GWD-I

S. Davey, NeSC

Category: Informational

OGSA Data Architecture Working Group

4 May 2006

OGSA Data Architecture Scenarios
Version 0.11
Stephen Davey1,
Ali Anjomshoaa2, Mario Antonioletti2, Malcolm Atkinson1, Dave Berry1,
Ann Chervenak3, Adrian Jackson2, Peter Kunszt4, Allen Luniewski5, Luc Moreau6
1 National e-Science Centre, UK

2 EPCC, UK

3 Information Sciences Institute, USA

4 CERN, Switzerland

5 IBM Corporation, USA

6 University of Southampton, UK

Status of This Memo

This memo provides information to the Grid community regarding example scenarios that are associated with the Data Architecture of the Open Grid Services Architecture (OGSA). It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2006). All Rights Reserved.

Abstract

This document provides example scenarios of a generic nature to accompany the OGSA Data Architecture document [OGSA Data Arch]. It should be noted that this is not a use case document generating requirements of the OGSA Data Architecture. Instead this document comes from the opposite direction, providing illustrations of how the components and interfaces described in the OGSA Data Architecture document can be put together in a selection of typical data scenarios.
Contents

1Abstract

21.
Introduction

21.1
List of Data Scenarios

21.2
Architectural patterns

22.
Data Replication Scenario

22.1
Summary

22.2
Scenarios

22.3
Involved Resources

22.4
Functional Design

22.5
References

23.
Data Pipelining Scenario

23.1
Summary

23.2
Scenarios

23.3
Involved Resources

23.4
Functional Design

23.5
References

24.
Data Integration Scenario

24.1
Summary

24.2
Scenarios

24.3
Involved Resources

24.4
Functional Design

24.5
References

25.
Data Staging Scenario

25.1
Summary

25.2
Scenarios

25.3
Involved Resources

25.4
Functional Design

25.5
References

26.
Personal Data Service Scenario

26.1
Summary

26.2
Scenarios

26.3
Involved Resources

26.4
Functional Design

26.5
References

27.
Data Discovery Scenario

27.1
Summary

27.2
Scenarios

27.3
Involved Resources

27.4
Functional Design

27.5
References

28.
Data Storage Scenario

28.1
Summary

28.2
Scenarios

28.3
Involved Resources

28.4
Functional Design

28.5
References

29.
Data Provenance Scenario

29.1
Summary

29.2
Scenarios

29.3
Involved Resources

29.4
Functional Design

29.5
References

210.
Security Considerations

2Author Information

2Intellectual Property Statement

2Full Copyright Notice

2References

Cross reference to OGSA Data Architecture Table of Contents:

1 Introduction

1.1 Terminology

1.2 Services and interfaces

1.3 Scope

1.4 Document structure

2 Overview

2.1 Levels of abstraction

2.2 Architectural aspects

2.3 Simple and Composite Data Services

2.4 Quality of Service

2.5 Protocols

2.6 Client Libraries

2.7 Metadata

2.8 Naming of Architectural Components

2.9 Putting the aspects together

3 Architectural Context

3.1 Naming

3.1.1 WS-Addressing

3.1.2 WS-Naming

3.1.3 Directory Services: RNS, WS-Directory

3.2 Management of distributed resources

3.3 Security

3.4 Notification of Events

3.5 Resource Discovery

3.6 Policies and Agreements

3.7 Reservation and scheduling

3.8 Other considerations

3.8.1 Transactions

3.8.2 Sessions

4 Security

5 Data Description

5.1 Data Description

5.1.1 Format Description

5.1.2 Resource Description

5.1.3 Service Description

6 Data Transfer

7 Data Access

7.1 Data Access Patterns

7.2 Security Considerations

7.3 Access properties

7.4 Data Access Operations

7.5 Current solutions

7.5.1 WS-DAI

7.5.2 ByteIO

7.5.3 Storage Resource Broker Data Grid – SRB

7.6 Conclusions

7.7 References

8 Storage Resource Management

8.1 The Storage Resource and Service

8.2 Aspects of a Storage Service

8.3 Storage Properties

8.4 Storage Space Properties

8.5 Site and VO management

8.6 Security Discussion

8.7 Interaction of Storage and Transfer

9 Cache Services

10 Data Replication

10.1 Replication Modelling

10.2 Creating Replicas

10.3 Discovering Replicas

10.4 Validation of Registered Replicas

10.5 Replica Consistency

10.6 Managing Replicas

11 Data Federation

11.1 Creation of Federations

11.2 Expansion/Contraction of Federations

11.3 Access to the Federation’s Data

11.3.1 Updates to Policy

11.4 Federation Policies

11.5 Access to the State of the Federation

11.6 Security Considerations

11.7 Standardization Considerations

12 Metadata Catalogue & Registries

12.1 Operations

12.2 Publication

12.3 Query

12.4 Currency

12.5 Security and Hierarchies

13 Data Streams

14 Appendix: Specifications referred to in this document

14.1 Data Service Specifications

14.2 Data Description Specifications

14.3 Protocol Specifications

14.4 Infrastructure Specifications

14.5 API Specifications

15 Glossary

16 References

1. Introduction
This document provides example scenarios to accompany the OGSA Data Architecture document. They give illustrations of how the components and interfaces described in the OGSA Data Architecture document can be put together in various data scenarios.

Most, if not all, of the data scenarios described below involve some number of clients, services and data resources (such as storage elements). It most cases it can be assumed that a Registry Service, or a Replica Service say, would also exist but this will not always be explicitly detailed in the use cases.

[image: image1]
In these simplified scenarios the clients, services and data resources are assumed to be as follows:

· Client – the client or customer may be the originator of some data such as a query, or they may be consumer of data. The client may also be another service in some scenarios.
· Service – the service is assumed to be an intermediary between the clients and the data resources, and will provide some particular functionality on behalf of the clients and/or the resources.
· Data – the data sources may be the actual storage elements or they may be services that are providing an interface to data resources. They may be sources or sinks for data.
The use of these terms in the scenarios may be looser than the definitions given in the OGSA Glossary [OGSA Glossary], but they are not intended to be inconsistent with them.
Note that Fowler and Scott [Fowler & Scott 1999] also define:
A scenario is a sequence of steps describing an interaction between a user and a system.
A use case is a set of scenarios tied together by a common user goal.
An actor is a role that a user plays with respect to the system.

1.1 List of Data Scenarios

The following use cases for the OGSA Data architecture are considered in this document:

1. Data Replication – maintain a replica of data at a different location (for availability or performance).

2. Data Integration – bringing the data that you require together from disparate sources.
3. Data Pipelining – connect the output from one service to the input of another. Sometimes also known as Data Transfer or Data Composition.

4. Data Staging – the movement of data in preparation for the performing of operations on or with this data.

5. Personal Data Service – the organising of an individual’s data to allow them access to it from many different locations.

6. Data Discovery – discover data; register data/metadata.

7. Data Storage – store file data in a Grid Data Service and retrieve it later.

8. Data Provenance – the provenance of a piece of data is the process that led to that piece of data; the history of ownership of an object.
The following use cases are not currently included in this document but may be added at a later date:

9. (Simple) Data Access – access a remote data source (e.g. a file or database), or submit a query and get a reply; data management.

10. Data Federation – constituting a single data set out of a number of separate data resources or data services; e.g. query a federated resource.

11. Data Caching – create a local cache of remote data (for improved performance).

12. Data Warehousing – the delivery of data delivery, or triggered data movement, to a data repository.

13. Data Streaming – the transfer of data at a steady high-speed rate, such as from a sensor.

14. Data Broadcast – the transfer of data to multiple sites; multicast.

15. Data Mining – the nontrivial extraction of implicit, previously unknown, and potentially useful information from data; Knowledge Discovery in Databases

16. Derivation – the automatic generation of one data resource from another.

17. Data Transformation – the consuming of data of one sort from which other data is generated; convert data from one format to another; filter data; apply arbitrary computations.
18. Grid File System
– provide a virtual file system in a Grid environment.
19. Metadata Catalogue Service
– create, store and query metadata in a catalogue.
1.2 Architectural patterns

The data scenarios can be divided up into simplified architectural patterns as follows:

· One client – one service – one data resource: Simple Data Access.

[image: image2]
· Many clients – one service – one data resource: More complex Data Access, Data Warehousing, Data Broadcast.

[image: image3]
· Many clients – many services – one data resource: Data Pipelining, Data Staging, Data Streaming.

[image: image4]
· One client – one service – many data resources: Data Replication, Data Caching, Data Integration, Data Federation, Data Discovery.

[image: image5]
The last 2 combinations of clients, services and resources (shown below) yield no new architectural patterns that are not just derivable from the previous patterns.
· One client – many services – many data resources:

[image: image6]
· Many clients – one service – many data resources:

[image: image7]
In practice, most real life situations are a combination of many clients, many services and many data resources. But again, this combination can be built up from a number of the simpler patterns that have been identified.

2. Data Replication Scenario

Maintain a replica of a file, a database or a subset of a database or table at a different location (for availability or performance).

2.1 Summary

Several use cases that include data replication are described in the OGSA Use Case documents. They highlight some of the business requirements that need to be addressed.

