GWD-R(draft-ggf-ogsa-bes-spec-006)

Authors:
Open Grid Services Architecture
A. Grimshaw, U. Virginia

S. Newhouse, U. Southampton

Darren Pulsipher

http://forge.gridforum.org/projects/ogsa-bes-wg

7/21/2005
GWD-I (draft-ggf-ogsa-bes-spec-006)
7/21/2005

OGSA Basic Execution Service
Version 1.0
Status of This Memo

This document is in draft stage and should be considered as in flux. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2004, 2005). All Rights Reserved.

Abstract

The OGSA V1.0 document section 3.4, pages 17-25, describes an EMS (Execution Management Services) architecture consisting of a number of different services. This document describes one of these services – the “service container” – which is the focus of the Basic Execution Service (BES) specification developed by this working group. BES models execution of services in “containers” that may be implemented in a variety of ways, e.g., by a single Unix or Windows host, by a queuing system, by a hosting environment such as .Net or J2EE, or by more specialized execution containers yet to be invented. BES defines a set of port-types as well as resource properties (attributes) for the simplest – most basic container.
This document defines the scope and motivation for this work followed by an abstract definition of the BES interface. This interface is then rendered using the OGSA profiles into normative text in Appendix A.
This document reflects the decisions taking by the working group as to the essential capabilities of a ‘Basic Execution Service’. Where relevant we have also captured the decisions as to the capabilities that are not part of a BES and the reasons behind the decision. These decisions are contained within [] and will be deleted before submission.
Contents

31.
Introduction

32.
Assumptions

43.
Service Interface

43.1
CreateActivityFromJSDL

53.2
GetActivityStatus

83.3
TerminateActivities

83.4
StopAcceptingNewActivities

83.5
StartAcceptingNewActivities

93.6
ShutdownContainer

93.7
GetSubmittedJobDescriptions

94.
Exposing Container Activity

105.
Security Considerations

106.
Authors Information

107.
Contributors

108.
Acknowledgments

109.
Intellectual Property Statement

1110.
Full Copyright Notice

1111.
References

1112.
Appendix A – OGSA WSRF Base Profile Rendering

1112.1
CreateActivityFromJSDL

1112.2
getActivityStatus

1212.3
terminateActivity

1212.4
StopAcceptingNewActivities

1212.5
StartAcceptingNewActivities

1212.6
ShutdownContainer

1. Introduction
The purpose of this document is to describe a web service interface to initiate, monitor & control activity on computational resources. This web service interface enables the creation, destruction and status determination of ‘activities’ (e.g. jobs, services, resources, …) within a container – an abstract representation of computational capability. Such a container may be a single machine, a cluster managed through a Distributed Resource Manager (DRM) such as Load Leveler, Sun Grid Engine, Portable Batch System, etc. or an interface into a web service hosting environment. Operational differences between container implementations are not expected to be reflected in the service implementation.

Considerable effort has been undertaken within the OGSA-WG EMS (Execution Management System) design team to define the different services and their interactions. The current high-level architecture for the execution of ‘legacy’ binary applications is encapsulated in this diagram.

[image: image1]
Figure 1: This figure is taken from the OGSA 1.0 informational document and has been modified slightly to reflect the I/O model of JSDL. Specifically, the “data container” has been replaced by a “disk” symbol. There is an assumption in JSDL that the execution context of a “job” as storage that can be accessed with the same path everywhere in the execution context, e.g., there is a shared file system.
The purpose of this service interface is to tackle the issues surrounding the ‘Service Container’ and to form part of the OGSA Basic Execution Profile. Other services described within the above architecture are considered to be out of scope of this activity.
2. Assumptions
The word ‘activity’ will be used frequently from this point in the document. Within the context of this document an activity could be the execution of a legacy binary or the initiation of a web service within a container. From the perspective of an external observer this is a self contained operation. If it can be further decomposed, such decomposition does not visible through the service interface.

By the time we reach the point of invoking the Basic Execution Service (BES) we assume that the following issues have been resolved:

· The placement decision (where the ‘activity’ is going to run) has already been determined by some unspecified means. This may have used some a set of ’resource attributes’ associated with the BES instance in a registry or used to annotate the BES instance itself.
· [RESOLVED: At GGF 14 it was decided that specifying these attributes was out of scope of the BES specification at this time. It was noted that work with CIM and the GLUE schema going on elsewhere within the Grid community would be relevant to BES in the future.]
· Naming. An essential pre-requisite to many distributed computing activities is a ‘naming’ scheme that provides a globally unique identifier in time and space. BES expects to use the WS-Name schema being defined within the OGSA-Naming-WG. It is not our intention to duplicate work in this area.

