
Grid File System Scenario

A Grid File System provides a simple, hierarchically structured view of diverse data
resources, along with service interfaces to access or transfer the data to clients. A client
may be a Grid-enabled browser or an interface to the Posix I/O API, or even another
service.

Summary

This scenario extends the functionality and workflow presented in Scenario 3, Data
Pipelining. That scenario presents a workflow associated with a digital imaging
production process, noting that it is common now for 3D animations to be very complex
and include numerous files, and also for the image rendering process to happen on
rendering(compute) clusters separate from the desktop machine used by the scene
designer. In this scenario, an equally common but even more complex configuration is
envisioned, in which the animators workstation and associated data resource, the
rendering compute and data resources, a technical/creative directors workstation, a post-
processing compute resources, and the corporate clients presentation video and data
resources, are all involved in a single workflow. This apparent single point-of-access
must be achieved even though each human, compute, and data resource may be located in
a different geographical region, may be based on different hardware with different
capabilities, and may be in separate administrative domains.

Scenarios

1. A Grid File System service is created and configured for a specific project,
commissioned by a corporate client of a digital imaging firm. The GFS service, utilizing
the Resource Namespace Service, provides a unified directory hierarchy containing
subdirectories for all the commonly-accessed components of the digital-imaging process,
from 3D models and textures to animation sequences, test renders, renderings of “layers”
of a scence, and final composited images. The GFS also provides a single mechanism of
access to all the data resources referenced by it; in this case, that mechanism is generally
Posix I/O.

2. An animator builds an animation definition file with a commonly-used tool such as
Alias’ Maya, utilizing models created by modelers, and textures created by texture
painters. The models and textures may be accessed through data services which serve
data from the shared fileservers used by the modelers and texture painters, but are
presented to Maya as simple files in “models” and “textures” subdirectories of the GFS
hierarchy, and are accessed by Maya through the standard Posix I/O API. The final
animation is to be rendered in “layers”, with separate components of the scene rendered
separately (for example, backgrounds may be rendered first and then used as reflection-
maps for foreground objects)

3. The animator submits an animation rendering task to her companies render/compute
cluster, which divides up the layers and the frames of the animation and farms them out

to separate nodes within the cluster. The animation description itself and its data
dependencies, such as textures and models, are accessed using the same GFS-managed
path and access mechanism that she used when creating the scene, although each may
actually be retrieved using various data transfer services associated with resources local
to each employee. The results are written directly to the cluster’s local high-performance
parallel filesystem such as IBM’s GPFS,

4. As they are completed, the high-resolution, high-quality layer files are registered with
a Replica Location Service, and their RLS addresses are registered with the GFS server,
which in turn creates one or more RNS virtual directories to contain references to the
rendered images (junctions in RNS terminology). All modern rendering applications
support this kind of post-render callout function.

5. As the layer-rendering process is completed for individual frames, a technical director
examines the files for accuracy and conformance to the clients needs by launching single
compositing processes on a compositing/post-processing compute cluster, which returns
the completed frames to the storage server at the technical director’s office using a data
transfer service and then registers the files with the GFS service. The technical director
may go through multiple iterations of this compositing process, tuning parameters such as
transparency, layer-order, and color-correction of each layer, until she is satisfied. The
creative director also examines the composited frames, from the same location within the
GFS hierarchy, and determines that the animation is ready for batch-composition
followed by presentation to the client.

6. The technical director then launches a batch composition process on the post-
processing compute cluster, this time using data transfer services to transfer the files both
to the companies main archival storage system as well as to the high-performance file
systems used for presentation at the external client site. A separate RNS service is used to
manage the primary archival storage area, and a new reference to the RNS directories
containing the final images and component layer images is created within the project
GFS service, with access controls applied through the GFS so that the corporate client
can access only the required presentation materials, and none of the possibly sensitive
other materials stored on the companies main archival system.

7. Using an RLS and data transfer services, duplicates of the large, high-quality finished
image sequence are created on the clients high-performance file system, which is directly
connected to a high-resolution projection system. The final image sequence is viewed by
the corporate client during a meeting with the digital imaging company creative and
technical directors, and the client is given the ability, using the GFS service, to browse
the relevant final product, as well as the component layers used to construct the final
images, Once this infrastructure is in place, it can remain in place as the design and
implementation details for the animation are refined.

Involved Resources

Grid File System Service provides a front-end to the client, managing underlying services
for directory management, service selection, and data transfer.

The Namespace Service provides mappings of entries in a directory hierarchy (names) to
data services, which may be simple data transfer services or more complex replication
services. It also provides properties associated with each directory entry.

Registry or replication services may be used to provide multiple locations for data
transfer for some or all of the files in the “file system”

Data Transfer Services are used to provide data from data resources to the GFS service or
directly to the client

Functional Design

(see above for much of the functional design – major to do is to reorganize this document
to put functional design detils here instead of in the scenario section.)

Also, need to make graphs here for the functional design.

