GWD-I (Draft)

D. Berry, NeSC

OGSA Data Working Group

A. Luniewski, IBM

M. Antonioletti, EPCC

September 7, 2007

GWD-I (Draft)

September 2, 2007

OGSA® Data Architecture

Status of this Document

This document provides information to the community regarding the specification of the data architecture of the Open Grid Services Architecture (OGSA). It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2006, 2007). All Rights Reserved.

Trademarks

Open Grid Services Architecture and OGSA are trademarks of the Open Grid Forum.
Abstract

The Open Grid Services Architecture (OGSA) presents a vision of a broadly applicable and adopted framework for distributed system integration, virtualization, and management. OGSA provides several capabilities, one of which is data management. This document, produced by the OGSA Data Working Group within the Open Grid Forum (OGF), gives a high-level description of the interfaces, behaviors, resource models
, and bindings for manipulating data within the broader OGSA architecture. The functionality described covers the storage, movement, access, replication, caching and federation of files and databases.

Contents

51
Introduction

51.1
Terminology

51.2
Services and interfaces

61.3
Scope

71.4
Document structure

82
Overview

82.1
Levels of abstraction

82.2
Client Libraries

82.3
Virtualized Resources

92.4
Usage Patterns

102.5
Moving data: Transfer and Replication

112.6
Transfer Protocols

112.7
Higher-level services

122.8
Virtual Organizations

122.9
Policies

132.10
Storage

132.11
Denotation of Architectural Components

142.12
Summary

153
Architectural Context

153.1
OGSA Profiles

163.2
Naming

173.2.1
WS-Addressing

173.2.2
WS-Naming

173.2.3
Directory Services: RNS

173.3
Management of distributed resources

183.4
Security

183.5
Notification of Events

183.6
Resource Discovery

183.7
Policies and Agreements

193.8
Provisioning

193.9
Execution Management Services

193.10
Reservation Services

203.11
Transactions

203.12
Sessions

214
Security

255
Policies

266
Data Description

266.1
Format Description

276.2
Resource Description

276.3
Third-party descriptions

286.4
Provenance

297
Data Transfer

307.1
Data Transfer Interfaces

338
Data Access

338.1
The Generic Data Access Interface

348.2
The Unstructured Data Access Interface

358.3
Structured Data Access Operations

368.4
Conclusions

379
Storage Management

389.1
The Storage Resource and Service

399.2
Storage Service Interfaces

409.3
Storage Service Properties

419.4
Storage Space Properties

419.5
Site and VO management

429.6
Security Discussion

429.7
Interaction of Storage and Transfer

4410
Cache Services

4410.1
Cache Models

4410.2
Creating Caches

4510.3
Cache Consistency

4510.4
Cache Management

4711
Data Replication

4711.1
Replication Modeling

4811.2
Creating Replicas

48Other Operations on a Replication Service

4911.3
Managing Entries

4911.4
Discovering Replicas

5011.5
Validation of Registered Replicas

5011.6
Replica Consistency

5111.7
Managing Replicas

5111.8
Replication Properties

5312
Data Federation

5412.1
Creation of Federations

5412.1.1
Data Transformation

5512.2
Adding Input Sources to a Federation

5612.3
Other Changes to a Federation

5812.4
Access to the Federation’s Data

5812.5
Updates to Policy

5812.6
Access to the State of the Federation

5812.7
Security Considerations

5912.8
Standardization Considerations

6013
Data Catalogs & Registries

6013.1
A model for data catalogs

6113.2
Publication

6113.3
Classification

6213.4
Query

6213.5
Currency

6213.6
Security and Hierarchies

6314
Conclusions and Future Work

6415
Appendix: Summary of General Interfaces

6415.1
Policy Operations

6415.2
Data Transfer Operations

6415.3
Data Access Operations

6515.4
Storage Operations

6615.5
Cache Service Operations

6615.6
Replication Operations

6615.7
Federation Operations

6615.8
Registry Operations

6716
Appendix: Interface Mappings to Existing Specifications

6716.1
Data Access Mappings

6816.2
Storage Management Mappings

6917
Appendix: Specifications referred to in this document

6917.1
Data Access Specifications

6917.2
Data Description Specifications

6917.3
Data Transfer Specifications

7017.4
Storage Specifications

7017.5
Infrastructure Specifications

7017.6
Transaction Specifications

7017.7
API Specifications

7118
Glossary

7519
Contributors

7519.1
Author Information

7519.2
Acknowledgements

7620
Intellectual Property Statement

7621
Disclaimer

7622
Full Copyright Notice

7623
References

1 Introduction

This document is a product of the OGSA Data Architecture Working Group (OGSA‑D WG) of the Open Grid Forum (OGF). It describes and guides the design of the data management capability of the Open Grid Services Architecture (OGSA); it addresses the storage, movement, access and manipulation of data within an OGSA framework. The OGSA-Data WG has worked in conjunction with the OGSA WG, which guides the overall development of OGSA.

This informational document is one component of a set of documents that, over time, will fully define OGSA, both informatively and normatively. For an overview of the OGSA architecture, see the Open Grid Service Architecture version 1.5 [OGSA]. The full document set, the status, and the planned evolution of OGSA are described in Defining the Grid: A Roadmap for OGSA Standards [OGSA Roadmap]. Of particular relevance is a companion to the current document that will describe data architecture scenarios [Scenarios].