From the document, “Open Grid Services Architecture Use Cases”, [OGSA Use Cases]:

Example: Persistent Archive

Many large-data scientific preservation environments are built using the capabilities provided by virtual data Grid technology (e.g. California Digital Library, NARA persistent archive, NFS National Science Digital Library). Preservation environments typically organize digital entities into collections. Authenticity is tracked by the addition of appropriate metadata attributes to the collection to describe provenance, track operations performed upon the data, manage audit trails, and manage access controls. Validation mechanisms are provided to check that the data has not changed. All collections are supported across multiple sites, with replication across sites essential for:

· Disaster recovery. One cannot afford to have a collection lost due to fire or earthquake.

· Fault tolerance. When a site is down, accessing of the data is still possible from an alternate site.

· Performance. Load-balance accesses can occur across sites.

· Curation. Data is managed and maintained by experts who reside at different institutions. The primary copy tends to be at the site where the expertise is located.
From the Persistent Archive example, scenarios must deal with digital and intellectual rights of the contents. The Grid has a geographically distribution and spans across different regions with different laws. Contents have a license associated, which is a grant of permissions. Unauthorized use of the contents should be avoided so the Persistent Archive should provide access control for stored data. Furthermore, a trusted third party must certify contents. From the Persistent Archive example, the ultimate goals are to use all available bandwidth, and register 1000 files per second.
This scenario addresses the above apart from the access control and verification aspects.
From the document, “Open Grid Services Architecture: Second Tier Use Cases”, [Use Cases Tier 2]:

Example: The Learning GRID

Currently, teaching and learning practices are mainly based on the information transfer paradigm. This focuses on content, and on the key authoritative figure of the teacher that provides information, without taking in account any finer features such as his starting skill or his learning capabilities. In order to advance the effective learning, we need to promote a new paradigm that focuses on the learner and on new forms of learning. Publishing Houses store training content and provide remote access to it. They provide search and retrieval functions on the local repository via metadata-based queries.

Data, Information and Knowledge Management services have to provide the functionalities for storing, retrieving and managing of data, information and knowledge. Their interfaces should provide transparency to the user, e.g. he/she should be able to perform a query against a data, information or a knowledge structure in the same way. Furthermore, they need replica management that will handle ownership and consistency amongst replicas.

From the Learning Grid example, each organization as a Grid Service Provider has its own security policies and systems that must be supported. Malicious intrusions in proprietary resources have to be avoided. In general, the mechanisms proposed in the OGSA Base Profile are sufficient to address general security issues.

From the Learning Grid example, organizations must be able to extract training content, concept dictionaries and ontologies from the repositories. This operation is time and resource consuming, also due to the complexity of the “reasoning” algorithms for the extraction of ontologies, and has to be optimized (e.g. using of optimized query evaluator engine) in order to optimize the overall performance. Low latency high bandwidth networks are required mainly for the large amount of multimedia data transferred during learning and collaborative sessions.

2.2 Scenarios

A simplified view of the replication scenario use case leads to the following steps taking place:

1. A data resource is registered with a replicating data service (details such as creation time, access control, etc. would also be included) and replication service enters the data resource into a replica catalogue.

2. The replication service uses a data transfer service to move copies of this data to different locations and tracks which data is kept where.

3. Clients access the catalogue to find the data resource, or to return a list of resources that satisfy certain Quality of Service (QoS) requirements.

4. Clients then access the stores either directly or indirectly.

5. Changes to the data are notified to the replication service.

6. Updates then occur between the data services to synchronize the replicas.

A management interface may also allow control of data resource placement, addition and deletion, plus access to the replication and coherence policies and strategies.
This scenario is written in terms of the replication of files and general data resources, but an equally valid scenario is possible involving databases.

2.3 Involved Resources

The data replication scenario includes the following resources:

The Replication Service provides the front end to the client and handles the management and synchronization of the replicas.

The Registry Service manages the replica catalogue, maintaining a list of names and locations for the replicas.

The Data Transfer Service handles the transferring of the data to the different locations.

Data storage is where the actual copies of the data resources are kept, and it is assumed that the data resources would be wrapped in a (data) service interface.

[image: image8]
2.4 Functional Design

2.4.1 Functional Design 1 – Direct Data Access
One possible (simplified) functional design is shown in the following picture. In this case the Replication Service handles the registering of data resources (for example files or subsets of database tables say), instructs the data transfer service to move copies of this data to different locations, manages the coherency of the replicas and handles other quality of service policies. However, the Replication Service does not handle the cataloguing of the replica, but instead uses a (public) Registry Service.

The Registry Service stores the list replicas, tracks which data is kept where, and also allows clients to access the catalogue in order to find the data resource or to return a list of resources that satisfy certain QoS requirements.

The role of the Data Transfer Service is to move copies of data resources to the different locations. In this scenario, the Replication Service would either create Data Service 2 or cause a sink to be created at Data Service 2. The Replication Service then tells the Data Transfer Service to move data from Data Service 1 to Data Service 2 using the source and sink at each respectively.
The Data Services 1 and 2 give the clients access to the data stores. They also notify the Replication Service if any changes are made to local copies and send updates to other data services to synchronize the replicas as determined by the QoS policy in place with the Replication Service.

[image: image9]
2.4.2 Functional Design 2 – Indirect Data Access
A second similar functional design is shown in the following picture
. In this case the primary (front end) Data Service handles the data access and all interfaces with the clients, so there is no longer direct access by the clients to the data stores or to the replica catalogue. The Data Service also provides interfaces to Data Services 1 & 2.

The Data Replication Service instructs its (private) Replica Catalogue Service to register new data resources, and can search the catalogue in order to find the data resource or to return a list of resources that satisfy certain QoS requirements. Additionally, it instructs the Data Transfer Service to move copies of the data to different locations, manages the coherency of the replicas and handles other quality of service policies.
The Replica Catalogue Service handles the registering of data resources and tracks which resources are kept where, but only allows the Data Replication Service to access its catalogue.

Again the role of the Data Transfer Service is to move copies of the data resources to the different locations.

Data Services 1 & 2 provide access to the data stores but now only via the primary Data Service that the clients interacts with. They also notify the Replication Service if any changes are made to local copies and send updates to other data services to synchronize the replicas.

[image: image10]
Below are example interfaces between the consumer/client, the services and the data storage elements with references to the relevant sections of the OGSA Data Architecture document [OGSA Data Arch].The interfaces in the different steps of the scenario are as follows:
1. A data resource is
:

a. Registered with a replicating data service (details such as creation time, access control, etc. would also be included) – section 10.2 “Creating Replicas”.
b. The replication service enters the data resource into a replica catalogue – section 10.3 “Discovering Replicas”. (A DAIS [WS-DAI] update could also be performed).
2. The replication service uses a data transfer service to move copies of this data to different locations and tracks which data is kept where – section 6 “Data Transfer”.

3. Clients access the catalogue to find the data resource, or to return a list of resources that satisfy certain Quality of Service (QoS) requirements – section 10.3 “Discovering Replicas”. (A DAIS query could also be performed).
4. Clients then access the stores either directly or indirectly – section 7 “Data Access”, i.e. any suitable data access interface such as DAIS or ByteIO [ByteIO].

5. Changes to the data are notified to the replication service – section 3.4 “Notification of Events”.

6. Updates then occur between the data services to synchronize the replicas – section 6 “Data Transfer”.

2.5 References

Relevant references:

1. R. Moore, A. Merzky, “Persistent Archive Concepts,” Global Grid Forum Persistent Archive Research Group, draft on Persistent Archive Recommendations, May 3, 2003.

2. R. Moore, “Common Consistency Requirements for Data Grids, Digital Libraries, and Persistent Archives”, Grid Protocol Architecture Research Group, Global Grid Forum, Tokyo, Japan, March 5, 2003.

3. S. M. Pickles, R. J. Blake, B. M. Boghosian, J. M. Brooke, J. Chin, P. E. L. Clarke, P. V. Coveney, N. Gonzalez-Segredo, R. Haines, J. Harting, M. Harvey, M. A. S. Jones, M. Mc Keown, R. L. Pinning, A. R. Porter, K. Roy, and M. Riding, The TeraGyroid Experiment, Workshop on Case Studies on Grid Applications, March 13, 2004, Berlin, Germany, held in conjunction with GGF10. (http://www.zib.de/ggf/apps/meetings/ggf10/TeraGyroid-Case-Study-GGF10-final.pdf)

4. J. M. Brooke, P. V. Coveney, J. Harting, S. Jha, S. M. Pickles, R. L. Pinning and A. R. Porter, Computational Steering in Reality Grid, Proceedings of the UK e-Science All Hands Meeting, September 2-4, 2003 (http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/179.pdf).

5. P. Ritrovato, M. Gaeta, G. Laria, T. Dimitrakos, D. Mac Randal, F. Yuan, S. Wesner B. Serhan, K. Wulf, “AN EMERGING ARCHITECTURE ENABLING GRID BASED APPLICATION SERVICE PROVISION” to be appear in the proceeding of 7th IEEE International Conference EDOC - September 16-19 2003, Brisbane, Australia

6. C. ALLISON, S. A. CERRI, P. RITROVATO, M. GETA AND S. SALERNO, "Human Learning as a Global Challenge: European Learning Grid Infrastructure" Tampere, Finland: University of Tampere Press.

