1 List of Data Scenarios
Most (if not all) of the data scenarios described below involve some number of clients, services and data resources (such as storage elements). It most cases it can be assumed that a Registry Service, or a Replica Service say, would also exist but this will not always be explicitly detailed in the use cases.

[image: image1]
Note that Fowler and Scott define:

A scenario is sequence of steps describing an interaction between a user and a system.

 A Use Case is a set of scenarios tied together by a common user goal.

An actor is a role that a user plays with respect to the system.

The data scenarios can be divided up into simplified architectural patterns as follows:
· One client – one service – one data resource: Simple Data Access.

[image: image2]
· Many clients – one service – one data resource: More complex Data Access, Data Warehousing.

[image: image3]
· Many clients – many services – one data resource: Data Pipelining.

[image: image4]
· One client – one service – many data resources: Data Replication, Data Integration, Data Federation.

[image: image5]
· One client – many services – many data resources: Data Discovery.

[image: image6]
Hence the following use cases for the OGSA Data architecture are described in this document:

1. (Simple) Data Access – access a remote data source (e.g. a file or database), or submit a query and get a reply; data management.
2. Data Replication – maintain a replica of a data file say at a different location (for availability or performance); create a local cache of remote data.
3. Data Warehousing – data delivery? Triggered data movement?
4. Data Integration – bringing the data that you require together from disparate sources.
5. Data Federation (aka Virtualisation??) - constituting a single data set out of a number of separate data sources or data sets/resources; query a federated resource.
6. Data Pipelining (aka Transfer or Composition??) – connect the output from one service to the input of another.
7. Data Discovery – discover data; register data.

2 <Template: Use Case / Scenario Name>
	Use Case Identifier

	Use Case Name
	

	Date
	

	Author’s Organisation
	

	Author’s Name
	

	Author’s e-mail.
	

2.1 Summary

Here you would summarize the use case that you are describing.

This section should emphasize the (business) requirements being addressed by the use case.
Describe the clients, actors and/or stakeholders of this use case and their needs.
What individuals, organizations, or other services or endpoints will be clients in this particular use case?

Where and how the use case occurs "in nature" and for whom it occurs.

Provide abstract scenario description to explain customers’ needs.

Specifics on scale are important. For example: Is the use case inter-site or intra-site? Is it geographically distributed? How many users are expected for this use case?
Security Considerations: Are there additional or specific kinds of security considerations that you think apply to this particular use case that may not have been covered in the data architecture document.
Performance Considerations: What role does performance play in this use case? Are there additional or specific performance considerations of the use case that may not have been covered in the data architecture document. Are there limitations on scalability? Any performance bottlenecks?
Use Case Situation Analysis: If applicable, describe why this scenario is important; why it hasn’t already been covered; why research and work here are needed, and how other existing technologies answer, or fail to answer various pieces. You can also bullet-ize important, key points of the use case.
2.2 Scenarios

Here you list all of the various scenarios that can make up your use case.

Explain primary scenario of this use case. If you have more than one, list all major scenarios in this section. Please include figures if possible.

This section should include the basic flow of the use case, alternative flows and exceptional flows.

Indicate what the results are achieved following successful outcome of your use case.

2.3 Involved Resources

What resources/services are involved in this use case?

What Pre-Conditions does your use case assume?

Explain all resources managed and provided by the Grid system, including hardware, data, software as appropriate that might be involved.
What sort of SLA is used in your scenario, how is it advertised, discovered, negotiated, how is the monitoring instantiated, any enforcement mechanisms.

Are these resources geographically distributed? How many resources are involved in the use case?
2.4 Functional Design
What functional pieces are required to make this work? (Interfaces and operations.)

What abilities/capabilities must we have in place in order to give clients the functionality that they would expect from this use case?

Explain which of these functions your use case needs and how it uses them in detail.

If desired function is not included, you should specify what function is required.
Can also highlight those issues that have proved difficult to address with current middleware that may be used to promote further capability development, and contribute additional questions. Also highlight any areas that are developed and functioning well in the middleware used to provide potential answers to questions.
2.5 References

Any pertinent references.

Supply any external references that help to indicate the scope and relevance of your use case.
3 Data Replication Scenario
	Use Case Identifier

	Use Case Name
	

	Date
	

	Author’s Organisation
	

	Author’s Name
	

	Author’s e-mail.
	

