1 Data Access

Grid data access needs to provide support for:
· Different types of data, e.g. binary, text, etc.
· Data which varies in the size and number of data items.
· Data which uses standard formats, e.g. JPEG, TIFF, CSV, application specific formats or a combinations of these.

· Data which is stored using specific data models, e.g. relational, XML documents, files, etc. within a storage infrastructure such as a DBMS, XML database, a file system, etc.
· A mechanism for specifying the data which is to become available through an access interface and also for adding data to an underlying data resource. This could be an iterator that returns a number of data items such as a number of bytes or use a specific query language, such as XPath, XQuery, SQL, etc. that produces or adds to the desired data.

A grid access mechanism provides
:
· Different levels of abstraction of the underlying data model and formats used.

· Provides a universal access interface and removes the requirement to know about any inherent connection mechanism required to access the storage infrastructure.

The level of abstraction offered by a service to the underlying data will vary according to the capabilities and performance required by a consumer. In general, grid data access interfaces are not intended to supplant existing native forms of access but rather to operate in conjunction with and leverage off these. It is important, if grid access mechanisms are to be useful, that their performance should not be much worse than any native access mechanisms provided by a data resource, e.g. an undue overhead in employing these access interfaces should not be introduced.

If a data service is associated with more than one data resource it will be necessary to disambiguate the data resource to which messages are targeted at. A naming scheme could be used, assuming that a message will only target a target single resource
. Most of the existing entities that a client may wish to access through a service will already have established names and lifetimes both of which are out with the control of the service layer.

1.1 Data Access Patterns

Grid data access in general will use one of the following access patterns:

· Request-response: the access request generates data which is included in the response sent back to the consumer. Alternatively, the request may contain the data which is to be added to the data resource and the response specifies the status of this operation.
· Factory: the request sent by the consumer produces a new data resource that is populated by the results of that request. This is created by the service and is maintained at the service end. The data in this new data resource may be collected at some later stage by the same consumer or a third party.

· Third party delivery: the data request includes instructions for delivering the data to a third party (or the same consumer)
, possibly using a protocol other than SOAP. This would allow for large amounts of data to be transferred.
· Bulk load: data is entered uploaded on to a data resource through the service by a consumer or third party, possibly using non-SOAP based protocols.

Access mechanisms need to provide an indication of how the results of a data access operation are to be represented (e.g., plain text or XML, as well as the format which they are to use) and handled (e.g., returned directly or held as a result set).

For the purposes of this section we assume that data access is done from a single data source – if a federation or some kind of location transparency is in effect then this would be provided by higher-level interfaces (as this may require additional information).

1.2 Security Considerations

In most instances the data resources that require access to be provided to will already employ a security model with various policies. It is important that any grid access mechanisms operate within, and observe, any existing security models that are already provided by the underlying data resource. In practice this will usually mean that external grid credentials have to be mapped to roles required to access the underlying data resource. Additional security may have to be layered at the service level if those provided by the underlying data resource are thought to be insufficient.

It may also be necessary to be able to bind a security policy with data that is derived from some underlying data resource but managed by the service. For instance, if the data access factory pattern is used data will be derived from some underlying data resource and treated as a data resource that is managed by a data service.
1.3 Access properties

There are three main classes of properties that describe, and may affect, the access semantics provided by a data service
:

· Properties pertaining to the capabilities of the service itself, e.g. supports concurrent access to the underlying data resource.

· Properties pertaining to the underlying data resource(s) that the data service provides access to, e.g. the name of the data resource, it can process SQL, etc.

· Properties pertaining to the relationship between the service and the underlying data resource
.

Some of these properties will be read only – others may be settable. Settable properties may affect the semantics of the service interface and thus the way that a client interacts with that service. The property values presented to a client may be affected by the credentials that are used to access the service.
A data service and data resource properties bind to each data resource that is exposed by a service. Hence, if a service supports more than one data resource then there has to be a set of properties for each data resource.