3. Data Pipelining Scenario

Data Pipelining or Data Transfer involves the connecting of an output from one service to the input of another, with data being transferred to a third party for example.

3.1 Summary

This use case is based on the Digital Media use case described in the NextGRID Vision and Architecture White Paper [1].

Nowadays, almost all films and commercials use computer graphics animations to implement the special effects that the artists want to depict on the screen. Designers can use several software applications for creating 3D scenes like 3D Studio Max and Maya. These applications can build a 3D environment or just a single scene and render it. The large number of objects, textures, light sources and effects, like shiny surfaces and fog, is a factor that limits the design of a scene due to the increased computational effort. The best solution is to combine the summed power of many single PCs to accomplish the job with the existing software, thus combining the advantages of a powerful computer cluster with the “single PC” way.

The designer develops the job on a single PC with the client’s instructions followed as well as possible to ensure that the final result is the expected one. A close online collaboration between the client and the designer is required in order to have a result close to the client’s needs.

KINO, a leading producer of TV commercials and films in Greece, anticipates that this novel business model can be supported by a Grid enabled rendering infrastructure that can handle not only the in-house production of urgent jobs and small jobs, but also large tasks with a task based negotiation. This negotiation, on the outsourcing of large tasks, has such parameters as the deadline, the complexity of the task, the number of frames and the total computational time needed.

3.2 Scenarios

A simplified view of the data pipelining scenario use case leads to the following steps taking place:

1. Customer 1 (Designer) submits a rendering job to the Rendering Service.

2. Completed animation is stored to a common storage device.

3. Rendering Service transfers the completed animations (data) to the Visualization Service using the Data Transfer Service.

4. The Visualization Service displays the animations to the clients (Designer & Reviewer/Customer) in an agreed format.

3.3 Involved Resources

The Rendering Service handles the rendering of jobs with the completed animations stored to disk say. The Rendering service then uses the Data Transfer Service to move the completed animations.
The role of the Data Transfer Service is to transfer the completed animation data, generated by the Rendering Service, to the Visualization Service.
The Visualization Service displays the animations to the clients (Designer & Reviewer/Customer) in an agreed format.

[image: image11]
3.4 Functional Design

Here it is assumed that result data is transferred to the Visualisation Service as soon as the rendering job is completed.

[image: image12]
Below are example interfaces between the consumer/client, the services and the data storage elements with references to the relevant sections of the OGSA Data Architecture document [OGSA Data Arch].The interfaces in the different steps of the scenario are as follows:

1. Customer 1 (Designer) submits a rendering job to the Rendering Service – section 3.7 “Reservation and scheduling” and Execution Management Services (EMS) in OGSA. The details of the job would be defined in say JSDL [JSDL].
2. Completed animation is stored to a common storage device – section 3.7. It is assumed that detail on how and where to store the results would be controlled by the Execution Management Services.
3. Rendering Service transfers the completed animations (data) to the Visualization Service using the Data Transfer Service – section 6 “Data Transfer”.
4. The Visualization Service displays the animations to the clients (Designer & Reviewer/Customer) in an agreed format – most likely an application specific interface.
3.5 References

Relevant references:

1. NextGRID Vision and Architecture White Paper, http://www.nextgrid.org/download/publications/NextGRID_Architecture_White_Paper.pdf
4. Data Integration Scenario

4.1 Summary

Data integration is the identification of required data and the bringing together of that data into one place. It is an important part of Grids which aim to facilitate collaboration and the sharing of resources.

There are many projects that involve data integration. A few examples are:

· FirstDIG project, http://www.epcc.ed.ac.uk/~firstdig/

· BRIDGES, http://www.brc.dcs.gla.ac.uk/projects/bridges/

· EdSkyQuery-G project, http://edskyquery.forge.nesc.ac.uk/

· eDiaMoND project, http://www.ediamond.ox.ac.uk/index.html

· INWA, http://www.epcc.ed.ac.uk/~inwa/

Example: FirstDIG

The FirstDIG project [1,2,3] was a collaboration between the First PLC public transport company and the UK’s National e-Science Centre, represented by EPCC (University of Edinburgh). The project goal was to answer specific business questions through data mining analyses of data delivered by OGSA Data Access and Integration (OGSA-DAI, [4,5]) services. The data were integrated following extraction from various sources in a distributed, heterogeneous relational database environment.

The First PLC public transport company has been established over a long period of time through a number of mergers and acquisitions. This has resulted in a company with a large number of legacy data and different database systems, which have been acquired by various divisions at different times.

The FirstDIG project provided a graphical user interface which allowed a user to gain access to a set of different, distributed databases in a uniform way using SQL queries. The infrastructure behind this user interface was based on the OGSA-DAI Web Services, which allowed different data sources to be accessed in a standard way for read and write operations and helped to provide uniform access to the heterogeneous data environment.

4.2 Scenarios

Anjomshoaa [3] identifies a number of potentially complex steps that form the data integration process:

· Data discovery – if the locations of the data are not already known then they must be discovered via registries or directories of data sources.

· Schema mapping – the data must be understood and presented in a uniform manner, requiring the capability to map between the different schema describing the data.

· Data consolidation – differences in the format or structures of the data may require transformations to a single data format so that the disparate data can be comparable.

It is the process of consolidating the different data formats and their descriptions from disparate heterogeneous environments that is sometimes referred to as data integration. Although, in most everyday situations all 3 steps play an important part in the overall process.

Anjomshoaa also defines a number of different data integration categories that span the range of complexity. The simplest category is that with similar data, single ontology and separate homogeneous data sources. The most complex being those with different data, different ontologies and separate heterogeneous data sources.

Not surprisingly, the majority of real-life problems fall into the final, most complex, category. However, despite data integration requirements usually being different in different projects, the key methods and core tools that are used in each domain are still typically the same.

4.3 Involved Resources

The data sources could be any number of different databases or file stores which are brought together and integrated to give a resulting source from which information can be extracted. The data sources could also be data streams, although streams will not be included in the current version of the data scenarios and data architecture documents.

It is assumed that each data source will be “hidden” behind a standard, generic, Web Service based interface thereby shielding the integration service from heterogeneity in the data resources.
The role of the Data Registry Service is to provide a means for the customer to locate the data sources in cases where these locations are not already known. This may be via registries or directories of data sources.
The Schema Registry Service manages a repository that provides schema maps between the different schema describing the data. Ideally, the Schema Registry Service should also notify the customer or other services of any local schema modifications since these changes would then require corresponding updates to the schema mappings repository. Note that the creation of the schema maps, either manually or by some possibly automated process, is not part of this document.
The Data Integration Service provides the final consolidation of the disparate data sources into a single data format on which queries can be executed. It will handle the differences in the format or structures of the data and any transformations to a single data format that may be required.

 SHAPE * MERGEFORMAT

4.4 Functional Design

Two alternative data integration designs are given below. The first involves a much greater degree of manual intervention from the user in order to initially locate the data sources and to ensure that the appropriate schema mappings between the data sources are defined. This first version is how data integration is currently performed in most cases. In the second version it is assumed that the tasks of data discovery and schema mapping are handled by the data integration service with little or no human assistance. It should be noted that this second, largely autonomous version, is primarily just a research activity at present.

4.4.1 Functional Design 1 – Partly Manual
For clarity the following scenario steps are shown in two diagrams. The first shows the steps involving customer 1 and the creation of the schema mappings. The second shows customer 2, the locating of data and the submitting of a query to the distributed data sources.

[image: image14]

[image: image15]
Below are example interfaces between the consumer/client, the services and the data storage elements with references to the relevant sections of the OGSA Data Architecture document [OGSA Data Arch]. The interfaces for the steps that occur in the typical (partly manual) data integration scenario are as follows:

1. Data sources are published in the Data Registry Service
 – section 12 “Metadata Catalogue & Registries” (Publish operation). Note that the Data Registry Service could also subscribe to each of the Data Services.
2. The different schema describing the data are obtained from the data sources and the schema mappings are stored in the Schema Map Repository – section 12 “Metadata Catalogue & Registries” (Publish operation). Again, the Schema Registry Service could alternatively subscribe to each of the Data Services. In either case, some input from a customer to obtain the local schema and create these mappings is assumed.
3. Schema Registry Service notifies the customer if any changes to the different schema describing the data take place in the data sources – section 3.4 “Notification of Events”. (The customer would then need to update the latest mappings stored in the Schema Map Repository.)
4. Customer ensures that all the correct mappings between the different data schema describing the data are in the Schema Map Repository
 – section 12 “Metadata Catalogue & Registries” (Update operation). A DAIS update could also be performed.
5. Customer 2 locates data sources using the Data Registry Service – section 12 “Metadata Catalogue & Registries” (Find operation). Again a DAIS query could also be performed. [Note that steps 1 to 5 could take place some time in advance of step 6.]
6. Customer 2 sends a data query
 to the Data Integration Service
 – section 7 “Data Access”, a DAIS query say. OGSA DQP ??
7. Data Integration Service requests the mappings between the different schema describing the data from the Schema Registry Service – section 12 “Metadata Catalogue & Registries” (Find operation), or a DAIS query say.