Maintain a replica or cache of a file or database at a different location (for availability or performance).
3.1 Summary

Several use cases that include data replication are described in the OGSA Use Case documents. They highlight some of the business requirements that need to be addressed.

From the document, “Open Grid Services Architecture Use Cases”, draft-ggf-Ogsa-Usecase-Tier1-20.doc, 28 October 2004:
Example: Persistent Archive

Many large-data scientific preservation environments are built using the capabilities provided by virtual data Grid technology (e.g. California Digital Library, NARA persistent archive, NFS National Science Digital Library). Preservation environments typically organize digital entities into collections. Authenticity is tracked by the addition of appropriate metadata attributes to the collection to describe provenance, track operations performed upon the data, manage audit trails, and manage access controls. Validation mechanisms are provided to check that the data has not changed. All collections are supported across multiple sites, with replication across sites essential for:

· Disaster recovery. One cannot afford to have a collection lost due to fire or earthquake.

· Fault tolerance. When a site is down, accessing of the data is still possible from the alternate site.

· Performance. Load-balance accesses can occur across sites.

· Curation. Data is managed and maintained by experts who reside at different institutions. The primary copy tends to be at the site where the expertise is located.

From the Persistent Archive example, scenarios must deal with digital and intellectual rights of the contents. The Grid has a geographically distribution and spans across different regions with different laws. Contents have a license associated, which is a grant of permissions. Unauthorized use of the contents should be avoided so the Persistent Archive should provide access control for stored data. Furthermore, a trusted third party must certify contents.

From the Persistent Archive example, the ultimate goals are to use all available bandwidth, and register 1000 files per second.
From the document, “Open Grid Services Architecture: Second Tier Use Cases”, draft-ggf-ogsa-usecase-tier2-20.doc, 1 March 2004:
Example: RealityGrid
It is often useful to migrate a running job from one computational resource to another. In Reality Grid, a steered application is migrated by disconnecting the visualization (if any), telling the job to checkpoint and stop, transferring the checkpoint files to the new resource, restarting the job on the new resource, and re-connecting the visualization. Sometimes it is desirable to clone the job (similar to job migration but the original job is not terminated), then steer the clone into a different region of parameter space, in order to conduct the exploration of different branches of the checkpoint tree in parallel. Job cloning raises the possibility of race conditions on the checkpoint files, which must not be overwritten by the original application before the copy operation completes. Since job migration and job cloning involve the creation of copies of checkpoint files, there is a need for replica management.
Example: The Learning GRID
Currently, teaching and learning practices are mainly based on the information transfer paradigm. This focuses on content, and on the key authoritative figure of the teacher that provides information, without taking in account any finer features such as his starting skill or his learning capabilities. In order to advance the effective learning, we need to promote a new paradigm that focuses on the learner and on new forms of learning. Publishing Houses store training content and provide remote access to it. They provide search and retrieval functions on the local repository via metadata-based queries.

Data, Information and Knowledge Management services have to provide the functionalities for storing, retrieving and managing of data, information and knowledge. Their interfaces should provide transparency to the user, e.g. he/she should be able to perform a query against a data, information or a knowledge structure in the same way. Furthermore, they need replica management that will handle ownership and consistency amongst replicas.

From the Learning Grid example, each organization as a Grid Service Provider has its own security policies and systems that must be supported. Malicious intrusions in proprietary resources have to be avoided. In general, the mechanisms proposed in the OGSA Base Profile are sufficient to address general security issues.

From the Learning Grid example, organizations must be able to extract training content, concept dictionaries and ontologies from the repositories. This operation is time and resource consuming, also due to the complexity of the “reasoning” algorithms for the extraction of ontologies, and has to be optimized (e.g. using of optimized query evaluator engine) in order to optimize the overall performance. Low latency high bandwidth networks are required mainly for the large amount of multimedia data transferred during learning and collaborative sessions.

3.2 Scenarios

A simplified view of the replication scenario use case leads to the following steps taking place:
1. A file is registered with a replicating data service (details such as creation time, access control, etc. would also be included) and replication service enters the file into the replica catalogue.