The authors intend that this architecture will incorporate and integrate relevant insights and documents from other groups, especially other OGF Working Groups. For example, it already incorporates work from the Grid File System Working Group, the Database Access and Integration Working Group, the OGSA ByteIO Working Group, the OGSA Data Movement Interface Working Group, and the Grid Storage Management Working Group. However, the emphasis has been on producing a coherent architecture, so we do not guarantee that everything produced by these other groups has been adopted.

1.1 Terminology

The OGSA Data Working Group is comprised of members from many different organizations and communities within which it is common for a term to have many different interpretations. Even the term “data” is interpreted differently or at least given different emphases, as discussed in the “Scope” section below. Thus, the OGSA Data WG has taken great care to define the terms that it uses. In this document, as in other OGSA documents, italicized terms are defined in a glossary, see Section 14. For particularly common terms, such as “service” or “interface”, only the first few occurrences are in italics. The relevant entries are given in a glossary section at the end of this document. Many of these entries also appear in the main OGSA Glossary document [OGSA Glossary].
The authors have noted that the term metadata is one that causes particular confusion in discussions about data. So, to avoid any confusion about the term, we note that its primary meaning is “data about data”, which can include descriptions of data structure, provenance information (i.e. where the data came from and how it was obtained) and third-party annotations. In the context of service-oriented architectures, the term is also used to describe properties of services or of the resources that they provide.

In this document, we attempt to minimize the use of the term “metadata”. Instead, we prefer to use more precise terms such as “data description”, “service description” or “resource description”.

1.2 Services and interfaces

In OGSA terminology, services are software components, participating in a service-oriented architecture, that provide functionality and/or contribute to realizing one or more capabilities. The operations that a service offers are specified by its interface. The OGSA architecture defines common interfaces for similar types of service, thereby hiding differences in their properties and operations, allowing them to be viewed and/or manipulated in a common way. These common interfaces virtualize the resources provided by the services. Figure 1 presents a schematic overview of the inter-relationship between these terms.

[image: image1]

Figure 1: Services, interfaces and resources

This document primarily describes the interfaces that virtualize the services managing the transfer, storage, access and federation of data resources. It also describes interfaces for data location management services such as the staging, caching and replication of data. It discusses some of the underlying relationships that must be maintained by services implementing OGSA data capabilities. It also demonstrates how appropriate combinations of data services can realize these capabilities.

Virtualization also allows data functionality to be provided by computational resources or other types of resource. For example, a service might implement a query by calculating a result value on the fly - it is not relevant to the data access virtualization whether the data is generated on the fly or whether it is materialized and stored (although this may be revealed by a corresponding management interface or properties that describe the currency of that data).

If a data service is associated with more than one data resource, it may be necessary to disambiguate the data resource at which messages are targeted. The OGSA naming scheme can be used to name each resource provided by a service. Many existing data resources, such as database management systems, already have established names and lifetimes both of which may not be controlled by the service layer, for example the names of databases and tables in relational database management systems. This may require alternative means for exposing the names of data held in these resources.

1.3 Scope

The OGSA Data architecture presents a “toolkit” of data services and interfaces that can be composed in a variety of ways to address multiple scenarios. These services and interfaces include data access, data transfer, storage management, data replication, data caching, and data federation.

The components of the data architecture can be put together to build a wide variety of solutions. A companion document on data architecture scenarios [Scenarios] will describe a number of such uses. This set of scenarios is intended to be exemplary, not all inclusive. However, it is a goal of the current document to describe the data architecture in sufficient detail and specificity that interoperable data architecture implementations are the norm, rather than the exception.

When reading this document, it is important to note that the term “data” might fall under many categories including the following:

· A sequence of bytes, without name or interpretation of structure;

· Files or sets of files, without interpretation of their contents;

· Structured data, which may be contained within files, streams or database management systems.

The scope of topics needed for a complete data architecture is enormous. To cover the entire scope of data would take far longer than is reasonable. Thus, this initial version of the document and the architecture that it describes is limited in its scope. The primary focus of this version of the architecture is for data that lives in file systems and data that lives in database systems. The document does not discuss queries and transformations over data streams – a very important data source but one whose definition and incorporation is too major a topic to be attacked in this initial version. We also do not address sensor data, a very important sub case of data streams.

Similarly, this initial version of the document does not describe all the data-oriented services that may be required to build more advanced data Grid functionality. The omissions include common systems such as distributed file systems, “metadata” management systems, and distributed personal space management systems. .

We expect this document to evolve over time, with future versions extending the scope of topics covered and the range of services described. For a further vision of how data services could form part of a comprehensive Grid solution, from a database-centric viewpoint, see [DAIS].
1.4 Document structure

The rest of the document is structured as follows. Section 2 gives a brief overview of the various aspects of the data architecture. Section 3 provides background for readers unfamiliar with the OGSA architecture in general, by describing the non-data parts of the OGSA architecture that are built on, referred to or used by the capabilities presented in this document. Readers familiar with the OGSA architecture should feel free to skip this section.

Section 4 discusses security issues, highlighting those that particularly apply to data, and section 5 describes operations for setting policies. Section 6 discusses how data is described within the architecture. This includes the description of data formats and data resources by the properties of a data service. It also includes third-party descriptions that may be stored in a registry.
Sections 7 to 13 each describe in detail one of the capabilities that are realized by this data architecture. For each of these capabilities, the relevant section starts with a summary table of the operations provided by this capability and then explains how the capability is realized and gives a detailed description of the relevant services, operations and virtualizations.

The description of capabilities begins with the transfer of data between services or resources, move on to the accessing of data in resources, and then follow with the management of storage resources. Further sections discuss caching, data replication and federation services, and data catalogs.