8. Data queries are sent to the various data sources taking into account the differences in the format or structures of the data, and performing any necessary transformations, so that the disparate data can be comparable – section 7 “Data Access”, multiple DAIS queries say.
I.e. The results returned from this single step will in practice typically require 3 sub-steps:

a) Take in the data.

b) Perform format transformations and other computational transformations.

c) Perform query evaluation (and optimisation).
9. Consolidated data result set is returned to the customer – either section 7 “Data Access”, as response to the original DAIS query or as a distinct transfer operation, see section 6 “Data Transfer”.
Note that steps 7 and 8 need not necessarily happen in this order. The integration engine may very well find other, more optimal, ways to do the required computations.

4.4.2 Functional Design 2 – Automatic
The following steps occur in the more complex, largely autonomous, data integration scenario:

[image: image16]
1. Data Sources
 are published in (or perhaps discovered by) the Data Discovery Service. [Note that this step could occur some time in advance of step 2.]
2. Customer sends a data query to Data Integration Service.

3. Data Integration Service locates data sources using the Data Discovery Service.

4. Data Integration Service requests the mappings between the different schema describing the data from the Schema Mapping Service. Note that the creation of the schema maps by some sort of automated process is not part of this document.
5. Updates of the mappings between the different schema describing the data are obtained from the data sources to ensure that the latest mappings are stored in the Schema Map Repository.
6. Schema Mapping Service returns the latest mappings to the Data Integration Service.

7. Data queries are sent to the various data sources taking into account the differences in the format or structures of the data, and performing any necessary transformations, so that the disparate data can be comparable.

8. Consolidated data result set is returned to the customer.

4.5 References

Relevant references:

1. P. J. Graham, T. M. Sloan, A. C. Carter, I. Gregory, “FirstDIG: Data Investigations using OGSA-DAI”, Proceedings of the UK e-Science All Hands Meeting 2004, Nottingham, UK, 31st August 2004 to 3rd September, pp 39-54.

2. The FirstDIG project website: http://www.epcc.ed.ac.uk/~firstdig/

3. A. Anjomshoaa, NextGRID project deliverable, P4.4.1, September 2005.

4. K. Karasavvas, M. Antonioletti, M.P. Atkinson, N.P. Chue Hong, T. Sugden, A.C. Hume, M. Jackson, A. Krause, and C. Palansuriya, Introduction to OGSA-DAI Services, Lecture Notes in Computer Science, Volume 3458, May 2005, pages 1-12.

5. M. Antonioletti, M.P. Atkinson, R. Baxter, A. Borley, N.P. Chue Hong, B. Collins, N. Hardman, A. Hume, A. Knox, M. Jackson, A. Krause, S. Laws, J. Magowan, N.W. Paton, D. Pearson, T. Sugden, P. Watson, and M. Westhead, The Design and Implementation of Grid Database Services in OGSA-DAI, Concurrency and Computation: Practice and Experience, Volume 17, Issue 2-4, February 2005, Pages 357-376.
5. Data Staging Scenario
Data Staging is the movement of data in preparation for the performing of operations on or with this data.
5.1 Summary

There are many scenarios involving parameter space exploration in which compute jobs are derived from a set of parameters and require boundary condition data for use in the calculations. Where this boundary condition data set is large and frequently accessed, performance improvements can be made by moving the data close to the compute resource.
Similarly, BLAST (Basic Local Alignment Search Tool) jobs require access to large nucleotide, protein and chromosome databases when computing alignments of nucleic acid or protein sequences. A favourable option is therefore to move frequently used data close to the computation. See references [1], [2] & [3].

Note that in both of the above cases copying, caching or replicating the data may all be appropriate as well.

5.2 Scenarios

A simplified view of the data staging scenario use case leads to the following steps taking place:

1. Customer 1 submits a parameter space exploration job to the Parameter Space Exploration Service.

2. An optimized copy (bulk load) of the boundary conditions data is made from the Parameter Space Exploration Service to the Simulation Service, utilising Data Services to assist in the extraction and transfer of the data.
3. The Simulation Service sets up the results database.

4. From the parameter set the simulation jobs are generated and sent to the Simulation Service. Each of the jobs will take parameters from the parameter set database and then read the boundary condition data from the local copy of the boundary conditions database.

5. Results from the Simulation Service are stored in the results database.

6. On completion of all the generated jobs the Simulation Service’s local copy of the boundary conditions database is deleted.

7. Queries (or jobs) are used to get derivatives from the results database.
8. The Simulation Service returns the derived data to the client (Customer 1 in this case).
9. On completion of all queries the Simulation Service deletes the results set database.

5.3 Involved Resources

The Parameter Space Exploration Service copies boundary condition data to the Simulation Service, utilising a Data Service in this process. The Parameter Space Exploration Service also generates the simulation jobs from the parameter space data.
Data Service 1 queries the boundary condition database and transfers the relevant data via Data Service 2 to the Simulation Service before the computations start
.

The Simulation Service performs the computations on a copy of the boundary condition data using as input the parameter set data provided by the Parameter Space Exploration Service. It stores the results and returns (derived) result data to the customer.

[image: image17]
5.4 Functional Design

Below are example interfaces between the consumer/client, the services and the data storage elements with references to the relevant sections of the OGSA Data Architecture document [OGSA Data Arch].

[image: image18]
The interfaces in the different steps of the scenario are as follows:

1. Customer 1 submits a parameter space exploration job to the Parameter Space Exploration Service – section 3.7 “Reservation and scheduling” and Execution Management Services (EMS) in OGSA. The details of the job would be defined in an appropriate workflow language and then executed by the workflow enactment engine.
2. An optimized copy (bulk load) of the boundary conditions data is made from the Parameter Space Exploration Service to the Simulation Service, utilising Data Services to assist in the extraction and transfer of the data. This step would actually have 3 parts:

a. Firstly, storage space needs to be reserved through the Simulation Service with the corresponding EPR for the storage being returned to the Parameter Space Exploration Service – section 3.7 “Reservation and scheduling”.
b. Secondly, the Parameter Space Exploration Service queries the Boundary Conditions database for the relevant data – section 7 “Data Access”, a DAIS query say.

c. Finally Data Service 1 bulk loads the boundary condition data to the Simulation Service via Data Service 2 – section 6 “Data Transfer”, plus a DAIS factory operation say.

3. The Simulation Service sets up the results database – this is likely to be application specific. Alternatively, if files were used then SRM operations (section 8 “Storage Resource Management”) could be used.
4. From the parameter set the simulation jobs are generated and sent to the Simulation Service. Each of the jobs will take parameters from the parameter set database and then read the boundary condition data from the local copy of the boundary conditions database – section 3.7 “Reservation and scheduling” and Execution Management Services (EMS) in OGSA. The details of the job would be defined in JSDL say.

5. Results from the Simulation Service are stored in the results database – this is likely to be application specific. Alternatively, if files were used then SRM operations (section 8 “Storage Resource Management”) could be used.

6. On completion of all the generated jobs the Simulation Service’s local copy of the boundary conditions database is deleted – WS-Lifetime could be used here.

7. Queries (or jobs) are used to get derivatives from the results database– section 7 “Data Access”, a DAIS query say.
8. The simulation service returns the derived data to Customer 1 – section 7 “Data Access”, a DAIS query response say.
9. On completion of all queries the simulation service deletes the results set database – again WS-Lifetime could be used here.

5.5 References

Relevant references:

1. BRIDGES: Biomedical Research Informatics Delivered by Grid Enabled Services, http://www.brc.dcs.gla.ac.uk/projects/bridges/.

2. Bayer, M., Campbell, A. & Virdee, D., “A GT3 based BLAST grid service for biomedical research”, UK e-Science Programme All Hands Meeting (AHM-2004), 31 August - 3 September 2004, Nottingham, UK. http://www.allhands.org.uk/2004/proceedings/papers/141.pdf.

3. BLAST @ EBI, http://www.ebi.ac.uk/blast/index.html.

4. “CFD-Based Shape Optimisation with Grid-Enabled Design Search Toolkits”, W.Song, A.Keane, S.Cox, http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/131.pdf.
6. Personal Data Service Scenario

The organising of an individual’s data to allow them access to it from many different locations.
6.1 Summary

There are many occasions when a person wants to build a personal collection of data and then to be able to access that data whilst at many different locations. They need to be able to identify an arbitrary bundle of data and to reliably and privately store it. The Personal Data Service then needs to be able to provide the individuals data (possibly incrementally) at whatever site the person is connected at.

Example: myGrid
The myGrid project [1] is a UK e-Science project funded by the EPSRC. It is building, amongst other things, high level services for the integration of biological data, resource discovery and distributed query processing. It is also looking to incorporate provenance management, change notification and personalisation – see for example [2].

Example: AstroGrid

AstroGrid [3] is an open source project designed to create a working Virtual Observatory for UK and International astronomers. Access to AstroGrid services can be via a portal or using the Workbench desktop application. This gives the user the capability to build and execute workflows, create dataset queries and to manage their area where intermediate data and final results can be accessed securely and remotely (called MySpace, [4]).