2. The replication service uses a data transfer service to create copies of this file at different locations and tracks which files are kept where.

3. Clients access the catalog to find the nearest file, or to return a list of files that satisfy certain metadata requirements.
4. Clients then access the stores directly.
5. Changes to the data are notified to the replication service (replica catalogue).
6. Updates then occur between the data services to synchronize the replicas.
7. The management interface allows control of file placement, replication strategy and coherence strategy. (Also file addition & deletion.)
3.3 Involved Resources

The data replication scenario includes the following resources:

· Replication Service: This provides the front end to the client and manages the replica catalogue.

· Data Transfer Service: This manages the synchronization of the replicas and makes the copies of the data at the different locations.
· Data storage: These are the actual copies of the data resources, and in many cases the data resources would be wrapped in a (data) service interface.

[image: image7]
3.4 Functional Design
From the Persistent Archive example, the data Grid needs to implement the following:

· Mapping of access controls onto the logical name space.
· Management of write locks on the container.
· Management of synchronization flags on the replica copies.
· Mechanism to synchronize the replicas.
A similar set of constraints emerges when the data is encrypted or compressed. Again, the state of encryption/compression needs to be a property of the logical name space, such that no matter where the data is moved, the correct encryption algorithm can be used before transport, and the correct decryption algorithms can be invoked by a client.

From the Learning Grid example, the functionalities for information and knowledge management are needed by many organizations. For example, KA organizations rely on services for acquiring, using, retrieving and maintaining of knowledge.
One possible (simplified) functional design is shown in the following picture. In this case the Replication Service handles the registering of (for example) files, instructs the data transfer service to create copies of this file at different locations, tracks which files are kept where, and also allows clients to access the catalogue in order to find the nearest file or to return a list of files that satisfy certain metadata requirements.
The role of the Data Transfer Service is to create copies of this file at the different locations.

The Data Services give the clients direct access to the data stores. They also notify the Replication Service if any changes are made to local copies and send updates to other data services to synchronize the replicas.

[image: image8]
A second similar functional design is shown in the following picture. In this case the Data Replication Service handles all interfaces with the client so there is no longer direct access by the client to the data stores.
The Data Replication Service instructs the Replica Catalogue Service to register new files, allows clients to search the catalogue in order to find the nearest file or to return a list of files that satisfy certain metadata requirements, and also provides the client with an interface to the Data Services.

The Replica Catalogue Service handles the registering of files, instructs the Data Transfer Service to create copies of files at different locations, tracks which files are kept where, and also allows clients (via the Data Replication Service) to access the catalog. The Replica Catalogue Service is also notified by the Data Services if any changes have occurred.

Again the role of the Data Transfer Service is to create copies of this file at the different locations.

The Data Services give the clients access to the data stores but now only via the Data Replication Service. They also notify the Replica Catalogue Service if any changes are made to local copies and send updates to other data services to synchronize the replicas.

[image: image9]
An indication of the interfaces between the consumer/client, the services and the data storage elements are shown in the following figure.

[image: image10]
3.5 References

Relevant references:
1. R. Moore, A. Merzky, “Persistent Archive Concepts,” Global Grid Forum Persistent Archive Research Group, draft on Persistent Archive Recommendations, May 3, 2003.

2. R. Moore, “Common Consistency Requirements for Data Grids, Digital Libraries, and Persistent Archives,” Grid Protocol Architecture Research Group, Global Grid Forum, Tokyo, Japan, March 5, 2003.
3. S. M. Pickles, R. J. Blake, B. M. Boghosian, J. M. Brooke, J. Chin, P. E. L. Clarke, P. V. Coveney, N. Gonzalez-Segredo, R. Haines, J. Harting, M. Harvey, M. A. S. Jones, M. Mc Keown, R. L. Pinning, A. R. Porter, K. Roy, and M. Riding, The TeraGyroid Experiment, Workshop on Case Studies on Grid Applications, March 13, 2004, Berlin, Germany, held in conjunction with GGF10. (http://www.zib.de/ggf/apps/meetings/ggf10/TeraGyroid-Case-Study-GGF10-final.pdf)

