	Resource addressing, Lifetime management.
	OASIS WSRF TC

	WSN
	Notification
	OASIS WSN TC

	RNS
	Human-meaningful names
	GGF GFS WG

	WS‑Names
	Abstract names
	GGF OGSA WG

13.5 API Specifications
	Specification
	Description
	Defining body

	POSIX
	Byte stream IO
	IEEE

	NFS
	Network file access
	

	CIFS
	
	

	JDBC
	Java database access
	

	ODBC
	Database access
	

14 Glossary
This section defines the terms used in this document and gives the origin for these definitions. Although we have tried to use terms in their generally accepted manner, this glossary is the definitive definition of the terms used in this document, along with the OGSA glossary [ref].
	Term
	Definition
	Origin

	API
	Application Programming Interface – a set of language-specific types, methods and other features that allow an application to access or control a resource.
	New (and not very good).

	Capability
	In OGSA, a set of one or more services that together provide a function that is useful in a Grid context.

The OGSA Data Services described in this document are an example of an OGSA capability.
	OGSA Glossary v1.0 (definition)
New (example)

	Coherency
	
	

	Component
	A modular part of a system that encapsulates its contents and whose manifestation is replaceable within its environment. A component defines its behaviour in terms of provided and required interfaces.
	OGSA Glossary v1.0

	Consumer
	
	

	Data Access
	
	

	Data Caching
	
	

	Data Description
	
	

	Data Federation
	The logical integration of multiple data services or data resources so that they can be accessed as if they were a single service.
	OGSA Glossary v1.5

	Data Format
	
	

	Data Replication
	
	

	Data Resource
	An entity that can act as a source or sink of data together with its associated framework.
	OGSA Glossary v1.0

	Data Service
	A web service that supports one or more of the interfaces defined in the OGSA data architecture.
	

	Data Set
	An encoding of data in a syntax suitable for externalisation outside of a data service, for example communication transfer to/from a data service.
Examples include a WebRowSet encoding of an SQL query result set, a JPEG encoded byte array, and a ZIP encoded byte array of a set of files.
	OGSA Data Services (Modified as shown)

	Data Transfer
	
	

	Data Virtualization
	A data resource that is virtualized by one or more data-oriented interfaces.
	New

	Entity
	Any nameable thing. For example, in OGSA an entity might be a resource or a service.
	OGSA Glossary v1.0

	Interface
	In a service-oriented architecture, a specification of the operations that a service offers its clients.

In WSDL 2.0 an interface component describes sequences of messages that a service sends and/or receives.
	OGSA Glossary v1.0

	Location management
	Mechanisms for staging, caching and replicating data resources.
	New

	Management
	The administrative process of deploying, configuring, monitoring, metering, tuning, and/or troubleshooting resources.
	OGSA Glossary v1.0

	Metadata
	Data that describes OGSA services or other data. Metadata may include references to schemas, provenance, and information quality.
	OGSA Glossary v1.0 (modified as shown)

	Protocol
	
	

	Quality of service (QoS)
	A measure of the level of service attained, such as security, network bandwidth, average response time or service availability.
	OGSA Glossary v1.0

	Replica Catalogue
	
	

	Resource

	Resources are entities that can be managed. However not all entities are resources.
Resources can be programmatically managed through a manageability interface, or through some other mechanism such as a policy file.
The term resource encompasses not only entities that are pooled (e.g. hosts, software licenses, IP addresses) or that provide a given capacity (e.g. disks, networks, memory), but also processes, print jobs and virtual organizations, which do not expose interfaces by themselves but may still be managed by some other means.
	OGSA Glossary v1.0

	Scenario
	
	

	Service
	A software component participating in a service-oriented architecture that provides functionality and/or participates in realizing one or more capabilities.
	OGSA Glossary v1.0

	Service-oriented architecture (SOA)
	This term is increasingly used to refer to an architectural style of building reliable distributed systems that deliver functionality as services, with the additional emphasis on loose coupling between interacting services.
	OGSA Glossary v1.0

	Sink
	
	

	Source
	
	

	Storage Management
	
	

	Virtualize
	Make a common set of abstract interfaces available for a set of similar resources, thereby hiding differences in their properties and operations, and allowing them to be viewed and/or manipulated in a common way.
	OGSA Glossary v1.0