6.2 Scenarios
The Customer interacts with the Personal Data Service in order to build a personal collection of data. This data could be in the form of individual data resources or within containers. Note also that some of this data may be, for example, from a query calculating the result value on the fly, or from data that has already been materialised and stored. It may be any data generated by any application during a session, in some cases without the user having explicit knowledge of this data creation. Ideally, this data would take any form: Small scale sets of name-value pairs; references to data such as a query or workflow plus names/EPRs that will get that data; bulk data, etc. This implies that an open-ended heterogeneous set of data is in this personal data service at any time. It may be explicitly named, so a user may share it with a group of people engaged in the same work, or so a user may have different spaces say. Most importantly, this name identifies a time-varying set of values currently associated with the name. The user and applications are not responsible for organising storage or data movement of the data in this named collection, but this should be automated.
There has to be mechanisms for:
a) Creating a named-space.
b) Storing name-value pairs in that space, where names are relative to that named space and value may be of any type, e.g. string, real number, matrix, relation, XML doc, etc. It may be by copy or by reference, with for example a reference being be a query or any other value forming expression.

c) Retrieving name-value pairs for local use or to despatch to a third party.
d) Closing a session of use of that named space.
e) Starting a new session of that named space, possibly in a different computational environment – underlying mechanisms incrementally materialise data locally as it is accessed.

f) Inspecting and managing the contents of that named space.
g) Removing name-value pairs from the named space.
h) Terminating (or extending) the life of a named space.

The following steps could typically occur in the scenario:

1. Customer at site 1 locates data by using, for example, a Registry Service.
2. The Customer interacts with the Personal Data Service (via their Local Cache Service
) in order to create a personal collection of data (a named space).

3. The Personal Data Service uses a Global Name Resolver Service in order to name the customer’s collection of data.

4. The Customer at site 1 uses Local Cache Service 1 in order to build and modify their personal collection of data.

5. On terminating the session at site 1 the Local Cache Service 1 updates the Personal Data Service.

6. Customer moves to site 2 and starts working, wanting to use, change and add to their personal collection of data. This is done via Local Cache Service 2.
7. On terminating the session at site 2 the Local Cache Service 2 updates the Personal Data Service.

6.3 Involved Resources

The Personal Data Service is used by the customer in order to build a personal collection of data. This data could be in the form of individual data resources or within containers.

For performance reasons Local Cache Services would be used to store parts of the user’s personal collection of data that are being used frequently. Updates, at say the end of the user’s session, would then take place between the Local Cache Services and the (global) Personal Data Service.

A Registry Service may be used to enable data sources and data services to be located.

The Data Services provide access to data resources that have been added to an individual’s personal collection of data. Copies of the data may be stored by the Personal Data Service or it may contain just the references to the data resources within the Data Services.
The role of the Global Name Resolver Service is to provide a globally unique name for the individual’s personal collection of data and any other entities that may require naming. Although it is likely that sub-components within any given personal collection of data would be named locally by the Personal Data Service.

[image: image19]
6.4 Functional Design

Below are example interfaces between the consumer/client, the services and the data storage elements with references to the relevant sections of the OGSA Data Architecture document [OGSA Data Arch].

[image: image20]
The following steps occur in the scenario:

1. Customer at site 1 locates data by using, for example, a Registry Service – section 12 “Metadata Catalogue & Registries” (Find operation). A DAIS query could also be performed.

2. The Customer interacts with the Personal Data Service (via their Local Cache Service) in order to create a personal collection of data (a named space) – section 12 “Metadata Catalogue & Registries” (Publish operation)???

3. The Personal Data Service uses a Global Name Resolver Service in order to name the customer’s collection of data – section 3.1 “Naming”.

4. The Customer at site 1 uses Local Cache Service 1 in order to build and modify their personal collection of data – section 12 “Metadata Catalogue & Registries” (Update operation). A DAIS update query could also be performed.

5. On terminating the session at site 1 the Local Cache Service 1 updates the Personal Data Service – section 12 “Metadata Catalogue & Registries” (Update operation). Again, a DAIS update query could also be performed or a subscription perhaps (section 3.4 “Notification of Events”).

6. Customer moves to site 2 and starts working, wanting to use, change and add to their personal collection of data. This is done via Local Cache Service 2 – section 12 “Metadata Catalogue & Registries” (Find, Update operations etc).
7. On terminating the session at site 2 the Local Cache Service 2 updates the Personal Data Service – section 12 “Metadata Catalogue & Registries” (Update operation). Again, a DAIS update query could also be performed or a subscription perhaps (section 3.4 “Notification of Events”).

6.5 References

Relevant references:

1. myGrid project, http://www.mygrid.org.uk/.

2. myGrid: personalised bioinformatics on the information grid - Robert D. Stevens, Alan J. Robinson and Carole A. Goble. Bioinformatics Vol. 19 Suppl. 1 2003, http://bioinformatics.oxfordjournals.org/cgi/content/abstract/19/suppl_1/i302.

3. AstroGrid project, http://www.astrogrid.org/.

4. AstroGrid MySpace concept, http://wiki.astrogrid.org/bin/view/Astrogrid/MySpace.

7. Data Discovery Scenario
Data, information, and metadata discovery. Allowing users and services to find data within a fluid or unknown Grid topology.
7.1 Summary

Data and information discovery is very important in multi-user and multi-organisational Grid environments. Within a simple, single-organisational Grid, resources, services, data, information, and metadata locations can be passed by word of mouth, and understanding of the underlying Grid fabric (i.e. how it has been setup). For multi-organisational, multi-user Grids, where services and users may simply be purchasing the resources of the Grid, passing this information by word of mouth becomes a cumbersome and restrictive if not impossible mechanism. What data is stored in the Grid, or what services are available on the Grid, may not be known by the infrastructure providers. Add to this the constraints of business-to-business interaction, with sensitive data and services being used on the Grid, and it becomes clear that some mechanisms are needed to facilitate discovery.

Data discovery is the process of fulfilling user queries with data, or the location of data, that is the closest match to the data they specified in their query.

The example shown in this scenario is based on Echo Pattern networks [1] and is taken from the NextGRID document P4.3.4 [2].
7.2 Scenarios
There are a very large number of discovery scenarios, but for the purpose of illustration we will focus on three standard examples:

· Service/Resource Discovery

· Data Discovery

· Data Creation

7.2.1 Resource Discovery

The first area can be classed as resource discovery, and actually has two main functional aspects to it. Firstly, there is the situation when a user wishes to locate a particular resource, or a set of particular resources. Queries such as “Find me all the computers that are pink” or “Find me the data store that holds Fred’s data” are good examples of this. The second aspect of information discovery in a resource context is when a user already knows the location of a resource but would like to obtain some metadata about that resource. This is really a more specific version of the general resource discovery problem, where the resource location or name is provided to the discovery service and certain metadata is request. So “Tell me how many GB of memory there is in computer xx591” would be an example of this.

7.2.2 Data Discovery

The second main area of use for a data/information discovery mechanism is locating specific data within a data resource. At some level, this can again be considered as a specific version of general resource discovery, except instead of querying metadata about a particular resource, we are querying data held within a resource. However, it is likely that for all but the simplest data stores this kind of operation will have a different interface and mechanism than that for discovering metadata about a resource. Efficiently obtaining data from a resource such as, for example, a large relational database, or a large collection of images, requires specific algorithms and techniques. These are likely to be implemented by the resource provider, rather than the echo node provider, and have a different entry point than that for the metadata discovery mechanism. They may also need different querying interfaces, to allow queries to be tailored to specific data. Two examples of this kind of query are “Find me the accounts data associated with person number x1234” or “Find me the first 10 image files in the green5 image store”. In the first instance, this is a coupling of resource discovery and data discovery because the discovery mechanism must first find a resource that can provide that kind of data, and then find the data itself. The latter case is a pure information discovery problem, as the resource has already been located or is already known. We can see from these two examples that the information/data discovery mechanism is impinging on data transfer/transport mechanisms/services. Whilst it will not always be ideal to use the discovery service to return data (i.e. in the case where you are using very large datasets or files), it is obvious that the mechanism must be able to support a reasonable level of data transport.

7.2.3 Data Creation

The third usage scenario for data/information discovery is that in which a query is submitted which can only be satisfied by the creation of new data from existing data within the Grid. An example of this would be “Tell me the average temperature of the temperature probes connected to this Grid”. This involves searching for all temperature probe services or resources in the Grid, requesting the temperature property from these resources, and then performing an operation to return the requested value. This task could be achieved by the application itself, i.e. the query could be satisfied by an application requesting all temperature readings in the Grid, and then performing the averaging operation itself. However, we can see that it may be more efficient if the discovery mechanism supports this kind of operation, as it cuts down on the amount of data being transferred throughout the Grid.

These three scenarios all require the same basic steps to perform the discovery operation:

1. User sends a query to a discovery service.
2. Discovery service parses query.
3. Discovery service attempts to satisfy query.
4. Discovery service returns results to the user.

However, what these steps entail in practise very much depends upon the discovery mechanism used. In the NextGRID discovery work we have chosen to use a decentralised discovery network as opposed to a traditional registry based solution.