Section 14 is a brief conclusion. Appendix 15 summarizes the interfaces described in this document. Appendix 16 maps some of these interfaces to items in existing specifications. Appendix 17 gives a guide to the specifications referenced in this document. Finally, the glossary gives definitions of the terms used in this document.
2 Overview
In this section we briefly discuss key aspects of the data architecture to give the reader an overview. In many cases these aspects are discussed in greater detail in sections 4 to 12. In some cases, however, the aspect is discussed only here.

2.1 Levels of abstraction

A distributed system may contain a variety of data resources. These resources may use different data models to structure the data, different physical media to store it, different software systems to manage it, different schema to describe it, and different protocols and interfaces to access it. The data may be stored locally or remotely; may be unique or replicated; may be materialized or derived on demand. OGSA data services can provide different levels of virtualizations over these data resources. Virtualizations provide abstract views that hide these distinctions and allow the data resources to be manipulated without regard to their nature.

Conversely, although the data services allow the clients to ignore these distinctions, some clients may prefer to exploit them. For example, a client may wish to make use of a particular query language for a given database, or to specify the location of a particular data resource to use. One client may require native access to the data, while another needs to tune the performance parameters of the data resource. To support such clients, a data service may provide multiple interfaces or offer several options for query languages, transfer protocols, or such like. These layered interfaces allow clients to choose the combination of performance and abstraction that suits them best.
We have found that different communities apply different emphases on the capabilities and levels of abstraction that Grid data services must provide for the data they expose to Grids. Some examples will be given in the companion scenarios document [Scenarios]. For the OGSA architecture to be truly general, it must be able to operate under all of these example scenarios and more. Fortunately, there are several commonalities among the required functionalities that allow us to propose an integrated architecture. These are outlined in the remainder of this section.
2.2 Client Libraries

While access to data resources is possible using the service interfaces directly, we also expect that OGSA data services will be accessed via APIs. Libraries for use by client applications could map these APIs to the corresponding messages in the Service Oriented Architecture (SOA) framework. Often these libraries will implement existing, legacy, APIs. This will allow easy integration of OGSA data services with existing applications for backwards compatibility.

The key idea here is a front end to the data supported by an implementation that speaks to the service-oriented architecture. As examples, a Grid-aware NFS V3 library [NFS] will look like a standard NFS mount point, a caching service could be used by NFS or CIFS libraries [CIFS], a POSIX interface [POSIX] could make remote files seem local, and a JDBC [JDBC] or ODBC [ODBC] interface will make Grid database resources appear local.

Other client libraries may be specifically written with Grids in mind. An example is Globus XIO [XIO], which provides a portable API to swappable IO implementations. This advanced interface can handle asynchronous operations in a threaded environment.

Although the architecture is designed to meet the needs of multiple client libraries, the definition of the library services that map from APIs to service operations falls outside the scope of this document.

2.3 Virtualized Resources

The basic entities of this data architecture are illustrated in Figure 2. Resources are managed by data services that may:

· provide data access interfaces,
· provide data source or data sink interfaces for data transfer operations, and
· describe data via properties (data description).
Some resources, such as file systems and databases, are storage based and this architecture also includes interfaces for storage management.

Data access provides a means of inputting or outputting data via a service to its client. A client can specify the data that is of interest. For example, a client might specify the subset of a file that is of interest or provide a SQL query to select the data that is of interest. Data might be returned in the response message to a data access operation if the amount of returned data is small. Alternatively, a data transfer service might be used to move large amounts of data using mechanisms such as GridFTP or storage level data movement facilities.
Thus Data transfer provides an explicit and controllable means by which data may be moved from a data source to a data sink (i.e. a consumer). Data transfer services control the transfer of data between resources and/or consumers and provide a transfer control interface.

All these interfaces are used by clients, which may be other services, or APIs such as those contained in SAGA, POSIX and NFS specifications.

[image: image2]
Figure 2: Basic entities in the data architecture
This diagram presents a schematic and abstract overview. In reality, some services may only support an access interface or a transfer interface. Some operations may combine functionality from several interfaces, e.g. some access operations might specify that the results should be transferred to another resource; for particularly simple transfers, operations might not require a separate data transfer service.

Generic management and provisioning interfaces have been omitted, as have security services and their related permission decision points.
2.4 Usage Patterns

Services using access interfaces generally fall under one of the following interaction patterns:

· Request-response: a client sends an access request and any data generated is included in the response sent back to the consumer. Alternatively, the request may contain data which is to be added to the resource and the response will return the status of this operation back to the consumer.

· Third party delivery: a data request includes instructions for delivering the data to a third party via some data transfer mechanism, such as the Data Transfer mechanism described in this document. This allows large amounts of data to be transferred efficiently through some suitable protocol.

· Factory: a request sent by a consumer
 produces a new resource that is populated by the results obtained from a request. This is created by the service and is maintained at the service end. The data in this new resource may be collected at some later stage by the same consumer or a third party. This forms an indirect form of third party delivery.

· Bulk load: data is uploaded to a data resource through a service by a consumer or third party, using a data transfer mechanism.
In this version of the architecture we predominantly concentrate on the first three patterns.
2.5 Moving data: Transfer and Replication

The data architecture has to be able to handle the transfer of large amounts of data to and from resources. Large-scale data can be transferred using dedicated protocols, as using SOAP messages would be far too slow. Data transfer implementations must transfer data in as efficient a manner as is practical.

Figure 3 REF _Ref155692079 \h
 shows how data transfer fits within the data architecture. One use of data transfer is to return the result of a data access operation when the result is (or is expected to be) too large for SOAP to handle efficiently. This is indicated in the diagram below by the data transfer arrow between the resource and the client.