4. J. M. Brooke, P. V. Coveney, J. Harting, S. Jha, S. M. Pickles, R. L. Pinning and A. R. Porter, Computational Steering in Reality Grid, Proceedings of the UK e-Science All Hands Meeting, September 2-4, 2003 (http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/179.pdf).
5. P. Ritrovato, M. Gaeta, G. Laria, T. Dimitrakos, D. Mac Randal, F. Yuan, S. Wesner B. Serhan, K. Wulf, “AN EMERGING ARCHITECTURE ENABLING GRID BASED APPLICATION SERVICE PROVISION” to be appear in the proceeding of 7th IEEE International Conference EDOC - September 16-19 2003, Brisbane, Australia

6. C. ALLISON, S. A. CERRI, P. RITROVATO, M. GETA AND S. SALERNO, "Human Learning as a Global Challenge: European Learning Grid Infrastructure" Tampere, Finland: University of Tampere Press.
4 Data Pipelining Scenario
	Use Case Identifier

	Use Case Name
	

	Date
	

	Author’s Organisation
	

	Author’s Name
	

	Author’s e-mail.
	

Data Pipelining involves the connecting of an output from one service to the input of another, with data being transfered to a third party for example.
4.1 Summary

This use case is based on the Digital Media use case described in the NextGRID project deliverable, P7.4.1.

Nowadays, almost all films and commercials use computer graphics animations to implement the special effects that the artists want to depict on the screen. Designers can use several software applications for creating 3D scenes like 3D Studio Max and Maya. These applications can build a 3D environment or just a single scene and render it. The large number of objects, textures, light sources and effects, like shiny surfaces and fog, is a factor that limits the design of a scene due to the increased computational effort. The best solution is to combine the summed power of many single PCs to accomplish the job with the existing software, thus combining the advantages of a powerful computer cluster with the “single PC” way.
The designer develops the job on a single PC with the client’s instructions followed as well as possible to ensure that the final result is the expected one. A close online collaboration between the client and the designer is required in order to have a result close to the client’s needs.

KINO anticipates this novel business model can be supported by a Grid enabled rendering infrastructure that can handle not only the in-house production of urgent jobs and small jobs, but also large tasks with a task based negotiation. This negotiation, on the outsourcing of large tasks, has such parameters as the deadline, the complexity of the task, the number of frames and the total computational time needed.

4.2 Scenarios

A simplified view of the data pipelining scenario use case leads to the following steps taking place:

1. Customer 1 (Designer) submits rendering job to the rendering service.

2. Completed animation is stored.

3. Rendering service notifies the visualization service of the completed animations.
4. The visualization service returns the animations to the clients (Designer & Reviewer/Customer).

4.3 Involved Resources

The Rendering Service handles the rendering of jobs with the completed animations stored to disk say. The Rendering service then notifies the Visualization Service of the completed animations.
The Visualization Service returns the animations to the clients (Designer & Reviewer/Customer).

[image: image11]
4.4 Functional Design

[image: image12]
4.5 References

Relevant references:
Client

1

Client

2

Client

3

Data Service 2

Service

1

Service

2

Registry

Data 1

Data 2

Data 3

Replication

Service

Send/Receive

Data

Service 1

Add/Remove

Access/Update

Storage

Element

Send/Receive

Move

Data

Transfer

Service

Data Transfer

Service

Management

Data Storage 1

Notify Update

Add/Remove

Access/Update

Storage

Element

Query Location

Consumer

Replica

 Catalog.

Service

Customer

1

Data Storage 2

Data Storage 1

Replication

Service

Data Storage 2

Data Transfer

Service

1. Register file

Data Service 2

Data

Service 1

Customer

1

2. Make

copies

6. Update

3. Find file

4. Access data

5. Notify

2. Make

copies

2. Make

copies

2. Make

copies

2. Make

copies

5. Notify

4. Access data

3. Find file

6. Update

2. Make

copies

1. Register

Data

Service 1

Data Service 2

Data Storage 2

Data Storage 1

Replica Catalogue

Service

Data Transfer

Service

Customer

1

Data

Repli-cation

Service

Customer

1

Customer

2

Visualisation

Service

Rendering Service

Service

Completed Animations

Visualisation

Service

Completed Animations

4. Return results.

3. Notify.

2. Store results.

1. Submit job.

Customer

2

Rendering Service

Service

Customer

1