The core of the discovery network is the echo node, which can be considered the main discovery component. An echo node accepts queries from users, or from other echo nodes, and attempts to match that query to resources it knows about. It may also pass a query onto other echo nodes within the Grid. Any echo node can be the entry point for queries into the discovery mechanism. The echo node also contains functionality that may allow aggregation of data, providing the potential for a solution to the Data Creation usage scenario.

The echo node discovery system allows for an extensible mechanism, with local control of echo node behaviour by implementers. This is important in the business-to-business case where businesses may allow users to search their data or services/resources but would want control of the search algorithms and criteria used. It also removes the need for a single organisation or individual to provide and maintain the discovery service.
7.3 Involved Resources
Each Data Discovery Service (echo node) accepts queries from customers and attempts to match that query to local resources. It may also pass on the query to another Data Discovery Services and aggregate any returned data.

The Data Services provide the interfaces to the data resources.

[image: image21]
7.4 Functional Design
Below are example interfaces between the consumer/client, the services and the data storage elements with references to the relevant sections of the OGSA Data Architecture document [OGSA Data Arch].

Each Data Discovery Service has identical interfaces and contains Propagator, Aggregator and Locator components. It also implies that in order to aggregate all of the data from other nodes and resources, the query results must be in the same or at least in a recognisable and equivalent format.

Data Discovery Services use Point-to-Point style networking to propagate and collect/aggregate results and queries.

[image: image22]
The interfaces for the steps that occur in the typical data discovery scenario are as follows:

1. Customer submits a query to one of the Data Discovery Services (an echo node) – section 7 “Data Access”, a DAIS query say.

2. Each Data Discovery Service sends the query to any local resources (shown here as Data Services 1 to 4) that can deal with the query – section 7 “Data Access”, a DAIS query say. Note that querying of the actual data storage will depend on the type of storage and so will most likely be an application specific interface.

3. Each Data Discovery Service also forwards the query to some other Data Discovery Services within the network (where “some” can be zero or more) – section 7 “Data Access”, a DAIS query say.

4. Resources return any relevant results to the Data Discovery Service – section 7 “Data Access”, a DAIS query response say.

5. Result sets are collated (and aggregated if necessary) and returned to the query originator – the collecting together of results sets is an internal function and will most likely be application specific. The returning of the results may be in the form say of a response to the DAIS query detailed in step 3, or it may be an application specific interface.
6. Originating Data Discovery Service returns the results to the customer – section 7 “Data Access”, a DAIS query response say.

7.5 References

1. Chang, E. J.-H., Echo algorithms: Depth parallel operations on general graphs. IEEE Trans. Softw. Eng. SE-8 (1982), 391-401.

2. Jackson, A., “Revised Data Content Model Specification”, NextGRID Project Deliverable P4.3.4.
8. Data Storage Scenario
Store file data in a Grid data service and retrieve it later.
8.1 Summary

Data services are always built on top of storage facilities (hardware). The specifics of the storage devices used at different sites must not be exposed to the Grid users and services. The Grid client of a site data storage facility just wants to have a certain amount of ‘space’ in bytes for a certain amount of time with some characteristics (access time, latency, average bandwidth), specified in a standard manner at any participating Grid site independently of the underlying storage hardware.

Data services are often the lowest layer resources that are provided by the Grid architecture and the clients of data services are higher-level data management services. The data itself is accessed using some standard protocol, probably provided by a data access service. In the Data Storage use cases the actors are: The client, the data storage service and the access, streaming and transfer services. The client could be reading/writing data into storage through any of these data services.

Before being able to do anything, the client needs a data handle/reference to read from/write to. This handle is given to it by the Data Storage Service upon request. In the GGF Grid Storage Management Working Group (GSM-WG) this handle is called the Storage URL (SURL) [3].

A Data Storage Service is usually a site service, i.e. is permanently associated with a given site. However, we should not exclude online data stores for example or NAS or SAN systems where the actual architecture of the storage device may span many physical locations. In this case the entry point to the same data service may be given at many sites.

In terms of securing the data on the data storage, the Data Storage Service discussed here relies on the available security mechanisms of the underlying data storage device to enforce authorization. However, to the outside world the proper OGSA semantics should be exposed, translating the intricacies of the given device into the standard interface semantics.
In the EGEE [1] and LHC Computing Grid [2] infrastructures, the storage devices used at the High Energy Physics laboratories are often hierarchical storage devices with a tape backend ([4, 5]). Such storage solutions necessitate the careful planning of what data needs to be available online, i.e. spinning on disk as opposed to stored on tape, due to the large cost (in terms of latency and performance) involved in bringing data from tape to disk. Usually only up to 20% of the total data can be brought online. Data on tape is usually referred to as nearline data.

The Storage Resource Management (SRM) interface [3] defined by the GSM-WG defines the management interface on top of hierarchical storage to abstract the underlying hardware. There are already a number of implementations that are successfully interoperable with each other [4, 5, 6, 7, 8], and additional Grid storage systems have expressed their interest in providing an SRM interface as well [9, 10].
8.2 Scenarios

There are several types of data services that could be considered. Some applications need space to store files, others just want to stream data in and out, still others may request a raw device or a database handle. Here we focus on the file storage use case.

8.2.1 Use case for writing a single file

A client wants to put a file into storage. Steps in detail:

1. The client needs to request some file ‘space’ from the Data Storage Service to which the file can be written. If the client already holds such a space token, this step may be skipped. Storage space has a size, lifetime and some associated semantics. The client requests this space using the credentials that are given to it by its Certificate Authority (CA) and also the roles that are assigned to it by a (set of) Virtual Organisation(s). Based on the agreements that exist between the storage provider and the VO(s) the client is granted a certain amount of file space to be used. This step may be implicit, for example the client may simply know that a certain SURL namespace is valid for its VO.

2. The client requests a file name (SURL) from the Data Storage Service for the given space to write a file. The Data Storage Service returns a valid SURL. This is the name that can be used later to retrieve the file again. This name may be kept in a file discovery service, file catalogue or registry. Again this step may be implicit if the client simply knows that it has the right to write into a certain predefined VO specific namespace.

3. Using the file name, the client requests a file URL (reference) with some specific parameters (protocol, security tokens, etc) with which the file can be actually written. In the GSM-WG this URL is called the Transfer URL (TURL). The Data Storage Service returns a valid TURL reference for the requested protocol or negotiates another protocol or parameters with the client if it cannot serve the request. The TURL may also be an Access URL (i.e. for POSIX access as opposed to transfer).
4. The client makes use of the service that supports the requested protocol to actually write the file into the given space on storage using the TURL. This may be through:

a) The Data Storage Service directly,
b) or a Data Access Service,

c) or a Data Transfer Service.

[The security semantics must be the same whichever interface is being used, i.e. the authorization semantics (ownership, access control lists) have to be set up in the same way through all interfaces. In order to achieve this, it may be necessary to additionally synchronize with some other file authorization service.]

5. The client notifies the storage at the end of the operation that the write is complete.

8.2.2 Use case for reading a single file

A client wants to get a file from storage. Steps in detail:

1. It is assumed that the client knows the name of the file located on a certain storage space (i.e. its SURL). The Data Storage Service is contacted using the SURL and additional parameters to request the reading of the file (using a certain protocol, with some characteristics).

2. The Data Storage Service returns a valid TURL (reference) for the given protocol, which may be directly used to read the file. The read can be done by talking directly with the Data Storage Service, or through an Access, Transfer or perhaps Streaming Data Service (depending on the protocol).
Alternatively, a read (or write) may want to be done by talking directly with the File Space, in which case some other out-of-band communication would be required.
8.2.3 Use case for preparing a large number of files to be available online

The interface to the Data Storage Service needs to be able to provide the ability to specify that the data should be available with low-latency and high bandwidth for a certain amount of time. This ‘online time’ concept is independent of the total data lifetime in the storage and needs to be managed separately. However, it cannot exceed the total data lifetime.

The client has the file names for a set of files in a given space and requires that these files should be available online. Such preparation before accessing data is necessary for some storage devices, such as for example hierarchical storage.

1. The files are made available online by the Data Storage Service.

2. The data are read through an appropriate interface, such as the Transfer Service.
3. The online attribute of the files may expire and they can be retired to nearline storage.

8.2.4 Use case for removing a file from storage

Normally all files and all spaces have a certain lifetime. Nevertheless, in order to make use of the available space optimally, the users may want to do space management to some extent themselves, i.e. to remove unwanted data to make space for new data.
1. Using a Storage file name SURL the file is requested to be removed from the given storage space.

2. The file is removed and the available space is increased accordingly so that the client can put new files into the space.

There are further use cases for non-file storage, e.g. raw device, streaming, etc. These are however quite straightforward to deduce from the file storage scenario and are therefore not spelled out explicitly.

8.3 Involved Resources

Resources involved are the Data Storage Services on top of the storage, Data Transfer and Data Access services. File discovery services as well as data streaming services may also be included.

We assume that the client is authorized to perform the operations described in this scenario. We also assume that the data is sufficiently secured for the purpose of the client. Normally the VOs using the Data Storage Services have Service Level Agreements (SLAs) with the sites they are allowed to use about how much storage and what quality of service they are entitled to.

The Storage resources need to have an agreed set of interfaces in order to be able to provide ‘ubiquitous’ Grid storage to the VOs. All storage devices need to have a standard data service interface for managing user storage space and exposing all the necessary semantics thereof. The implementations have to adapt the underlying device semantics to the data service semantics.