[image: image3]
Figure 3: Transfer and replication in the data architecture

Dedicated transfer services can be used to control the transfer of data between resources. These call operations on the data source and data sink interfaces to set up and initiate the transfer. Transfer operations are not restricted to linking resources that are managed by data services.
Data that is encoded in a defined syntax is called a data set. For example it might be used for externalization from a resource, ready for transfer. So, for example, a data access operation could select data which is then encoded as a data set, and then a data transfer mechanism is invoked to manage the transfer from the resource to the client or another consumer
. Actual transfer of data uses an appropriate protocol and takes as direct a path as possible.

Data replication services can use transfer services to maintain replicas of data in multiple locations, to improve availability and/or performance. They also need to maintain registries of these replicas; these registries are not shown here.

2.6 Transfer Protocols

There are many places in the data architecture where protocols will be used, typically “on the wire”, to allow components of the data architecture to communicate, interact and to move data. The data architecture is, in general, agnostic about the choice of transfer protocol.

The protocols used for sending operations and notifications between components are those specified in the general OGSA architecture. For data transfer, rather than specifying a single protocol, this document allows services to offer a range of protocols. Clients can specify or negotiate which protocols to use for a given transfer operation. (The details of the negotiation mechanism are not discussed in this document).

However, some of the standards that the data architecture is built on may choose to specify specific protocols of interaction, either for performance or interoperability reasons. In general, the data architecture views such specificity as being undesirable but should a group defining a standard decide to be so specific, we do not preclude the use of such a standard in the data architecture.

2.7 Higher-level services
The data architecture allows extra layers of virtualization to be built using the same interfaces as the basic services to hide more complex behaviors as shown in Figure 4. Cache services can collaborate with other services to provide better performance when accessing remote data. Data federation services combine access to data from several data services. Clients may access these composite services in the same way as any other data service without needing to know the details of how they access the underlying data.

[image: image4]
Figure 4: Composite entities in the data architecture

As with the previous diagrams, this is necessarily schematic and abstract. For example, it does not show the data transfer operations between the services involved in a data federation or between a cache service and its source. Nor does it show how a data federation service will handle a call to its data sink or data source interfaces. Some services may not offer all these interfaces. As before, generic management and provisioning interfaces have been omitted, as have security services and their related access decision points.

It is worth noting that some resources may provide capabilities such as caching, data replication or data federation natively, outside the OGSA data architecture. For example, several commercial database vendors provide their own replication or federation functionality. To a client of the corresponding OGSA service, it may not be relevant whether the capability is provided in a proprietary manner or by the composition of OGSA services; the implementation details are hidden behind the appropriate OGSA interfaces.

2.8 Virtual Organizations

The OGSA Glossary [OGSA Glossary] defines a virtual organization as follows:

A virtual organization (VO) comprises a set of individuals and/or institutions having direct access to computers, software, data, and other resources for collaborative problem-solving or other purposes.

VOs are a concept that supplies a context for operation of a Grid that can be used to associate users, their requests, and a set of resources. The sharing of resources in a VO is necessarily highly controlled, with resource providers and consumers defining clearly and carefully just what is shared, who is allowed to share, and the conditions under which sharing occurs.

Virtual organizations are one of the core concepts of grids. Data architecture components are there to help construct VOs. A VO might consist of an entire institution (e.g., a company or a university), a subset of that organization or be composed of many individuals from many disparate institutions. These individuals may be explicitly named or they may be associated with the VO by being part of an organization (e.g., a division of a company, a department in a university) that participates in the VO. The data architecture must be able to support these different types of hierarchies used to construct possible VOs.

Here we briefly mention some areas of the data architecture where VOs must be taken into consideration. The remainder of this document provides details on these and other aspects of the architecture from a VO perspective where appropriate.

· Security. Security, and privacy, of data is critical to the proper operation of a grid and to its acceptance as a computing infrastructure. Classically, security has had its primary focus on security within an institution. The emergence of VOs as a critical component of grids makes it clear that security must be addressed both within an organization as well as within cross-organizational VOs. This has implications both for the architecture of security within a grid as well as how that security architecture interacts with the native security mechanisms of legacy components of the grid and to the security policies enforced within an institution. At the core of these concerns are cross-organizational authentication and authorization.

· Policies. The policies that control operation of a grid must be able to express the needs of a VO. This implies that policies must be institutional, vendor and implementation neutral.

· Storage. The data within a grid has its permanent home within Storage. All participants in a VO have a vested interest in that data. Thus the Storage architecture must meet the needs of those participants. This has implications on security (see above) as well as how data is moved into and out of Storage. Issues of Storage management, accounting/charging must also be properly supported within a VO. These are normally handled within a Storage system to meet the needs of a particular institution. The VO imposes the need to deal with these issues in contexts that may be larger, or smaller, than those classically handled by Storage.

2.9 Policies

Policies are documents that describe or configure the behavior of a service. In the data services, policies may specify the availability, performance, consistency or other aspects of the services. They may specify who can access data, the kinds of access allowed and any restrictions on the transfer of that data.

The quality of service provided by data sources is an important subset of the policies that must be reflected in the data architecture. They include those related to performance, reliability, and data consistency.

Performance is a critical real world requirement for effective use of the Grid by real world applications. Performance properties include, but are not limited to: expected response time to an access or update request, throughput for data transfers, and number of access requests that can be handled per second.