· Job Submission Description Language (JSDL). BES will use JSDL. There are several assumptions, some explicit, and some implicit. One of the most relevant here is that JSDL provides a stage-in/stage-out model and associated “local” file system capability in which data is copied to/from the locus of execution. The presumption is that there is a local file system that is visible everywhere within the locus of execution – whether it is a single host or a large cluster.

· The ‘activity’ that is going to be initiated within the container has already been determined elsewhere and is fully specified in the JSDL document. Therefore we assume that the JSDL document presented to the service is ‘concrete’ in nature. This does not preclude the JSDL document being initially specified using, for example, logical file names but that these logical file locations have been replaced by real file locations by the time the document reaches the BES.
3. Service Interface

The interface port-types for the OGSA-BES service container are described in this section. The port-types are described using a combination of English and IDL. In Appendix A the port-types are rendered using the definitions found in the OGSA WSRF Base Profile document, i.e., conformant with the OGSA WSRF Base Profile.
3.1 CreateActivityFromJSDL

This operation is used to initiate a new activity within the BES container as specified in a JSDL document.

Input(s):
· JSDLDocument jobDescriptionDocument

Accepts an XML document conforming to JSDL 1.0 describing a single activity that is to be started within the BES container. [At GGF 14 we discussed supporting multiple job description documents. Decision was it was not worth the trouble.]
Output(s):
· WS-Name activityIdentifier
On success a WS-Name identifying the requested activity is returned from the service.
Fault(s):
· NotAcceptingNewActivities: The BES-container is not accepting any new activities at this state.
· BadlyFormedJSDLDocumentFault: The XML contained within the JSDL document is badly formed, i.e. it is not good XML. The relevant parsing error is returned in the body of the fault.
· UnsupportedJSDLFault: This is a well formed XML document which describes a version of JSDL that is not supported by the container.
· UnsupportedFeatureFault: The well formed supported JSDL document contains an operation or a non-standard extension that is not supported by the BES. The feature that is not supported by the BES is returned in the body of the fault.
· JobSpecificationFault: Despite a well formed JSDL document that is understood by the BES the specified activity cannot be undertaken, e.g. mis-specified executable location or ftp file transfer. The unsupported JSDL elements are returned with the body of the fault.
· BackendFault: The implementation could not create the activity. For example, an access control fault, IO fault, or some other problem.
3.2 GetActivityStatus
The activity specified within the JSDL document may contain many different operations – staging in, job execution, staging out, etc. To capture the state of this potentially complex activity within the job we define an operation that allows the state of several of these activities to be retrieved from the BES.
Input(s):
· WS-Name[] activityIdentifiers
Passes in a vector of WS-Names (generated from the createActivityFromJSDL operation) which relate to the activities from which we require state information.
Output(s):
· ActivityStatus[] activityStatus
An XML document containing a vector of ActivityStatus elements.
Fault(s):
· None
[ISSUE 21/7/05: Instead of throwing a fault, failure to discover an activity state is recorded in the ActivityStatus document output. Review this and ‘NotKnown’ states.]
·
The JSDL document comprises three sets of possible actions:
· Staging-in: Each staging-in action will have its own state.
· Execution: The single execution action will have its own state.
· Staging-out: Each staging-out action will have its own state.

Note that the order of each stage-in action with respect to other stage-in actions is implementation dependent. Similarly for stage-out actions.
The state of the stage-in and stage-out actions are defined as follows, and the transition between states in the following state diagram:

· NotStarted: The action has been recognised by the BES but has not progressed any further in terms of activity within the container.
· Pending: The action has entered into a state that is external to the service but still internal to the container. For instance, the executable may have entered into a queue within a batch scheduling system or the file transfer may be queued into some service.
· Active: The action is underway.
· Blocked: The action cannot proceed any further at this time due to the unavailability of some resource external to the BES.
· Suspended: The action will not progress any further at this time at the instigation of the BES.
· Completed: The action is complete.
· Failed: This state can be reached from any state except Completed. This state is triggered by the BES due to un-recoverable external action or event.
· Cancelled: This state can be reached from any state except Completed. This state is triggered by the BES due to other operations on the BES.
· NotKnown: The state of this action cannot be determined. Instead of throwing a fault the error is recorded within the ActivityStatus document.

[image: image2.emf]Not

Started

Pending

Active

Completed

BlockedSuspended

FailedCancelledNotKnown

The proceeding text describes the state of each action initiated by the BES from the JSDL document. It is also important to gain an overall view of the state of a particular activity. However this ‘meta-state’ is dependent on the state of the actions specified within the BES.

[image: image3.emf]Staging In

Staging Out

Arrived

Pending

Execution

Pending

Cleaning Up

Done

Failed

Terminating

Terminated

Other

SuspendedRunning

Execution

Complete

These states are defined as follows:

· Arrived: The JSDL document specified by the ‘createActivityFromJSDL’ operation has been parsed and accepted as by the BES. The ‘staging-in’ actions are all in the ‘not-started’ state.
· Pending: One or more of the ‘staging-in’ actions have moved beyond the ‘not-started’ state into the ‘pending’ state.