	
	
	

	
	
	

15 References

[DAIS]
Atkinson, M,. Dialani, D., Guy, L., Narang, I., Paton, N., Pearson, D., Storey, T., Watson, P., “Grid Database Access and Integration: Requirements and Functionalities”, Global Grid Forum, Lemont, Illinois, U.S.A., GFD-I.13, March 2003. http://www.ggf.org/documents/final.htm

[Dublin Core]

[MOWS]

I. Sedukhin (Ed). Web Services Distributed Management: Management of Web Services (WSDM-MOWS) 1.0. OASIS-Standard, 9 March 2005.

[MUWS]

Vambenepe, W. (Ed). Management: Management Using Web Services (MUWS 1.0). Part 1. OASIS Standard, 9 March 2005.

Vambenepe, W. (Ed). Management: Management Using Web Services (MUWS 1.0). Part 2. OASIS Standard, 9 March 2005.
[OGSA]
Foster I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn, B., Maciel, F., Siebenlist, F., Subramaniam, R., Treadwell, J., Von Reich, J., The Open Grid Services Architecture, Version 1.5. Global Grid Forum OGSA-WG. GFD-I.0??, March 2006. http://www.ggf.org/documents/GWD-I-E/GFD-I.0??.pdf.
[OGSA BSP—Core]

Mori, T., and Siebenlist, F., OGSA Basic Security Profile 1.0— Core. Global Grid Forum OGSA-WG, Draft 5, January 2006. https://forge.gridforum.org/projects/ogsa-wg/document/draft-ggf-ogsa-basic-security-profile-secure-channel/en/6

[OGSA BSP—Secure]

 Mori, T., and Siebenlist, F., OGSA Basic Security Profile 1.0— Secure Channel. Global Grid Forum OGSA-WG, Draft 17, January 2006. https://forge.gridforum.org/projects/ogsa-wg/document/draft-ggf-ogsa-basic-security-profile-secure-channel/en/17

[OGSA ByteIO]
Morgan, M, Chue Hong, N, ByteIO Specification, Version 1.0. Global Grid Forum OGSA-ByteIO-WG., in editor process, October 2005.

 [OGSA Glossary]
Treadwell, J. (ed.) Open Grid Services Architecture Glossary of Terms, Version 1.5. Global Grid Forum OGSA-WG. GFD-I.0??, March 2006. http://www.ggf.org/documents/GWD-I-E/GFD-I.0??.pdf.
[OGSA Profile Definition]

Maguire, T., Snelling, D. OGSA Profile Definition. Global Grid Forum, Lemont, Illinois, U.S.A., GFD-I.059, January 2006. http://www.ggf.org/documents/final.htm
 [OGSA Roadmap]
Kishimoto, H., and Treadwell, J. (eds.) Defining the Grid: A Roadmap for OGSA Standards. Global Grid Forum, Lemont, Illinois, USA, GFD-I.053, September 2005. http://www.ggf.org/documents/final.htm

[OGSA WSRF]
Foster, I., Maguire, T. and Snelling, D.: OGSA WSRF Basic Profile 1.0. GGF OGSA Working Group (OGSA-WG), 2005, forthcoming in the GGF document series, 2005.

[RFC2083]
T. Boutell, et. al. PNG (Portable Network Graphics) Specification. Version 1.0. IETF. http://www.ietf.org/rfc/rfc2083.txt.

[RFC3629]
F. Yergeau. UTF-8, a transformation format of ISO 10646. IETF. http://www.ietf.org/rfc/rfc3629.txt.

[Scenarios]

Davey, S ….. OGSA Data Scenarios. Global Grid Forum OGSA Data WG. GFD-I.0??, ?? 2006. http://www.ggf.org/documents/GWD-I-E/GFD-I.0??.pdf.

[WS-Addressing-core]
M. Gudging, M. Hadley. Web Services Addressing 1.0 – Core. W3C Candidate Recommendation 17 August 2005. http://www.w3.org/TR/ws-addr-core.