Reliability properties reflect the ability of the data service to operate over long periods of time. For instance, what is the expected time between outages of the data service, the expected time a service will be down, the amount of data that might be lost if an outage occurs and the ability of the data service to continue operation in the face of disaster (e.g., the data center holding the data service is vaporized).

Security is a key consideration in Grid systems. Security policies specify who may access particular data, the locations to which it may be moved and under what constraints. Section 4 discusses security considerations in more detail.

Finally, there are many cases in which changes to one data service may need to be reflected in an associated service. Examples discussed within this document include data replication services, cache services and data federation services. The system will automatically maintain some degree of consistency between the data stored in the base and the data presented by the derived data services with this consistency maintained in the presence of updates to the base. The properties that describe the degree to which base and derived data services are kept in synchrony are called the data consistency properties.

The following is a suggested list of policies to govern data service operation. These policies will need to be formally defined and specified by an as yet to be determined standards body.

· Throughput: the number of access requests that can be satisfied per unit time.

· Response time: the time allowed to satisfy an access request.

· Availability: the percentage of time that the service must be up.

· Recovery time: time allowed for the service to recover from a failure.

· Data resiliency: a specification of the effort the service should make to ensure that data is not lost in the face of failures.

· Access accuracy: if the primary source of some data is not available, how should the service act? Report an error? Find an alternate source (with potentially stale data)? Return partial answers? Another term for this policy might be degradation of answers.

· Currency of data: can the data used by the service, and the data returned, be out of date? If so, by how much?
Services that support one or more of these policies are responsible for enforcing these policies. Note that this list must be extensible so this list is not complete.
2.10 Storage

Data resources, data services and other services described in this architecture will consume storage. This storage might be for data that represents the temporary, dynamic state of the resource. This storage might be long lasting, representing the persistent data of interest to users of the Grid. It may be long lasting data that represents persistent state maintained by and for the operation of the service.

It is up to each service to describe what requirements it has on the storage it will use for its transient and persistent storage. A service may choose to provide means as part of its creation and management interface to allow client control of the storage spaces used by the service. In the remainder of this document we call out specific places where a data service must consider how it will determine what storage to use.

2.11 Denotation of Architectural Components

There are a number of places in this document where it is necessary to name non-addressable entities that are part of the architecture. For example, there needs to be a means to name the query languages supported for access by a data service, or the protocol used by a data transfer service, or the access interface to be provided by a newly created service. These entities will be named by URIs (Universal Reference Identifiers [URI]). We do not mandate how these URIs are generated aside from insisting that each URI should denote a unique entity. We recognize that URIs will be generated in a distributed manner by different standards groups, by different vendors and even by different clients of the data architecture. To avoid duplication of these names, and to foster reuse of previously named entities, we encourage OGF to create a centralized registry of URIs where the URIs for architecturally significant entities can voluntarily be registered.
2.12 Summary
This section has provided an overview of some key aspects of the data architecture. The next section provides an overview of the OGSA architecture which is the context for the data architecture. These two chapters provide the background for reading the remainder of this document.
3 Architectural Context

This data architecture works within the framework provided by the Open Grid Services Architecture (OGSA), which is a service oriented architecture and is built on Web Services. This section is intended for readers who are not familiar with the basic ideas of the OGSA architecture. It gives a brief overview of the elements of the OGSA architecture and underlying Web Service specifications that are particularly relevant to the data architecture. For more information about these areas, readers should consult the OGSA architecture document [OGSA].

The OGSA architecture sets out to construct interoperable, portable, and reusable components and systems used to construct VOs in dynamic and heterogeneous environments. Thus, the architecture supports resource virtualization, common management capabilities, and resource discovery, all using standard protocols and schemas. It also aims to achieve resource sharing across organizations, to which end it supports a global naming system, metadata services, site autonomy and the collection of resource usage data. It also makes explicit quality of service requirements and agreements.

· Web Service specifications provide the default messaging layers and service specification languages for a service-oriented architecture. The OGSA architecture builds on these foundations with specifications for, amongst others:
· Naming and addressing
· management of distributed stateful resources
· security
· notification of events
· resource discovery
· policies and agreements
· reservation and scheduling
The OGSA data architecture describes particular data-oriented interfaces to resources and services within this overall framework. It also specifies dependencies on, and specializations from, other interfaces in the general architecture.

3.1 OGSA Profiles

The OGSA WG follows the lead of the (WS-I)
 organization by defining normative interoperability profiles—guidelines for ensuring consistent and interoperable use of selected specifications. By developing a comprehensive and consistent set of OGSA Profiles that together address all of the required Grid capabilities, the OGSA WG will eventually produce a normative definition of the OGSA architecture.

The first Profile is the OGSA WSRF Basic Profile [OGSA WSRF], which is based on the WSRF and WSN family of specifications. These describe mechanisms for defining and accessing properties, managing lifetimes, and sending notifications. Equivalent profiles based on the WS-Management specifications [WS-Management] may be developed as a parallel activity. Interface specifications of OGSA services treat the underlying mechanism as orthogonal to the properties that are exposed. Thus each service interface could replace the plumbing mechanism without affecting the specification of what information is made available. The architecture may be implemented on different underlying infrastructures simply by varying the choice of profile – although of course this will restrict interoperation between such implementations.

The OGSA WG is also specifying the OGSA Basic Security Profiles [OGSA BSP-Core]

 REF OGSABSPSecChan \h
[OGSA BSP-Secure]
. As the OGSA WG agrees other such basic profiles, we expect that future versions of the data architecture will embrace them. Indeed, a future normative specification of the OGSA Data Architecture will take the form of a profile (in contrast to the current document, which is an informational document).
 The OGSA Profile Definition [OGSA Profile Definition] provides guidelines to be used when developing Profiles.