· Staging-In/Staging-Out: One or more of the ‘staging-in/staging-out’ actions are in the ‘active’, ‘blocked’ or ‘suspended’ states. It is possible that one or more of these actions may still be in the ‘not-started’ or ‘queued’ states.
· Execution Pending: All of the ‘staging-in’ actions have reached the ‘completed’ state. The executable is in place but the required resources (e.g. available memory or processors) are not yet available so the execution cannot yet start. Execution is pending until these resources are available.
· Running: The resources available to start the execution action and the activity has started..
· Execution Complete: The execution action has successfully completed and the output files are available for staging-out.
· Cleaning-Up: All of the ‘staging-out’ actions have reached the ‘completed’ state.
· Done: All of the ‘staging-out’ actions have reached the ‘completed’ state.
· Failed: If any of the actions enter the ‘failed’ state then the whole activity enters the ‘failed’ state.
· Suspended: If any of the actions enter the ‘suspended’ state the whole activity enters the ‘suspended’ state.
· Terminating: This is a state that the activity enters into following a call to the ‘terminateActivites’ operation. Following such a call the BES will attempt to cancel any activity that has not already ‘failed’ or ‘completed’.
· Terminated: All of the actions have entered a ‘failed’, ‘completed’ or ‘cancelled’ state.
· Other: An activity within the BES can transition to the ‘other’ state from any other state. This container specific state is further qualified in the ‘OverallStatus’ element. .
· NotKnown: The state of this activity cannot be determined. Instead of throwing a fault the error is recorded within the ActivityStatus document.
The state of each specified action within an activity, and the overall state of the activity are returned to the requester within an ActivityStatus element with the following structure:
<ActivityStatus>

 <ActivityIdentifier>WS-Name</ActivityIdentifier>

 <OverallStatus state=”(enumerated state)
 ”otherstate="(this container specific states)"? />
 <StageInStatus id=”file string” state=”(enumerated state)” />*

 <StageOutStatus id=”file string” state=”(enumerated state)” />*

</ActivityStatus>*

[COMMENT from Karl: With large number of files being defined as part of the job then the state document becomes very large.]
At GGF 14 several other items where identified that MAY be returned within the ActivtyStatus element:

· <ResourceAllocation>: Lists the resources that have been allocated to this activity. The allocated resources may differ from those requested by the activity within the JSDL document.
· <UsageRecord>: Use the UsageRecord schema to record the resource that has been consumed so far by the activity.
All implementations of the BES MAY transition through these states, but not all of these states will always be transitioned. As an action changes state and as the overall activity changes state an event will be dispatched if it has been subscribed to.
[ISSUE: Should we adopt/use/extend the CIM state model that has an integer enumeration that can indicate the operational state of the job or the transitions between these states.]
	Job State
	Identifier
	Description
	

	New
	2
	Indicates that the job has never been started.
	

	Starting
	3
	Indicates that the job is moving from the 'New', 'Suspended', or 'Service' states into the 'Running' state.
	

	Running
	4
	Indicates that the Job is running.
	

	Suspended
	5
	Indicates that the Job is stopped, but may be restarted in a seamless manner.
	

	Shutting Down
	6
	indicates the job is moving to a 'Completed', 'Terminated', or 'Killed' state.
	

	Completed
	7
	Indicates that the job has completed normally.
	

	Terminated
	8
	Indicates that the job has been stopped by a 'Terminate' state change request. The job and all its underlying processes are ended and may be restarted (this is job-specific) only as a new job.
	

	Killed
	9
	Indicates that the job has been stopped by a 'Kill' state change request. Underlying processes may have been left running and cleanup may be required to free up resources.
	

	Exception
	10
	Indicates that the Job is in an abnormal state that may be indicative of an error condition. Actual status may be surfaced though job-specific objects.
	

	Service
	11
	Indicates that the Job is in a vendor-specific state that supports problem discovery and/or resolution.
	

[ISSUE: Do we want to be able to apply a suspend operation to an activity within the BES. If we do various file transfer activities may go into suspend.]
3.3 TerminateActivities
This operation initiates the termination of a set of activities within the BES.
Input(s):
· WS-Name[] activityIdentifiers
Vector of WS-Names that are to be terminated.
Output(s):
· None
Fault(s):
· None
The BES attempts to terminate each activity specified in the list. As a consequence of this operation the specified activity moves from its current (presumably non-terminating state) to the ‘terminating’ state. If termination is successful then the activity enters into a ‘terminated’ state. Invoking this operation on a ‘terminated’ activity has no further effect. How long the activity remains in the ‘terminated’ state before the WS-Name no longer returns a reference to the activity is not defined. The overall success of this operation (i.e. to move the activity into a ‘terminated’ state’) must be determined through other operations or subscribing to any generated events.