Service properties are:

· Need to define a common set of access properties (for now derived from DAIS, ByteIO and other places). Is the intent that this group should be defining such properties?
Not all properties will be applicable in all cases so the list of properties will be largely optional. This list should also be extensible.

1.4 Data Access Operations

Not sure if anything generic can be said about data access operations. At some level there is a requirement to have a bulk load type of operation that appears not to be covered by any group (despite Allen’s concern that these things tend to be too data resource specific to be provided with any commonality). In addition it would be good to provide mechanisms that are not SOAP specific to be tightly coupled with the access operation so that non-trivial amounts of data could be accessed. Finally, for now, do data access operations need to know the data resource that they are targeting if a data service can access more than one data resource and, as Peter Kuszt has previously mentioned, should there be explicit security credentials in the access interfaces or are these addressed at a higher level.
1.5 Current solutions

This section summarises some of the solutions currently being proposed for grid data access in GGF.

1.5.1 WS-DAI
The WS-DAI specification [WS-DAI] produced by the Database Access and Integration Services Working Group, DAIS-WG, proposes a generic, model independent way of providing access to structured data held in data resources. The WS-DAI specification provides a set of basic patterns that are then specialized for particular types of data resources in related specification documents referred to as realizations. In general, the DAIS interfaces expose intrinsic capabilities already supported by the underlying data resource, for instance the ability to run SQL queries or XPath expressions on the data held in the data resource. No attempt is made to hide the underlying data model – you have to know whether the underlying data resource has the capabilities that you require, i.e. you can run SQL queries. DAIS is not creating a new universal query language that will cater for all types of structured data resources.

The WS-DAI specification
 classifies its interfaces into three main types:

· Data description: provides metadata about the pertinent characteristics of a data resource that a service exposes as well as associated properties that affect the interaction between a service and the underlying data resource.

· Data access: provides access to data contained in a data resource through a service interface.

· Data factory: provides an indirect access to data by allowing new data resources to be created from derived data, e.g. the results from an SQL query, and binds this to a data service. This data service could support a different service interface from the service that created the data resource.

The data access types of interface return the data produced by a request, or the status for update type requests, in the service response. For instance, an SQL query sent to a data service exposing a relational data resource will return the resulting data from the query in the response message.
The data factory types of interface provide a way of holding data at the service end thus avoiding unnecessary data movement. A different service, possibly supporting a set of different access interfaces from the service that originally produced the data, may act as the end point from which the data is accessible. The data may then be consumed by, or delivered to, a third party.
Originally there was also a data management classification, as proposed in the OGSA Data Services document, but this was deemed to be out of scope
 for DAIS. For the record though there were three types of management that could be undertaken:

· Management of the data resource through the web service.

· Management of the web service itself.
· Management of the web service-data resource relationship.

The first two types of management are of interest to a larger community than is catered for by DAIS-WG. Work has already been done in this area by the OASIS WSDM TC; they have produced the Management Using Web Service [MUWS] and Management of Web Services [MOWS] specifications
. In addition languages such as SQL already provide data management capabilities that can be used to manage aspects of a data resource which further complicate the issue. DAIS does not provide any explicit operations that directly manage the web service or the data resource.
1.5.1.1 WS-DAI Defined Interfaces
Figure 1 provides a schematic representation of the interfaces defined in the WS-DAI specification. The CoreResourceList collection of operations allows information about the data resources known to a data service to be queried through the GetDataResourceList operation which returns a list of abstract names and the corresponding address. The address takes the form of a web service end point with enough information to distinguish the data resource at that end point.The Resolve operation allows data resource names to be mapped to an address.
[image: image1.png]wsdai:CoreDataficcess

wsdai:DataDescription

wsdai:CoreResourceList

+ GetDataResourceProperty)
+ DestroyDataResource()
+ GenericQuery)

+ DataRestourceAbstiaciName
+ ParentDataResource

+ DataResourceManagement
+ Cancurtentccess

+ Datasetiiap

+ Configurationhap

+ LanguageMap

+ DataResourceDescription
+Reatahle

+Writeahle

+ Transactioninitiation

+ Transactionlsolation

+ ChiligensitiveToParent

+ ParentgensitiveToChild

+ GelDataResourceList)
+ Resahve()

Figure 1: WS-DAI properties and operations. The CoreResourceList provide an additional set of operations that can be used to query the data resources that are available through a data service
DataDescription defines the base properties that are inherited and extended by all realizations where required. The DataDescription properties shown in the diagram are described in Section 1.6.1.1.