3.2 Naming

There are many reasons why we need to name entities in a grid. For example, we need to uniquely identify services that we interact with; to log operations for auditing purposes, to map data objects to storage, to map abstract names to (possibly multiple) physical locations, to persist entities in long-term storage, to record the provenance of data, to catalog and search for entities, and many other tasks besides.

Within the OGSA Data Architecture a large number of entities, such as services, resources, databases, results, etc. require naming. These may include, but are not limited to:

	caches
	namespaces
	roles

	catalogs
	naming schemes
	schemas

	content identifiers
	networks
	schema mappings

	data formats
	people
	security contexts

	data streams
	policies
	security tokens

	database tables
	queries
	service level agreements

	databases
	query result row sets
	service types

	file directories
	references
	services

	file locations
	registries
	storage (space)

	files
	replicas
	transactions

	identities
	repositories
	transformations

	languages
	resolvers
	transport protocols

	locales
	resource locations
	user defined entities

	metadata
	resources
	vocabularies

The OGSA work on naming recognizes three levels of name: human-oriented, abstract names, and address. From the OGF OGSA Glossary [OGSA Glossary]:

· Name – is an attribute used to identify an entity. In OGSA naming, there are three types of names: human-oriented names, abstract names, and addresses:
· Human-oriented name – is based on a naming scheme that is designed to be easily interpreted by humans (e.g. human-readable and human-parsable).

· Abstract name – is a persistent name suitable for machine processing that does not necessarily contain location information. Abstract names may be dynamically bound to addresses.

· Address – specifies the location of an entity.

And additionally,

· Resolution – Name resolution may occur at two levels:
· Human names may be dynamically mapped to abstract names; and
· Abstract names may be dynamically mapped to addresses. It is this address, and only this address, that allows messages and operations to be directed at the named entity.

From a data services point of view, the ability to attach names (where possible both human readable and globally unique) to data resources is of key importance. It enhances readability of Grid applications and commands, provides flexibility of use and configuration of applications, and enhances the user experience.

There are a number of requirements on a naming scheme. For example, it should be autonomous, scalable, distributed, secure, reliable, trusted, and have global scope. In addition it is desirable that the naming scheme (and name resolution service) should be fast, efficient, extensible and be capable of being internationalized. It should also be remembered that there will be a requirement to name data that is being generated on the fly, as well as data that has already been materialized and stored. A naming scheme that is not practical to use and does not include these properties is less likely to gain widespread use.

3.2.1 WS-Addressing

The lowest level of naming is the notion of an endpoint address. The OGSA architecture uses a WS‑Addressing endpoint reference (EPR) [WS-Addressing-core] to refer to a specific Grid endpoint. Because these endpoints can be highly dynamic in time and space (changing as resources migrate, fail and restart, etc.), thus changing the mapping from abstract name to EPR, it is expected that a naming scheme or any other binding agent will also include some sort of run-time bind and rebind semantic on top of this. WS-Naming [WS-Naming] provides such a mechanism for rebinding EPRs, as well as a mechanism for including abstract names within EPRs.

As noted in Section 1.2, many existing data resources, such as database management systems, have established names and lifetimes that are not necessarily accessible via the OGSA naming scheme. This may lead to an alternative mechanism for naming these resources.

3.2.2 WS-Naming

WS-Naming is a profile on top of the WS-Addressing specification, where additional elements EndpointIdentifier
and an optional ReferenceResolver
are included in the WS-Addressing Endpoint Reference. EndpointIdentifiers provide a globally unique and static way of talking about specific entities, allowing Grid applications to compare and identify entities for the lifetime of that entity and beyond. It should be noted that the set of entities to be named by abstract names is enormous and constantly growing. Thus it is imperative that the mechanism used to generate abstract names scale appropriately.
Note that a WS-Name may specify a resolving service or their syntax may imply a resolving service. This name resolution service provides the mapping from the abstract name to the address (or addresses).

3.2.3 Directory Services: RNS

At the topmost level are “human-oriented names” and as the name suggests these are intended to be read and used by people, and contain structure that is meaningful to humans. They are a primary interface for users and applications. Many of the names will be chosen by people; services may also generate human-oriented names. These names are not guaranteed to be either unique or static.

The Resource Namespace Service (RNS) addresses this human-readable level of naming [RNS]. It encompasses a multi-faceted approach for addressing the need to access resources within a distributed network or Grid by way of a context-specific name that ultimately resolves to a meaningful address, with a particular emphasis on hierarchically managed names that may be used in human interface applications. Its inception is largely based in a file system realm but it is also intended to facilitate namespace services for a wide variety of Grid applications and can be employed to manage the namespace of federated and virtualized data, services, or effectively any resource capable of being referenced in a Grid/web environment.

Mappings between the human names and EPRs are maintained and accessed by the RNS services. These EPRs may be abstract name, if they include EndpointIdentifiers (i.e. they conform to the WS-Naming specification), or they may simply be addresses.

3.3 Management of distributed resources

OGSA is in the process of defining an information model and data model that describes a wide range of resources that may make up a Grid. These include databases, storage systems, files, catalogs and data sets, as well as jobs, processors, networks and others. This information model and data model form the basis of the OGSA management services.