[RESOLVED 21/7/05:This operation will fail silently. The correct state MUST be obtained from the getActivityStatus.]
[ISSUE 21/7/05: 3.4, 3.5 & 3.6: Should these operations be out of scope (as they are management related) or in scope until wider OGSA management system devised?]
3.4 StopAcceptingNewActivities

This operation moves the BES into a state where it stops accepting new activities.

Input(s):
· None.

Output(s):

· None.
Fault(s):
· None.
3.5 StartAcceptingNewActivities

This operation moves the BES into a state where it starts accepting new activities.

Input(s):
· None.

Output(s):

· None.

Fault(s):
· None.

3.6 ShutdownContainer

This operation terminates the BES container. The impact on the activities taking place within the container is undefined.

Input(s):
· None.

Output(s):

· None.

Fault(s):
· None.

3.7 GetSubmittedJobDescriptions
This operation returns the submitted JSDL document that is associated with the specified WS-Name.
Input(s):
· WS-Name[] activityIdentifiers

Output(s):

· JSDLDocument[] documents.

Fault(s):
· None
The output from this operation needs to associate the returned JSDLDocuments with its corresponding WS-Name.

One option is to define a profile based around the JSDL specification that uses the extensibility mechanism to embed the WS-Name within the JSDL document:

<jsdl:JobDefinition>

 <jsdl:JobDescription>

 <JobIdentification ...>

 <bes:ActivityName>..WS-Name content..</bes:ActivityName>

 </JobIdentification>

 <Application ...>

 ...
 </jsdl:JobDescription>

</jsdl:JobDefinition>
[ISSUE 21/7/05: The WS-Name needs to be associated with the JSDLDocument output. How? As above or should the JSDL document be wrapped with the WS-Name in a new element.]

4. Exposing Container Activity

The BES does not mandate that the activity started within the container provide a web service interface for management or control purposes. Profiles on the BES specification may mandate that the use of certain JSDL extensions (e.g. the POSIXApplication) will result in a web service interface (e.g. a POSIX control interface) to the resulting activity that can be referenced by the WS-Name (endpoint) returned from the ‘CreateActivityFromJSDL’ operation. Such interfaces are out of scope of this document.
 [ISSUE 21/7/05: Review text.]
Security Considerations

Security considerations are significant in execution management, both in terms of access control (authorization) to the various services, as well as identity mapping issues, e.g., run this activity as “Fred”. Authorization and authentication is outside of the scope of this document and is dependent on the ongoing activity within the OGSA Authorisation Working Group.

One requirement of such an infrastructure will be the ability to restrict the access to information contained within BES. For instance, the only person who may be able to obtain the state of an activity is the person who requested that the activity be instantiated. A specified person could be given rights to administer a job (e.g. manipulate the job state).
[ISSUE 21/7/05: Review]
Authors Information

Andrew Grimshaw
Mark Morgan

Chris Smith

Darren Pulsipher

Steven Newhouse

Add your name here …

Contributors

We gratefully acknowledge the contributions made to this document by
Acknowledgments
We are grateful to numerous colleagues for discussions on the topics covered in this document, and to the people who provided comments on the public drafts. Thanks in particular to (in alphabetical order, with apologies to anybody we have missed) ….
Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2004, 2005). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

References

OGSA WSRF Basic Profile definition
OGSA Authorization

WS-Naming

RNS
Appendix A – OGSA WSRF Base Profile Rendering
4.1 CreateActivityFromJSDL

[image: image9.emf]

<WSDL Goes here >

4.2 getActivityStatus

4.3 terminateActivity

[image: image4.emf]

<WSDL Goes here >

4.4 StopAcceptingNewActivities

[image: image5.emf]

<WSDL Goes here >

4.5 StartAcceptingNewActivities

[image: image6.emf]

<WSDL Goes here >

4.6 ShutdownContainer

[image: image7.emf]

<WSDL Goes here >

[image: image8.png]
Provisioning

Deployment

Configuration

Information Services

Service

Container

Accounting Services

Execution Planning Services

Candidate Set Generator (Work -Resource mapping)

Job Manager

Reservation

<WSDL Goes here >

	

�

ogsa-wg@ggf.org
11

_1183485038.ppt

Not

Started

Pending

Active

Completed

Blocked

Suspended

Failed

Cancelled

NotKnown

_1183133396.ppt

Staging In

Staging Out

Arrived

Pending

Execution

Pending

Cleaning Up

Done

Failed

Terminating

Terminated

Other

Suspended

Running

Execution

Complete