[WS-Agreement]
Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J., Rofrano, J., Tuecke, S. and Xu, M. Web Services Agreement Specification (WS-Agreement). Global Grid Forum GRAAP-WG, GWD-R, September 2005. http://www.ggf.org/Public_Comment_Docs/Documents/Oct-2005/WS-AgreementSpecificationDraft050920.pdf
[WS‑AtomicTransaction]
Cabrera, L.F., Copeland, G., Feingold, M.,Freund, R.W., Johnson, J., Joyce, S., Kaler, C., Klein, J., Langworthy, D., Little, M., Nadalin, A., Newcomer, E., Orchard, D., Robinson, I.,Storey, T., and Thatte, S. Web Services Atomic Transaction, Version 1.0,August 2005. http://xml.coverpages.org/WS-AtomicTransaction200508.pdf.
[WS‑BusinessActivity]

[WS‑Context]
D. Bunting, M. Chapman, O. Hurley, M. Little, J. Mischkinsky, E. Newcomer, J. Webber, K. Swenson. Web Services Context (WS-Context) , http://www.oasis-open.org/committees/download.php/4344/WSCTX.pdf
[WS-Coordination]
F. Cabrera, G. Copeland, T. Freund, J. Klein, D. Langworthy, D. Orchard, J. Schwchuk and T. Storey, Web Services Coordination (WS-Coordination), http://www-106.ibm.com/developerworks/library/ws-coor/, 2002-a.
[WS‑Coordination Framework]
M. Little, E. Newcomer, G. Pavik. Web Services Coordination Framework Specification (WS-CF). OASIS.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf.
[WS-DAI]

M. Antonioletti, M. Atkinson, A. Krause, S. Laws, S. Malaika, N. W. Paton D. Pearson and G. Riccardi Web Services Data Access and Integration – the core (WS-DAI) Specification Version 1.0, Global Grid Forum. 2005.
[WS-DAIR]
M. Antonioletti, B. Collins, A. Krause, S. Laws, S. Malaika, J. Magowan, N. W. Paton. Web Services Data Access and Integration – The Relational Realisation (WS-DAIR) Specification Version 1.0, Global Grid Forum. 2005.

[WS-DAIX]

M. Antonioletti, A. Krause, S. Hastings, S. Langella, S. Laws, S. Malaika, N. W. Paton. Web Services Data Access and Integration – The XML Realisation (WS-DAIX) Specification Version 1.0, Global Grid Forum. 2005.

[WS‑Transaction Management]
[WS-Naming]

A. Grimshaw. WS-Naming Specification. GGF. http://forge.gridforum.org/projects/ogsa-naming-wg.
 [WS‑TXM]

Bunting, D., Chapman, M., Hurley, O., Little, M., Mischkinsky, J., Newcomer, E., Webber, J., and Swenson, K., Web Services Transaction Management (WS-TXM) Ver1.0, http://www.arjuna.com/library/specs/ws_caf_1-0/WS-TXM.pdf

[XIO]

Globus XIO. The Globus eXtensible Input Output library.
http://www-unix.globus.org/api/c-globus-3.2/globus_xio/html/.
[XML]
T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau. Extensible Markup Language (XML) 1.0 (Third Edition) W3C Recommendation 4th February 2004. http://www.w3.org/TR/REC-xml/.

Service composition

Additional Key:

Data Services

Description

Sink/�Source

Access

Cache

Federation

Replication

Replication

A service using a resource

A data resource

Resource

Transfer Protocols

Other Data Resources

Stored Data Resources

Managed Storage

Transfer of data between resources

An API or service calling an interface

A service

A possible interface for a service

Storage

Storage Management

Other Data Services

Data Management

Key:

Service

Interface

Client APIs (non-OGSA) / Other services

Lookup

Registries

Transfer

Transfer

Description

Sink/ Source

Access

Description

Sink/ Source

Access

Storage Resource

�Storage Backend

Management Interface

Transfer Interface

I/O� Interface

I/OAccess� Interface

Transfer Interface

Management Interface

�Storage Backend

Storage Resource

Storage Service

� http://www.ws-i.org

� WS-Policy is an example of a policy mechanism but is not, as of this writing, within a standards process.

� This classification originated from the OGSA Data Services document [REF].

� We could also define a generic factory operation that is supported by various federation implementations. We have not done so in this initial draft of the specification.