These management services will be built on suitable Web Service specifications. They will provide operations for querying the status of resources and updating them as necessary. There are two proposals for management of resources in a Grid. The WS-DM standards from OASIS [WS-DM] provide one set of management interface and protocols. The WS-Management proposal from DMTF [WS-Management] provides a second. Management facilities depend upon an information model to describe the services being managed. The information model for data services needs to be defined by an as yet to be determined working group, perhaps the OASIS CIM TC,
 so that the OGSA management services can manage data services.

3.4 Security

Security is a key aspect of Grid systems. Businesses demand it, customers and consumers increasingly expect it and there is a growing set of government regulations worldwide that mandate security. Thus the data architecture must support security and privacy mechanisms that meet client needs in these areas. The OGSA architecture uses and extends security specifications for encrypting data, authenticating users, identity mapping, authorizing operations, delegating access rights, secure logging and maintaining privacy.

Throughout this document we discuss security as it applies to data services. Section 4 will cover general security issues, describing existing work that we build on and also identifying areas where work remains to be done. Security as it applies to specific parts of the architecture is discussed in the relevant sections.

3.5 Notification of Events

In a dynamic Grid environment it is critical that components can request and receive timely notification of changes in one another’s states. The OGSA architecture specifies the use of suitable web service specifications that provide this functionality.

These services may be used by data services in many ways. For example, they may be used to notify clients and other services about management events, performance and resource issues, and to implement data consistency mechanisms. They may also be used to externalize database triggers.

3.6 Resource Discovery

Discovery services are vital to the data architecture. The data services may use the discovery services not just for registering services themselves, but also for registering the data that are stored by those services. This requires languages or ontologies for describing data. Discovery services may also register the locations of schema definitions. Discovery services may be built upon metadata repositories – repositories that contain information about other entities in the Grid such as resources and services. Some discovery services may return the name of the service and some may return an EPR to the service. Some discovery services may take a description (e.g., much like a query) of the desired data as input and return the data itself.

3.7 Policies and Agreements

As described in section 2.6, policies are documents that describe or configure the behavior of a service or resource. The OGSA architecture will specify a suitable format for the definition of policies
.
 The details of the policies that a service accepts are part of the specification of that service.

Policies are used in two ways in the OGSA architecture. A policy can be provided by a data service to describe its quality properties. This allows clients to choose services according to their needs. Alternatively, some data services may allow a client to use a management interface to request that the service provide a Quality of Service (QoS) according to a policy of the client’s choosing. The service may abide by that policy, reject that policy or engage in a negotiation with the client to find a mutually agreeable policy to govern the service’s operation. In both cases the same policy description applies.

Agreements are time-limited contracts between a service and a client, or between a group of services and/or clients. They may, for example, state that a certain policy will apply to a given operation. The OGSA architecture will specify a format and negotiation protocol for agreements. A possible candidate is the proposed WS‑Agreement [WS-Agreement] standard.

Quality of Service is a key area where policies and agreements are used in the data architecture. QoS will typically be specified via policies that are at the heart of the agreements that will be agreed to between clients and data services to govern the interaction of the client and the data service.

3.8 Provisioning

To automate the complicated process of resource allocation, deployment, and configuration, it must be possible to deploy the required applications and data to resources and configure them automatically, if necessary deploying and re-configuring hosting environments such as the operating system and middleware to prepare the environment needed for job execution. It must be possible to provision any type of resource not just compute resources, for example, network or data resources.

3.9 Execution Management Services

The Execution Management Services (EMS) in OGSA control the scheduling and placement of units of work on appropriate services and thus the resources they represent. Their functionality generalizes the notion of executing a compute job; suitable implementations may schedule any unit of work, such as a database query or a data transfer. EMS services use data services in order to stage the necessary data to the execution server or to access that data remotely. Data services may also be required to provide necessary information to enable these services to produce satisfactory schedules.

An Execution Planning Service
 is a service that builds mappings (“schedules”) between jobs and resources. The service will typically attempt to optimize some objective function such as execution time, cost, or reliability.

A Candidate Set Generator determines the set of resources on which a unit of work can execute. It typically provides input to an Execution Planning Service.

A Job Manager is a higher-level service that encapsulates all of the aspects of executing a job, or a set of jobs, from start to finish. Examples include queue managers, portals or workflow enactment engines. Jobs are specified using the Job Specification Description Language [JSDL].

Currently, more work is needed to integrate the scheduling services with data services. Scheduling services can use monitoring information such as bandwidth, utilization patterns and packet size to choose the best approach for moving a given data set to suit the agreed quality of service. Conversely, the EMS may need to request that data services reserve capacity to ensure that a job will be able to execute and achieve its (optimization) goals.

3.10 Reservation Services

A Reservation Service presents a common interface to all varieties of reservable resources on the Grid. Reservable resources could include (but are not limited to) computing resources such as CPUs and memory, graphics pipes for visualization, storage space, network bandwidth, special-purpose instruments (e.g., radio telescope), etc.

Currently, OGSA describes the reservation services as one of the EMS services. This needs to be generalized to cover all OGSA services.
Data services are likely to need to reserve certain resources in order to operate. For example, a data transfer operation will require storage space and network bandwidth, while a data federation service may require compute power in order to perform join operations. Conversely, the EMS may need to request that data services reserve capacity to ensure that a job will be able to execute and achieve its (optimization) goals. Similar considerations apply when the provision of a data service must be scheduled for a certain time.

3.11 Transactions

This architecture does not define a mechanism for distributed transactions per se. We expect this functionality to be provided by other developments in the Web Services community. Currently there are two families of specifications under development. On the one hand, there is WS‑Coordination [WS-Coordination] and two of its coordination types, WS‑AtomicTransaction [WS‑AtomicTransaction] and WS‑BusinessActivity [WS‑BusinessActivity]. On the other hand is the WS Composite Application Framework family (WS‑Context [WS‑Context], WS‑Coordination Framework [WS‑Coordination Framework] & WS‑Transaction Management [WS‑TransactionManagement]).