Although no operations are present in the DataFactory interface the WS-DAI specification defines a set of message patterns are that must be used by any DAIS realizations that seeks to extend the core properties and operations for a particular type of data model: this is done by [WS-DAIR] for relational data resources and the [WS-DAIX] specification for XML data resources. This ensures that different realizations have a level of functional commonality.
The WS-DAI specification also defines a generic set of message patterns for the data access interfaces that need to be implemented by all realizations. A base set of operations are specified to allow generic access to a data resource without having to implement any realization:
· GetDataResourcePropertyDocument: returns the core property document values associated with a named data resource. There is no fine access to individual properties unless WSRF is used. The details for this are discussed in the next Section.
· DestroyDataResource: destroys the relationship between a data service and a named data resource; future messages directed at that data resource produce a fault. The semantics of data resource destruction depend on whether the data resource is externally managed or internally managed. What this means for the data contained in that data resource is determined by whether the data resource is managed by the data service, as would be the case if the factory pattern had originally been employed to create the data resource, or whether an externally managed data resource, such as a DBMS, is being used: in the former case the destruction of the relationship should signify removal of the data while in the latter case no assertion can be made as to what happens to the data as it is out with the direct control of the data service.
· GenericQuery: a general message for passing queries that can be represented as a string to a data resource. There is an underlying assumption that data can be generated in this manner by the data resource. URIs that can be used to represent valid languages, associated with a given message type, are provided using one or more LanguageMap properties.

Other than for the optional CoreResourceList interface all properties and operations as well as any message patterns (where applicable) must be used by any DAIS realization. Figure 2 shows how the WS-DAIR specification extends the WS-DAI base set of interfaces and properties to allow various forms access to relational data. Further details are available from the WS-DAIR document [WS-DAIR].

[image: image2.emf]

Figure 2: WS-DAIR extensions to WS-DAI

In a similar fashion Figure 3 illustrates how the WS-DAIX specification extends the WS-DAI interfaces and properties to cater for various XML data resources. In this case, as there is as yet no ubiquitous query language like SQL for relational data resources, various XML query languages are currently supported: XPath, XQuery, XUpdate which are either de facto standards or documents that are in the process of becoming standards. In addition, some collection utilities are provided to interact with collections in XML repositories. Further details are available from the WS-DAIX document [WS-DAIX].

[image: image3.emf]

Figure 3: WS-DAIX extensions to WS-DAI

1.5.1.2 WS-DAI Properties

In this section only those properties defined in the WS-DAI specification are discussed. However, before proceeding there is an important aside that has to be made regarding the use of WSRF within DAIS. For a number of reasons the DAIS standards may be implemented without WSRF at all. This allows implementations to be developed and used now and at some later point these can be extended to use WSRF. This provides a possible migration path for adopting of WSRF.
Not using WSRF has two immediate consequences: properties may only be retrieved as a whole – there is no fine grain access to properties unless WSRF is used and similarly there is lifetime management provided by DAIS other than by explicit creation and destruction of data resources. Any finer granularity of lifetime management requires use of WSRF.
To preserve the message form for both WSRF and non-WSRF implementations of DAIS all operation require the abstract name of the data resource which they are targeting to be specified in the request message. WSRF implementations may ignore this information as it replicates what is already contained in the message header but it must still be contained in the message body.