8.4 Functional Design

8.4.1 Use Case 1: Writing a file into storage
Below are example interfaces between the consumer/client, the services and the data storage elements with references to the relevant sections of the OGSA Data Architecture document [OGSA Data Arch].

[image: image23]
The interfaces in the different steps of the scenario are as follows:

1. The customer requests file storage space on the Data Storage Service to which the file can be written – section 8.4 “Storage Space Properties” using a WS-Agreement interface (see also section 3.6 “Policies and Agreements”).
2. The customer requests a file name (SURL) from the Data Storage Service for the given space to write a file. The Data Storage Service returns a valid SURL. WS-Addressing???
3. Using the file name, the client requests a file URL (reference) with some specific parameters (protocol, security tokens, etc) with which the file can be actually written. The Data Storage Service returns a valid Transfer URL (TURL). The TURL may also be an Access URL (i.e. for POSIX access as opposed to transfer). WS-Addressing???
4. The client makes use of the service that supports the requested protocol to actually write the file into the given space on storage using the TURL. This may be through:

a) The Data Storage Service directly,

b) or the Data Access Service – section 7 “Data Access”,

c) or the Data Transfer Service
 – section 6 “Data Transfer”.

The client notifies the storage at the end of the operation that the write is complete – section 3.4 “Notification of Events”.
8.4.2 Use Case 2: Retrieve a file from storage
This is straightforward and is described above in section 8.2.2, provided the client is properly authorized. The necessary access protocol interface needs also to be secured accordingly.

8.4.3 Use Case 3: Make data available online
The client has the file names for a set of files in a given space and requires that these files should be available online.

Below are example interfaces between the consumer/client, the services and the data storage elements with references to the relevant sections of the OGSA Data Architecture document [OGSA Data Arch].

[image: image24]
The interfaces in the different steps of the scenario are as follows:

1. The files are made available online by the Data Storage Service – section 8.4 “Storage Space Properties” using a WS-Agreement interface.

2. The data are read through an appropriate interface, such as the Transfer Service – section 6 “Data Transfer”.

3. The online attribute of the files may expire and they can be retired to nearline storage – section 8.4 “Storage Space Properties” using a WS-Lifetime interface say.

8.4.4 Use Case 4: Removing file from storage
This is just like use case 2 and straightforward if the client has the proper authorization to remove the data from its space.
8.5 References

Relevant references:

1. Enabling Grids for E-sciencE (EGEE) project: gLite Middleware Architecture Document (Deliverable DJRA1.3), https://edms.cern.ch/file/567624/3/EGEE-DJRA1.3-567624-0.4.doc.
2. The LHC Computing Grid project, http://lcg.web.cern.ch/LCG/.
3. The Storage Resource Management Interface Specification (GGF GSM-WG), version 2.1.1, 23 March 2004, http://sdm.lbl.gov/srm-wg/doc/SRM.spec.v2.1.1.doc.
4. dCache (DESY), http://www.dcache.org/.
5. CERN Advanced STORage Manager (CASTOR), http://castor.web.cern.ch/castor/.
6. Disk Pool Manager (CERN), http://wiki.gridpp.ac.uk/wiki/Disk_Pool_Manager.
7. BNL Disk Resource Manager (DRM), http://www.atlasgrid.bnl.gov/srm/manuals/hrmclient-guide.htm.
8. JASMine - Jefferson Lab Asynchronous Storage Manager, http://cc.jlab.org/scicomp/JASMine/.
9. Condor NeST, http://www.cs.wisc.edu/condor/nest/.
10. SDSC Storage Resource Broker (SRB), http://www.sdsc.edu/srb/.
9. Data Provenance Scenario

The provenance of a piece of data is the process that led to that piece of data; the history of ownership of an object.
9.1 Summary

Provenance is already well understood in the study of fine art where it refers to the trusted, documented history of some art object. This same concept of provenance may also be applied to data and information generated within computer systems. Work on a generic and standardised grid provenance architecture is being carried out by the EU Provenance Project [1] and the PASOA project [2]. They define the provenance of a piece of data as the process that led to that piece of data. The EU Provenance Project describes the logical and process architectures of provenance systems in their document, “An Architecture for Provenance Systems” (D3.1.1) [3].
In their architecture document they distinguish a specific piece of information documenting some step of a process from the whole documentation of the process and introduce the term “p-assertion”. This is defined as follows:

A p-assertion is an assertion that is made by an actor and pertains to a process.
A given p-assertion may belong to the provenance representation of multiple pieces of data. When a p-assertion is created (and later recorded), it documents a step of a process in progress, which ultimately will lead to a piece of data.

9.2 Scenarios
9.2.1 Single Provenance Store Scenario
Will probably not bother including security aspects in these scenarios.
The following steps typically occur in a simple scenario with just a single provenance store:

1. A provenance aware application (service) creates a p-assertion, along with any other relevant information relating to the process that it has performed on the data, and records it with the Provenance Service.
2. User 1, wanting to query the Provenance Service, uses a Processing Service to provide added-value to their query. Results from the query are returned again via the Processing Service.
3. User 2 performs management of Provenance Service and the p-assertions stored by it in order to, for example, update links and possibly delete particular p-assertions.
9.2.2 Multiple Provenance Stores Scenario
The following steps occur in this scenario:

1. Customer

TBD
9.3 Involved Resources

The Provenance Service is responsible for storing (making persistent), managing and providing controlled access to recorded p-assertions.

The Application Service is responsible for carrying out the relevant business logic and is an actor that submits p-assertions to a Provenance Service for recording. The Application Service could be a domain-specific service, but may also be generic middleware such as workflow enactment engines, registries or application user interfaces.
A querying user is an actor that issues provenance queries to the Provenance Service. They may have a presentation user interfaces to aid the visualisation of query results and processing services’ outputs.
The Processing Service is one of many different possible services that is used by the querying user in order to provide added-value to the query interfaces by further searching, analysing and reasoning over recorded p-assertions,

A managing user is an actor that interacts with the Provenance Service for management purposes in order to manage the contents of the provenance store.

9.4 Functional Design

9.4.1 Single Provenance Store Design

[image: image25]
An example of the interfaces between the user/client, the services and the provenance storage elements in the different steps of this simple scenario with just a single provenance store are as follows:

(Note: References to the relevant sections of the OGSA Data Architecture document [OGSA Data Arch] have also been included.)

1. A provenance aware application (service) creates a p-assertion, along with any other relevant information relating to the process that it has performed on the data, and submits it to the recording interface of the Provenance Service. See section 7.1 of [3] – section 12 “Metadata Catalogue & Registries” (Publish operation)???
2. User 1, wanting to query the Provenance Service, uses a Processing Service to provide added-value to the query interfaces. See sections 7.2 & 7.3 of [3] – section 12 “Metadata Catalogue & Registries” (Find operation), or section 7 “Data Access”, a DAIS query response say???
3. User 2 uses the management interface in order to update links and possibly delete particular p-assertions stored by the Provenance Service. See section 7.4 of [3] – section 12 “Metadata Catalogue & Registries” (Update and Delete operations)???
9.4.2 Multiple Provenance Stores Design

[image: image26]
An example of the interfaces between the consumer/client, the services and the provenance storage elements in the different steps of the scenario are as follows:

9.5 References

Relevant references:

1. The EU Provenance Project Enabling and Supporting Provenance in Grids for Complex Problems, http://twiki.gridprovenance.org/bin/view/Provenance/WebHome.
2. PASOA: Provenance Aware Service Oriented Architecture, http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/WebHome.

3. “An Architecture for Provenance Systems” (D3.1.1), Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, Victor Tan, Sofia Tsasakou, Luc Moreau, http://eprints.ecs.soton.ac.uk/12023/01/provenanceArchitecture7.pdf.

4. “Standardisation of Provenance Systems in Service Oriented Architectures - White Paper”, Luc Moreau, John Ibbotson, http://eprints.ecs.soton.ac.uk/12198/01/WhitePaper.pdf.

10. Security Considerations

In general, the security considerations appropriate to these data scenarios are the same as those described in the OGSA Data Architecture document [OGSA Data Arch]. Where necessary, further security considerations have been discussed in the particular scenarios and use cases described above.
Author Information

Stephen Davey,

National e-Science Centre,

15 South College Street,

Edinburgh, EH8 9AA,
United Kingdom.

s davey @ nesc.ac.uk

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

References

[OGSA Data Arch]
“OGSA Data Architecture - version 0.5”, D.Berry, A. Luniewski, https://forge.gridforum.org/projects/ogsa-d-wg/document/Strawman-Architecture_V.5/en/2.
[Fowler & Scott 1999]
“UML Distilled Second Edition: A Brief Guide to the Standard Object Modeling Language”, Martin Fowler and Kendall Scott, Addison Wesley, 1999.

[OGSA Glossary]
“Open Grid Services Architecture Glossary of Terms”, J.Treadwell, http://www.ggf.org/documents/GFD.44.pdf, 25 January 2005.

 [OGSA Use Cases]
“Open Grid Services Architecture Use Cases”, I. Foster, D. Gannon, H. Kishimoto, Jeffrin J. Von Reich, http://www.ggf.org/documents/GFD.29.pdf, 28 October 2004.

