Including Data in Simple Job Execution Scenarios
Dave Berry & Stephen Davey, NeSC

6th December 2006
Motivation
In this memo we are looking at access to remote data in simple job execution scenarios and how they can make use of current specifications being developed within the OGF.
The motivation of these scenarios is to address a number of key issues:

· The use of the Job Submission Description Language (JSDL) and Resource Namespace Specification (RNS) or WS-Naming to abstract away from the user the details of the underlying implementation such as data location and data movement.
· As a result of this abstraction, to allow alternative implementations for accessing and transferring data, thus taking advantage of improvements in efficiency.
· To allow many different (heterogeneous) data sources can be accessed within a single web service framework that also provides support for authentication, authorisation, audit and other Grid functionality.
· To provide bulk data transfer using protocols other than SOAP within a web services framework.
Background

Recent interoperability tests have demonstrated that the JSDL and BES specifications from the Open Grid Forum successfully abstract the implementation of submitting an executable to a remote Grid resource. The next stage in interoperability is to abstract away the job’s access to the data it requires.

The OGSA Data working group of the OGF has developed an architecture-level description of data services within the OGSA framework. These services include functionality to read remote data, to transfer data between data resources and to manage data storage. The utility of these services is tested by showing how they can be used to implement sample scenarios.
This memo shows how the data services of OGSA can be used to provide the functionality required by simple job submission. We assert that these specifications can be used as the next step in developing interoperable Grid software.

Discussion

Three main approaches have been proposed for accessing remote data. One is for the BES to access the data as needed, in response to IO calls from the running application, usig ByteIO. Another is for the BES to “stage” the data in and out using ByteIO. The third, perhaps the most common, is to use a separate data transfer facility such as GridFTP to stage the data.

In each case, the job description must provide a mapping from the local filename as expected by the application and the remote filename. We suggest that the “staging” element of the JSDL specification can provide this functionality. Furthermore, if this is combined with a naming specification such as RNS or WS-Naming, the combination will abstract away the details of the data access, leaving each implementation free to use whatever data access and transfer mechanisms it finds most suitable.
Questions:

· How is the remote data resource (file, database or stream) specified in the JSDL document? It could be an RNS entry, e.g. rns:/abc.com/x/y/z which would map to the resource EPR, e.g. byteio://def.com/file.txt.

· Is it possible (or desirable) in the JSDL document to distinguish between wanting to access the remote data directly and wanting to stage the data in and out? If so how – by using say a prefix like byteio: or gridftp:?

The relevant specifications are:
· Basic Execution Service (BES). This hosts the job to be executed. In the scenarios discussed here, the software component that implements the BES interface also implements some of the data access functionality.
· Job Submission Description Language (JSDL). This is submitted to the BES and specifies the job to be executed. The JSDL “staging” element can contain URIs for remote input and output files, along with corresponding local filenames. The local filenames correspond to those that the executable expects to have available. The URIs for remote filenames may include a protocol, which then determines how the file should be accessed. A more generic way of using the staging element would be to regard it as a mapping from filenames used by the executable to remote data sources, and to leave the access protocol up to the implementation.
· Resource Namespace Specification (RNS). This specifies a “human-readable”, hierarchical and distributed namespace.
· WS-Naming. This specifies an abstract name, unique in space and time. WS-Naming may be an option wherever RNS is used in this document.
· ByteIO. This specifies an interface for reading a number of bytes from a remote data source. ByteIO messages can specify the protocol that should be used to return the data. The ByteIO specification only details how to use protocols that transfer the data with the response message; more complex protocols have yet to be profiled for use with ByteIO.
· Data Movement Interface (OGSA-DMI). This will specify an interface for controlling a data transfer service, such as GridFTP or BBFTP.
· Guide to the Diagrams:
· JSDL document sent to the BES specifying the application to be executed and the data to be staged in and out.
· The application executable specified in the JSDL document.

· The Basic Execution Service which processes the clients JSDL document.

· The application executable running inside the Basic Execution Service.

· A wrapper library providing the application with a mapping from the local filename to the remote data source.
· The remote data resource from which input data needs to be retrieved and to which the output data will be returned.

· The data service which handles the interfaces to the remote data (storage) resource.

· The local copy of the data to which input data is copied in advance of being read by the application executable and to which output data is written.

· A local data service which handles the interfaces to the local data (storage) resource.

· A Data Transfer Service that may be used to manage the transfer of data to and from Data Service 1 (DS1) and Data Service 2 (DS2).

· A Resource Namespace Service (RNS) that may be used to manage the name-to-resource mapping of the remote (input) data, and that would provide the relevant EPR.

1 Remote Access
In this first scenario, IO calls made by the application are translated into ByteIO messages to the remote data resource.

[image: image1]
Scenario steps:
1. Application executable reads and writes to the remote data resource ‘directly’ by using a wrapper interface within the BES.
2. The wrapper maps from the local filename (as called by the application) to the remote data source.