The symbiosis between WSRF and non-WSRF implementations is achieved by providing optional WSRF wrappers around the core data resources to generate WS-Resources. The relationship between a consumer, data service and data resource is schematically shown in Figure 4.

[image: image4.emf]

WSRF Data Resource (optional)

WSRF Data Resource (optional)

Data Service

External ly Managed Data Resource

Service Managed Data Resource

0 - *

0 - *

Consumer

0 - *

1 - *

1

0 - *

0 - *

External Data Management System

0 - *

0 - *

This could be single management system or something more complex such as a federation. This complexit y is hidden from the consumer by the data resource

1 - *

Data Resource List (optional)

1

0 - 1

Figure 4: Relationship between consumers, data services and data resources in DAIS

Thus if you use WSRF then you will be able to have fine grain access to properties otherwise you can only retrieve all the properties in at once. Each data resource will thus have:
· DataResourceAbstractName (URI): the name of the data resource which the properties below correspond to.
· ParentDataResource (URI): if this data resource is derived from another data resource then this property will have the parent data resource abstract name from which the data was derived. If this is not a derived data resource this property must be omitted.

· DataResourceManagement (enumeration): an enumeration that describes whether the data resource is managed by the data service or whether it is externally managed. It takes the values:

· ServiceManaged - the data resource is managed by the data service. The lifetime of the data within the data resource is directly related to the lifetime of the data resource which in turn is controlled through the data service interface.
· ExternallyManaged - the data resource is managed by an external data management system. The lifetime of the data is not related to the lifetime of the data resource and cannot be controlled through the data service interface
· ConcurrentAccess (boolean): describes whether the interface can process more than one message at the same time. If the service interface receives a second request while it is still processing a previous one the second request should receive a fault and processing of the first should continue.

· DatasetMap (complex type): A mapping between the type of message going into a service and the URI of a dataset format that is to be used in the response. This allows a service to specify the types of return formats it supports. DAIS does not specify a set of canonical URIs for dataset formats
.
· ConfigurationMap (complex type): allows a service that supports a factory interface to specify the types of interfaces that may be associated with a data resource created by a factory message. This property also provides a set of initial value for the properties for the new data resource.
· LanguageMap (complex type): a mapping between a message type and a URI representing an expression language. For example, a message pertaining to the GenericQuery operation which supports SQL queries may allow such queries as dais:SQL-1999 expressions or dais:SQL-2003 expressions to be specified informing the service of what it’s payload is (there is no requirement for the service to verify this information). DAIS does not specify a canonical set of URIs to be used for expression languages
.
· DataResourceDescription (xsd:any): provides human readable content describing the data resource and its contents.

· Readable (boolean): has the value true if a data service is able to return data in response to query operations otherwise has the value false.
· Writeable (boolean): indicates whether the data resource accepts write requests to its data. The value taken of this property may result either as a constraint imposed by the credentials used to access the data service or as a basic restriction of the underlying data resource – e.g. the data may be coming from a DVD.

· TransactionInititation (enumeration): describes under what circumstances a transaction is initiated in response to messages. Can take the values:
· NotSupported: does not support transactions.

· Automatic: an atomic transaction initiated for each message.

· Manual: transaction context is under control of the consumer.

· TransactionIsolation (enumeration): describes how transactions behave with respect to other ongoing transactions. Can take the values:

· NotSupported: does not support transactions.

· ReadUncommitted: access uncommitted changes made by other transactions.

· ReadCommitted: access only committed changes made by other transactions.

· RepeatableRead: access only committed changes made by other transactions and ensure that no records read during the transaction are changed by other transactions.

· Serialisable: access only committed changes made by other transactions, ensure that no records read during the transaction are changed by other transactions and ensure that result sets read during the transaction are not extended by other transactions.
· ChildSensitiveToParent (enumeration): describes the sensitivity of the derived data to changes made in the original data from which it was derived, i.e. this can indicate whether the derived data is a copy of the original or a reference to it (although more complex policies could also be at play). It takes the values:
· Insensitive: changes to the parent data resource, the data resource from which the data has been derived, do not affect the data presented by this data service/data resource.