Although we do not define a transaction mechanism, nor do we choose from existing ones, we do need to ensure two things. First, that the transaction mechanism satisfies the needs of data. Second, we must ensure that whatever transaction mechanism(s) we endorse properly flows through the architecture.

Both transaction systems noted in the first paragraph of this section meet the known needs of data. They have been developed by the relevant communities and have been endorsed by various database vendors which gives us assurance that they have adequate functionality for the purposes of data.

In both cases, the transaction specification depends upon carrying a transaction context along with every port call. It is the responsibility of the implementation of each port to honor the transaction context, or to ignore it. There is no need to explicitly change the signature of a port to accommodate transactions. Thus, for the purposes of the data architecture, we assert that transactions layer on top of the basic data architecture in a transparent fashion. We strongly suggest that the descriptive information for the implementation of a port include information on how it handles this transaction context.

Finally, it must be observed that it is up to the clients of a particular port to decide if the decision of a particular implementation of that port to honor transactions, or not, is sufficient for the needs of that client.

3.12 Sessions

Operations on data tend to be asynchronous. Applications also tend to issue sequences of operations against data sources. Both of these argue for the creation of the notion of a session to contain the context for the interactions between a client and a (set of) data services.

A session should allow a client to start an operation at a data service and have control immediately return to the client. At a later time, the client can use the session to ask the data service about the status of its previously issued request(s).

Sessions can also be used to optimize certain sequences of interaction between a client a (set of) data services. For example, security requires that every requestor of an operation on a data service be authenticated and that the particular operation being requested be authorized for that requestor. Doing this on every operation request could be quite expensive. A session provides one means for doing this authentication and authorization once and, in essence, caching the result for the duration of the interaction between the client and the service. Other examples might include quotas on uses of resources at the data service and reservation of resources at the data service.

These examples show that the notion of session will be vital to creating a well performing data architecture. At the moment we are not aware of any work going on in OGF or other standards bodies to define a session mechanism.
3.13 Information Services
Please add Information Service (e.g. repository, catalog or directory) here. Data services can use information service. On the other hand, Information Service use data service for its storate.

Client

Interface 1

Interface 2

Resource

Service

Resource

Interface 1

Service

Interface

Service

Resource

A possible interface for a service

A service

A data resource

A service using a resource

Client

An API or service calling an interface

Key:

A client application or service

Transfer

Access

Sink/ Source

Description

Access

Sink/ Source

Description

Transfer

Additional Key:

Data �Service

Data �Service

Transfer of data to/from resources

Data Resource

Data Resource

Replication

Replication

Other services or client (non-OGSA) APIs

Other services or client (non-OGSA) APIs

Other Data Resources

Stored Data Resources

Managed Storage

Storage Management

Data�Service

Data Service

Description

Sink/ Source

Access

Description

Sink/ Source

Access

Storage

Data �Service

Description

Sink/ Source

Access

Data �Service

Description

Sink/ Source

Access

Cache

Description

Sink/ Source

Access

Data Federation

Description

Sink/ Source

Access

� http://www.ws-i.org.

� WS-Policy is an example of a policy mechanism but is not, as of this writing, within a standards process.

�From Fred’s “Guidelines for Information Modeling for OGSA Entities”:

The term resource model implies both information and data models and thus is often confusing; this term is now deprecated in OGSA nomenclature.

�Some texts are not properly shown:

Top-right “Resourc(s)”

Bottom-left “interface for a ???”

Bottom-left “A data (resource).

Why only “interfaces” are numbered but “services” and “resources” are not?

�This paragraph should be in section 2.5 instead of here.

�Since this term is used as “data sink” in the previous page, it confuses me. I recommend to use the term “client.”

�Do you mean data transfer service works between “data resource and client” as well as among “data resource”?

�These italicized terms are not in the glossary.

�“Secure channel” is Security Profile instead of Basic Security Profile.

�I don’t think so. Although OGSA data WG will develop multiple normative data Profiles, data architecture document should remain informational document.

�Need table title.

�OGSA-WG asks deferent conformance level for WS-Addressing, WS-Naming, and RNS:

1) We mandate to use WS-addressing

2) We recommend to use WS-Naming

3) If appropriate, RNS may be used.

�Since this term is not in the glossary, it should be Bold instead of italic.

�Since this term is not in the glossary, it should be Bold instead of italic.

�OGSA-WG recommend OGSA-data WG or the other WG in data area to develop information/data model with help from OGSA resource management design team and DMTF.

See section 3 of Fred’s guideline document.

� HYPERLINK "http://www.ogf.org/Public_Comment_Docs/Documents/Aug-2007/ogsa-modeling-guideline-v10.pdf" �http://www.ogf.org/Public_Comment_Docs/Documents/Aug-2007/ogsa-modeling-guideline-v10.pdf�

�WS-Policy is now W3C candidate recommendation.

�Since this term is not in the glossary, it should be Bold instead of italic.

I recommend you to global check for italicization.

�Please add “BES container” (or just container) to this list.

�Another important topic to be mentioned here is “workflow.” A workflow may include data service invocation or data service use workflow for complicated task.

�I agree that reservation service should be used from data services.

I don’t think OGSA-WG now limits reservation service just for EMS.

ogsa-d-wg@ogf.org

19

