Including Data in Simple Job Execution Scenarios

Here we are looking at access to remote data in simple job execution scenarios and how they can make use of current specifications being developed within the OGF.
The relevant specifications are:
Basic Execution Service (BES). This hosts the job to be executed. In the scenarios discussed here, the software component that implements the BES interface also implements some of the data access functionality.
Job Submissions Description Language (JSDL). This is submitted to the BES and specifies the job to be executed. The part of the specification relevant to data access is the “staging” element. This can contain URIs for remote input and output files, along with corresponding local filenames. The local filenames correspond to those that the executable expects to have available. The URIs for remote filenames may include a protocol, which then determines how the file should be accessed. A more generic way of using the staging element would be to regard it as a mapping from filenames used by the executable to remote data sources, and to leave the access protocol up to the implementation.
Resource Namespace Specification (RNS). This specifies a “human-readable”, hierarchical and distributed namespace.
WS-Naming. This specifies an abstract name, unique in space and time. WS-Naming may be an option wherever RNS is used in this document.
ByteIO. This specifies an interface for reading a number of bytes from a remote data source. ByteIO messages can specify the protocol that should be used to return the data. The ByteIO specification only details how to use protocols that transfer the data with the response message; more complex protocols have yet to be profiled for use with ByteIO.
Data Movement Interface (OGSA-DMI). This will specify an interface for controlling a data transfer service, such as GridFTP or BBFTP.
Guide to the Diagrams:

· JSDL document sent to the BES specifying the application to be executed and the data to be staged in and out.
· The application executable specified in the JSDL document.

· The Basic Execution Service which processes the clients JSDL document.

· The application executable running inside the Basic Execution Service.

· The remote data resource from which input data needs to be retrieved and to which the output data will be returned.

· The data service which handles the interfaces to the remote data (storage) resource.

· The local copy of the data to which input data is copied in advance of being read by the application executable and to which output data is written.

· A local data service which handles the interfaces to the local data (storage) resource.

· A Data Transfer Service that may be used to manage the transfer of data to and from Data Service 1 (DS1) and Data Service 2 (DS2).

· A Resource Namespace Service (RNS) that may be used to manage the name-to-resource mapping of the remote (input) data, and that would provide the relevant EPR.

Remote Access

[image: image1]
Comments:
· Application executable reads and writes to the remote data resource ‘directly’ by using a wrapper interface within the BES.
· The wrapper would have to map from the local filename (as called by the application) to the remote data source.

· Actual reading and writing between the BES and DS1 could be by ByteIO say.

Questions:

· How is the remote data resource (file, database or stream say) specified in the JSDL document?
· It could be an RNS entry, e.g. rns:/abc.com/x/y/z which would map to the resource EPR, e.g. byteio://def.com/file.txt. But how would the transport protocol be specified? By using say a prefix like byteio: or gridftp:?

·
· Is it possible in the JSDL document to distinguish between wanting to access the remote data directly and wanting to stage the data in and out?

Data Staging with the BES

Directly

[image: image2]
Comments:

· BES would read in the remote data via DS1 (using ByteIO say) and store a copy of it locally.
· Application executable would then write the output (result) data to the local storage.
· On completion of the job the BES would write the local data back to the remote resource (again using ByteIO say).

· Local copies could be deleted or marked for deletion.

Questions:

· How is the remote data resource (file, database or stream say) specified in the JSDL document? Could it be an RNS entry, e.g. rns:/abc.com/x/y/z which would map to the resource EPR, e.g. byteio://def.com/file.txt?

· How would the BES map the EPR of the local copy of the input data to a name that the application executable would understand (and vice versa with the output data)?
· What happens if the JSDL document specifies a protocol other than ByteIO (e.g. GridFTP)?
Delivered to 3rd Party

[image: image3]
Comments:

· BES would instruct the remote data resource (via DS1) to deliver the specified data to Data Service 2 (DS2) - using ByteIO say.

· DS2 would store this data locally for the BES.

· Application executable would then write the output (result) data to the local storage.

· On completion of the job the BES would write the local data back to the remote resource (again using ByteIO say).

· Local copies could be deleted or marked for deletion.
Questions:

· In existing ByteIO profiles, the requested data is returned in the response message. How do you specify the delivery to a 3rd party when using ByteIO?
· How does DS2 know to expect the data?

· How would the BES reserve storage space with DS2?

· How would DS2 communicate to the BES the location (EPR) of the data it had just received from DS1?
· Would the BES have to handle the returning of the output data back to the remote resource (DS1)?

Note: The large number of questions and issues listed above would seem to suggest that this pattern (“Delivery to 3rd Party”) is not a good one to choose.
Delegating to 3rd Party

[image: image4]
Comments:

· BES would instruct DS2 to read the specified data from the remote data resource (DS1) - using ByteIO say.

· DS2 would store this data locally for the BES.

· Application executable would then write the output (result) data to the local storage.

· On completion of the job the BES would instruct DS2 to write the local data back to the remote resource (DS1) - again using ByteIO say.

· Local copies could be deleted or marked for deletion.

Questions:

· How would the BES reserve storage space with DS2?

· How would DS2 communicate to the BES the location (EPR) of the data it had just received from DS1?

· What interface would be used between the BES and DS2? Would it just be an implementation specific design choice? Or would this be the same interface(s) specified by OGSA-DMI Working Group?
Data Staging using a separate Data Transfer Service

[image: image5]
Comments:

· BES would instruct the Data Transfer Service (DTS) to manage the transfer of data from DS1 to DS2. This would use the interface being specified by the OGSA-DMI working group.
· DTS would decide/negotiate between DS1 and DS2 the best transport protocol to use – e.g. GridFTP say.

· DS2 would store this data locally for the BES.

· Application executable would then write the output (result) data to the local storage.

· On completion of the job the BES would instruct the DTS to manage the transfer of the local data back from DS2 to the remote resource (DS1) - again using GridFTP say.

· Local copies could be deleted or marked for deletion.

Questions:

· How would the BES reserve storage space with DS2?

· How would the BES specify to the DTS the remote and local filenames? By using logical names (e.g. RNS names) say?

· How would DS2 communicate to the BES the location (EPR) of the data it had just received from DS1?

·
BES

JSDL

DS 1

DS 2

DTS

local data

remote data

exe

BES

exe

exe

BES

exe

remote data

ByteIO

RNS

DS 1

JSDL

ByteIO

BES

local data

RNS

RNS

DS 1

JSDL

ByteIO

remote data

RNS

exe

BES

remote data

local data

DS 1

JSDL

DS 2

ByteIO

ByteIO

DS 2

GridFTP

RNS

exe

BES

remote data

local data

DS 1

JSDL

DS 2

RNS

exe

BES

remote data

local data

DS 1

JSDL

DTS