· Sensitive: changes to the parent data resource are reflected in this data service/data resource.
· ParentSensitiveToChild (enumeration): the converse to the previous property. It describes the sensitivity of the parent to changes in the derived data. It takes the values:
· Insensitive: changes made in the derived data resource will not be seen in the parent data resource.

· Sensitive: changes in the derived data resource will also be seen in the parent data resource.
These then constitute the base set of properties that are required for any DAIS realization. Realizations may extend these to cater for the data model that they are catering for.
1.5.2 ByteIO

This whole section needs to be rewritten by a byte-io person. At the moment it’s just their stuff plagiarised and probably misrepresented.
ByteIO describes a set of interfaces that provide users with a concise, standard way of interacting with bulk data in the grid. The ByteIO interfaces provide a means for treating data resources as POSIX-like files. Clients can leverage these interfaces to provide users with a convenient way of interacting with data treated this way.

ByteIO has two main types of interface each of which addresses a unique set of requirements. The first supports the notion that a data resource is directly accessible and that its clients can maintain any session state (such as file pointer, buffering, caching, etc.). The other presents a more stream-like interface to clients and as such contains implicit session state. In this latter case data resources with this type of interface do not represent bulk data source/sink directly but rather represent the resource of the open stream between the client and the data source/sink. These are schematically shown in Figure 5.
[image: image5.png]RandomBytel0 | [streamableByteolo

+ read(+ seekRead()
wite) + seekiviite)
+ append(

+ truncAppend

Figure 5: UML for ByteIO Interface

1.6 Conclusions

Need something here.
1.7 References

[MOWS]

I. Sedukhin (Ed). Web Services Distributed Management: Management of Web Services (WSDM-MOWS) 1.0. OASIS-Standard, 9 March 2005.

[MUWS]

W. Vambenepe (Ed). Management: Management Using Web Services (MUWS 1.0). Part 1. OASIS Standard, 9 March 2005.

W. Vambenepe (Ed). Management: Management Using Web Services (MUWS 1.0). Part 2. OASIS Standard, 9 March 2005.

[WS-DAI]

Web services data access and integration – the core (WS-DAI) Specification, Version 1.0. M. Antonioletti, M. Atkinson, A. Krause, S. Laws, S. Malaika, N.W. Paton, D. Pearson, G. Riccardi. GGF, 2005.
[WS-DAIR]

Web services data access and integration – the relational realization (WS-DAIR), Version 1.0. M. Antonioletti, B. Collins, A. Krause, S. Laws, S. Malaika, J. Magowan, N.W. Paton. GGF, 2005.
[WS-DAIX]

Web services data access and integration – the XML realization (WS-DAIX), Version 1.0, M. Antonioletti, A. Krause, S. Hastings, S. Langella, S. Laws, S.Malaika, N.W. Paton. GGF, 2005.
� This classification originated from the OGSA Data Services document.

�This produces a requirement – a generic way of specifying or labelling data formats is needed. Outputs can be labelled to be handled by other services automatically

�This produces a requirement – a generic way of labelling data languages. This would be useful for generic access interfaces.

�Other advantages? What is the value added?

�Question – would the actually access interface require the name to be passed into it or would this be done by the service which then uses the appropriate access interface for that data resource?

�This produces another requirement – the creation of transfer protocol labels, e.g. as is done in ByteIO:

� HYPERLINK "http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/simple" ��http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/simple�

� HYPERLINK "http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/dime" ��http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/dime�

� HYPERLINK "http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/mtom" ��http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/mtom�

�Or is this a higher level service or set of operations?

�Not convinced as yet as to whether this is a useful distinction to make. It may be useful if this then allows properties to be bound to the service, the data resource and the various service-data resource relationships that may exist.

�Need examples

�Not sure if what is here to the beginning of the next section is of any interest. It is more of a historical footnote and could be removed.