 [Use Cases Tier 2]
 “Open Grid Services Architecture: Second Tier Use Cases”, GWD-I: draft-ggf-ogsa-usecase-tier2-20.doc, 1 March 2004.

[WS-DAI]

“Web Services Data Access and Integration – The Core (WS-DAI) Specification, Version 1.0”, DAIS-WG, M. Antonioletti et al., http://www.ggf.org/Public_Comment_Docs/Documents/Feb-2006/Grid_Data_Service_Specification-201205.pdf, 20 December 2005.

[ByteIO]

“ByteIO Specification 1.0”, ByteIO WG, M.Morgan, http://www.ggf.org/Public_Comment_Docs/Documents/Feb-2006/draft-byteio-rec-doc-v1-1.pdf, 28 October 2005.

[JSDL]

“Job Submission Description Language (JSDL) Specification, Version 1.0”, JSDL-WG, A.Anjomshoaa et al., http://www.gridforum.org/documents/GFD.56.pdf,
7 November 2005.
[image: image27.png]
Client

1

Client

2

Client

3

Service

1

Service

2

Data 1

Data 2

Data 3

Registry

Customer

1

Data Transfer

Service

Replication

Service

Data Storage 1

Data Storage 2

Data Service 2

Data

Service 1

Registry

Service

Customer

1

Data Transfer

Service

Replication

Service

Data Storage 1

Data Storage 2

Data Service 2

Data

Service 1

1b. Publish

2. Transfer

copies

6. Update

4. Access data

5. Notify

2. Transfer

copies

2. Transfer

copies

Registry Service

3. Find data

1a. Register data

1. Register

Customer

1

Data Transfer

Service

Data Storage 1

Data Storage 2

Data Service 2

Data

Service 1

2. Transfer copies

6. Update

3. Find data

4. Access data

5. Notify

2. Transfer

copies

2. Transfer

copies

Repli-cation

Service

Data

Service

Replica Catalogue

Service

Index

Index

Index

Local Cache Service 1

Customer 1 (site 2)

Local Cache Service 2

Global Name Resolver Service

Data

Service 3

Data

Service 2

Data

Service 1

6. Use named space.

Data Transfer

Service

4. Use named space.

Personal Data Service

Registry

Service

Index

Index

Customer

1

Rendering

Service

Completed Animations

Visualisation

Service

Customer

2

Provenance Storage

Provenance Storage

Hospital Provenance Service

Testing Lab Provenance Service

Provenance Storage

Provenance Storage

2. Query.

Customer

1

Customer

2

Rendering

Service

Completed Animations

Visualisation

Service

Customer

2

1. Submit job.

2. Store results.

3. Transfer results.

4. Return results.

Customer

1

Customer

1

Data Integration

Service

Data Registry Service

Data Storage 1

Data Storage 3

Schema Registry Service

Data Storage 2

Schema map repository

Data

Service 1

Data

Service 2

Data

Service 3

Data Registry Service

Data Storage 1

Data Storage 3

Data Storage 2

Schema map repository

Data

Service 1

Data

Service 2

Data

Service 3

Schema Registry Service

1. Publish data.

2. Provide local schema mappings.

3. Notify of schema changes.

4. Update schema mappings.

Data Integration

Service

Data Discovery Service

Data Storage 1

Data Storage 3

Data Storage 2

Schema map repository

Data

Service 1

Data

Service 2

Data

Service 3

Schema Mapping Service

1. Publish data.

3. Locate data.

2. Send query.

4. Request schema mappings.

5. Update schema maps.

7. Query data.

8. Results returned.

Customer

1

6. Mappings returned.

Customer

1

Data

Service 1

Boundary Conditions

Simulation

Service

Data

Service 2

Parameter

 Set

Boundary Conditions

 (copy)

 Results

 Set

Data

Service 1

Parameter Space Exploration

Service

Boundary Conditions

Simulation

Service

Data

Service 2

Parameter

 Set

Boundary Conditions

 (copy)

 Results

 Set

1. Submit job.

6. Delete boundary condition data.

7. Query results set.

3. Set up Results DB. �5. Store results.�9. Delete Results DB.

2c. Bulk load boundary condition data.

4. Generated jobs from parameter set.

Index

Local Cache Service 1

8. Return derived data.

Local Cache Service 2

Customer

1

2b. Query relevant boundary conditions.

2a. Get EPR for storage & CPUs.

Customer 1 (site 1)

Registry

Service

Personal Data Service

Data Storage 1

Data Storage 3

Data Storage 2

Data

Service 1

Data

Service 2

Data

Service 3

Customer 1 (site 2)

Global Name Resolver Service

Data Discovery Service

Data Discovery Service

Data Discovery Service

Data

Service 4

Data Storage 4

Data Discovery Service

Data Discovery Service

Data

Service 3

Data

Service 2

Data

Service 1

Data Storage 2

Data Storage 3

Data Storage 1

Customer

1

Storage Devices

Customer

Data Storage�Service

Access�Service

Transfer�Service

File�Space

1. Request file space.

2. Get file name (SURL).

3. Get Transfer URL (TURL) or Access URL.

4a. Write file.

5. Notify of completion.

Customer

1

Data Storage 1

Data Storage 3

Data Storage 2

Data

Service 1

Data

Service 2

Data

Service 3

4a. Write file.

Data Storage 3

Data

Service 4

2. Read files.

1. Make online.

4c. Write file.

4b. Write file.

1

2

3

4

6

2

2

2

1. Submit query.

2. Query local resources.

3. Forward query.

4. Resources return results.

5. Return results to originator.

6. Return results to customer.

3

3

3

3

4

4

4

5

5

5

5

Customer 1 (site 1)

2. Create named space.

3. Name collection.

1. Locate data.

2. Create.

5. Update.

Customer

2

Customer

2

7. Update.

 Data

Customer

2

Service

Data Transfer

Service

3. Transfer results.

Client

Parameter Space Exploration

Service

Data Discovery Service

Data Discovery Service

Data Discovery Service

Data Discovery Service

Data Discovery Service

2. Read files.

 Online

 Storage

1. Make online.

 Nearline

 Storage

3. Retire to nearline.

1. Make files online.

4c. Write file.

4b. Write file.

Transfer�Service

3. Retire to nearline.

Data Storage�Service

Customer

Storage Devices

Testing Lab Application Service

EHCRS Provenance Service

Electronic Health Care Records Application

1. Record.

2. Query.

Provenance Storage

Processing Service

Hospital Application Service

2. Query.

User 1 Presentation UI

Application Service

Processing Service

Provenance Storage

User 1 Presentation UI

2. Query.

User 2 Management UI

1. Record.

3. Manage.

Provenance Service

Customer

2

9. Results returned.

8. Query data.

7. Get schema mappings.

6. Send query.

5. Locate data.

Schema Registry Service

Data

Service 3

Data

Service 2

Data

Service 1

Schema map repository

Data Storage 2

Data Storage 3

Data Storage 1

Data Registry Service

Data Integration

Service

�May also want add the Storage Resource Broker as a scenario.

�To be added by Chris Jordan?

�To be added by Dave Berry?

�Need to talk about how the copy locations are specified. Per arch. Doc. these are parameters of the operation that creates the replication service.

�Somewhere in here there needs to be a discussion of who specifies DS1 and DS2. In this case, it is the actor asking for creation of the replication.

�As with 2.4.1, the specification of DS1 and DS2 needs to be done. In this case, DS1 comes from the client while DS2 is created autonomically by the replication service.

�I don’t think that this is right. The whole point here is that DS provides transparent access to the data, be in DS1 or DS2.

�Which data resource? I think that you mean DS1 in section 2.4.1 and DS1 & DS2 in 2.4.2.

�Who specified the visualization service as a sink? Presumably Customer 1 but this should be stated.

�Which ones are published? All? A subset? If a subset, how is it chosen?

�Which schema mappings are placed here? Is the integration service bounded to just those in the schema map repository?

�What query language? Does the integration service support all query languages? Or just some? If just some, how does the client determine which ones are supported?

�What services can the integration service access?

�The integration scenario looks almost exactly like federation to me. What is the difference between integration and federation?

�Which ones? How is the set specified?

�This language is a bit loose. What I think is happening is that DS1 uses Data Transfer to move the data from DS1 to DS2 (previously created?). The Simulation Service then accesses needed data via DS2.

�The cache service seems to be gratuitous in this scenario.

�So the model is that the collection is built in the cache? I do not think that this view is consistent with the architecture document which would say that the cache is a performance optimization and that, logically, the “build” is taking place in the backend store (perhaps with latency).

�See above, This seems to have a different view of what a cache is and how it works than is written in the architecture document.

�I don’t see how this differs from the data integration scenario.

�I am not sure that this works. What is the source, in Data Transfer terms, of the data being moved?

�The discussion of p-assertions and the provenance store needs to be expanded. When I read this, I did not immediately see why the p-assertions were not meta data on the data itself.

I am guessing that the key idea is that, in practice, a p-assertion is a tuple of the form <source data, destination data, time stamp, transformation step>.

s davey @ nesc.ac.uk

1