� For the purposes of this discussion, it is appropriate to consider QoS as a special case of policy.

�Will each of these APIs require a reference?

�Something should be said here about the reconciliation between the WSRF/WSDM camps and Microsoft.

�We should also explore architectural opportunities for being agnostic to the security model actually used by applications.

�Do we need the concept of authenticating an application?

�Need a reference!

�Need more detail here about what is actually going on in GGF in this space. We might also want to add more details about kinds of information needs to be auditable and logged – we will need help from relevant work groups to do this.

�Not convinced as yet as to whether this is a useful distinction to make. It may be useful if this then allows properties to be bound to the service, the data resource and the various service-data resource relationships that may exist.

�Need examples

�Additional security at the service (or federation) level may also be required to determine patterns of access which might be being used to determine the full extent of the data held at the source. E.g. someone could make a large number of allowed queries to a restricted data resource and from that determine metrics which the data owner would prefer not to disclose.

�Not necessarily – what about streams

�Move this section to somewhere more general?

�Delete this section?

�See previous comment about WS-Naming.

�I don’t think that we want to say this. This implies that a caching service needs to implement the union of all possible interfaces to data services! If we really want to say this, then I certainly would like to see a viable implementation.

�Database replication frequently replicates a subset of a table. Database services are also prepared to transform data as part of the replication process.

�Ted Anderson: I'd add that caches are often writable while replicas rarely are.

�Need to add a subsection to depict the two scenarios in the scenario document: one in which the data replication service just makes copies and is independent of the discovery service; the other where the replication service hides all other logic behind it – resolution: at end of next section

�Do we need a vocabulary that distinguishes a replication system (the particular resources used) from the replicated entries (data elements added to the system)?

�

Throughout this section we need to identify roles: who may do what?

�Open issue: how should we name replicas and partial replicas? Resolution: this point included in bullet.

�Open issue: how should we name replicas and partial replicas?

�Question about whether this belongs under replication or is a general issue for data management; resolution: leave here for now, pending further discussion

�Might be integrated with other services for general data discovery, but might have additional attributes specific to particular replicas Resolution: included

�Open issue: how to name these partial replicas and do discovery – resolution: included

�Open issue: how to name these partial replicas and do discovery

�Need to relate this to ws-names, without mandating the use of ws-names; ws-names could have an EPR for a resolver – resolution: included

�Question about whether this belongs under replication or is a general issue for data management; resolution: leave here for now, pending further discussion

�Clarify: this is about factory operations and how one would specify the input data resoucrces (how to specify a non service data resource)

�I suspect that we will converge on the middle tier of naming as what we want here. EPRs are too dynamic and human centered names not specific enough.

�We need to be sure that there is a use case that shows schema integration happening outside of the federation in a manual, tool assisted, manner.

�I suspect that we will converge on the middle tier of naming as what we want here. EPRs are too dynamic and human centered names not specific enough.

�We need to be sure that there is a use case that shows schema integration happening outside of the federation in a manual, tool assisted, manner.

�My earlier note about data security required at a federated service level applies here. Basically some potential security intrusions may only be detectable by observing patterns of behaviour at the federation level.

�Do the security folks even know how to do this?

�Is this defining a global schema when the registry is created, or defining a view later on, or specifying the schema for a particular entry?

�This definition will need to be revised for this document – it doesn’t mention data access or management.

�The definition of “resource” will be reconsidered for the next version of the OGSA Glossary, and may be revised to reflect work being carried out by the OGSA design teams.

�Note that WSDL 2.0 may require this to be changed, as it identifies a service with an interface, not with a software component.

�This is version 1.0. Do we want to 1.1? I think though that XML Schema works with 1.0 and not 1.1 – not 100% sure though.

Page 42 of 77

_1212383870.doc

Data

Data Resource

 Data Service

Interfaces

Status and Capabilities

Format

Data transfer

_1213117849.doc

Data

Data Resource

 Data Service

Interface 1

Interface n

_1178270023.doc

[image: image1]

Client

Client/Service

Gridbot

Data Service

Metadata Service

_1178270109.doc

[image: image1]

DS

DS

R

R

R

Virtual Organization

Virtual Organization

_1177242312.doc

Data

Data Resource

Data Service

 Registry