3. Actual reading and writing between the BES and DS1 uses ByteIO.

Questions:

· What happens if the JSDL document specifies a protocol other than ByteIO (e.g. GridFTP)?

Notes:
· In this scenario (and also in the subsequent scenarios) an optional Resource Namespace Service (RNS) has been included. The purpose of the RNS is that it may be used to manage the mapping of the names specified in the JSDL document to the remote (input and output) data resources, and hence provide the relevant End Point References (EPRs) to the BES.

· The abstraction provided by JSDL and RNS or WS-Naming would allow systems to use implementations other than ByteIO for the remote access if they so with. ByteIO has the advantage of providing a standard access method across many different data resources.
· One instantiation of this scenario is where a Grid File System implements the wrapper and ByteIO access layers. The BES would then access the data without knowing about the remote nature of the access.

2 Data Staging with the BES

In this section we show three variations in which the BES container copies the data to and from the remote resource using ByteIO.
2.1 Direct staging

[image: image2]
Scenario steps:

1. BES reads in the remote data via data service 1 (DS1), using ByteIO, and stores a copy of it locally.
2. Application executable then writes the output (result) data to the local storage.
3. On completion of the job the BES writes the local data back to the remote resource, again using ByteIO.

4. Local copies could be deleted or marked for deletion.

Questions:

· What happens if the JSDL document specifies a protocol other than ByteIO (e.g. GridFTP)?

2.2 Delivered to 3rd Party

[image: image3]
Scenario steps:

1. BES instructs the remote data resource (via DS1) to deliver the specified data to Data Service 2 (DS2) - using ByteIO.

2. DS2 stores this data locally for the BES.

3. Application executable then writes the output (result) data to the local storage.

4. On completion of the job the BES writes the local data back to the remote resource (again using ByteIO in this case).

5. Local copies could be deleted or marked for deletion.
Questions:

· In existing ByteIO profiles, the requested data is returned in the response message. How do you specify the delivery to a 3rd party when using ByteIO?
· How does DS2 know to expect the data?

· How would the BES reserve storage space with DS2?

· How would DS2 communicate to the BES the location (EPR) of the data it had just received from DS1?
Note: The large number of questions and issues listed above would seem to suggest that this pattern (“Delivery to 3rd Party”) is not a good one to choose.
2.3 Delegating to a local data service

[image: image4]
Scenario steps:

1. BES instructs DS2 to read the specified data from the remote data resource (DS1) - using ByteIO in this case.

2. DS2 stores this data locally for the BES.

3. Application executable then writes the output (result) data to the local storage.

4. On completion of the job the BES instructs DS2 to write the local data back to the remote resource (DS1) - again using ByteIO.

5. Local copies could be deleted or marked for deletion.

Questions:

· How would the BES reserve storage space with DS2?

· How would DS2 communicate to the BES the location (EPR) of the data it had just received from DS1?

· What interface would be used between the BES and DS2? Would it just be an implementation specific design choice? Or would this be the same interface(s) specified by OGSA-DMI Working Group?
3 Data Staging using a Data Transfer Service
In this scenario, a data transfer mechanism such as GridFTP is used to set up and manage the staging of data.

[image: image5]
Scenario steps:

1. BES instructs the Data Transfer Service (DTS) to manage the transfer of data from DS1 to DS2. This would use the interface being specified by the OGSA-DMI working group.
2. DTS decides or negotiates between DS1 and DS2 the best transport protocol to use – e.g. GridFTP.

3. DS2 stores this data locally for the BES.

4. Application executable then writes the output (result) data to the local storage.

5. On completion of the job the BES instructs the DTS to manage the transfer of the local data back from DS2 to the remote resource (DS1) - again using GridFTP say.

6. Local copies could be deleted or marked for deletion.

Questions:

· How would the BES reserve storage space with DS2?

· How would the BES specify to the DTS the remote and local filenames? By using logical names (e.g. RNS names) say?

· How would DS2 communicate to the BES the location (EPR) of the data it had just received from DS1?
Notes:

· The BES and DTS do not have to be separate services but might implemented by the same software component.
· The data transfer layers could be provided by a Grid File System, as long as the access is via the OGSA-DMI interface.

4 Summary
There are several ways that an application running on a Grid resource might access remote data. It seems that a suitable profile of JSDL and RNS or WS-Naming would abstract this choice of implementation, allowing system designers to implement the approach that best fits their requirements. The use of ByteIO and OGSA-DMI virtualisations will increase the “plug-and-play” nature of Grid data services.

BES

JSDL

DS1

DS2

DTS

local data

remote data

exe

BES

exe

exe

BES

exe

remote data

ByteIO

RNS

DS1

JSDL

ByteIO

BES

local data

RNS

RNS

DS1

JSDL

ByteIO

remote data

RNS

exe

BES

remote data

local data

DS1

JSDL

DS2

ByteIO

ByteIO

DS2

e.g. GridFTP

RNS

exe

BES

remote data

local data

DS1

JSDL

DS2

RNS

exe

BES

remote data

local data

DS1

JSDL

DTS