�Anyone know how usable these are? I vaguely recall Fred Maciel saying in a call that there were issues.

�Is this something that the data architecture could do? Is this a desirable thing to do?

�Would this be something useful for the data architecture group to define?

�These should probably go at the end of the document.

_1198496149.doc
[image: image1.png]wsdai:CoreDataficcess

+ GetDataResourceProperty)
+ DestroyDataResource()
+ GenericQuery)

wsdai

MLSequenceAiccess

+ GebMLSequenceProperyDocument)
+ Getiiens()

wsdaix:XMLCollectionccess

wsdaix:XQueryAccess

+XQuenyExecte)

+XPathExecute)

+ GetCollectionPropertyDocument)
+ AggDacument)

+ RemoveDocuments()

+ CreateSubcaliection(
+RemoveCollection)
+AddSchemag

+ RemaveSchema()

wsdaix:XUpdateAccess

+XupdateExecuteq

[image: image2.png]wsdai

ataDescription

+ DataRestourceAbstiaciName
+ ParentDataResource

+ DataResourceManagement
+ Cancurtentccess

+ Datasetiiap

+ Configurationhap

+ LanguageMap

+ DataResourceDescription
+Reatahle

+Writeahle

+ Transactioninitiation

+ Transactionlsolation

+ ChiligensitiveToParent

+ ParentgensitiveToChild

wsdai

MLCollectionDescription

wsdaix:XML SequenceDescription

+ TopLevelCollection

+ Numberoftems
+ Numberoocuments

+ SupportsCollections
+ SupportsCollectionesting
+ SupportsSchemas

[image: image3.png]wsdai

XMLCollectionFactory

wsdaix:XQueryFactory

+XPathQuenfF actory)

+ CollectionSelectionF actory)
+ DocumentSelectionF actory)

+XQuenyExecuteF actory)

_1198496511.doc
[image: image1.png]wsdai

:DataDescription

+ DataRestourceAbstiaciName
+ ParentDataResource

+ DataResourceManagement
+ Cancurtentccess

+ Datasetiiap

+ Configurationhap

+ LanguageMap

+ DataResourceDescription
+Reatahle

+Writeahle

+ Transactioninitiation

+ Transactionlsolation

+ ChiligensitiveToParent

+ ParentgensitiveToChild

wsdairzSQL AccessDescription wsdairzSOLResponseDescription wsdairzSQL RowsetDescription
+ CIMDescription + SQLResponssiiem +Rowschema
+ Number0faQLRowsets + NumberoRows

+ Number0f3QL UpdateCounts

+ Numberof3QLReturmvalues
+ Number0f3QL OutputParameters
+ NumberofaaL Communicationsreas

[image: image2.png]wsdai:CoreDataficcess

+ GetDataResourceProperty)
+ DestroyDataResource()
+ GenericQuery)

wsdair

OLResponsefccess

wsdai

0L RowsetAccess

+ GetSQLPropertyDocument)
+ SQLExecuteq

+ GelSQLResponseProperyDocument)
+ GetSQLResponseltem(

+ GetSQLRowset)

+ GetSQLUpdateCount)

+ GetSaLRetumvalueq

+ GetSOLOutpUParameter()

+ GetSQLCommunicationsAreag

+ GetSOLRowsetPropertyDocument)
+ GetTuples)

[image: image3.png]wsdai-DataFactory

wsdai

QLAccessFactory | | wsda

QL ResponseFactory

+ SQLExecuteFactory) + GetSQLRowsetF actory() +XPathQuenfFactory)

_1196424540.doc

[image: image1]

Data Service

External Data Management System

WSRF Data Resource (optional)

0-*

0-*

0-*

Consumer

This could be single management system or something more complex such as a federation. This complexity is hidden from the consumer by the data resource

0-*

0-*

WSRF Data Resource (optional)

Externally Managed Data Resource

Service Managed Data Resource

Data Resource List (optional)

1-*

1

0-*

0-*

1-*

1

0-1

