State Extensibility Model for Job Scheduling Systems
Figure 4. Base job state transition diagram.

The base set of states that a job may be in is the following:

· New: This is the start state, in which a request to create the job has not yet been submitted to the scheduler by a client.

· Pending: The scheduler has accepted the job request but not yet sent it anywhere for actual execution.

· Running: The job is executing on some set of resources.

· Finished: The job has terminated.

· Cancelled: The client – which might be some system administrator (and hence not necessarily the client who originated the request to create the job) – has issued a cancel job request.

· Failed: The job has failed due to some system error condition, such as failure of a compute node that was providing some (or all) of the resources allocated to the job. Failed jobs can return to the pending state if they have been marked as “re-executable” and the scheduler’s policy supports this “requeuing” option.

Extensibility

The interface to the job submission system is extensible in several dimensions. That is, cooperating clients, schedulers, and compute nodes can agree to implement extended job submission profiles rather than just the most basic job submission profile.

To enable interaction among clients and schedulers that understand differing levels of functionality, the notion of specialization of states is introduced. This allows a simple client who only understands base scheduler states to still interact with more complex schedulers, albeit only understanding such schedulers’ activities in base terms. Similarly, it provides a way for more complex clients to “down-level” their interactions with simpler schedulers in a well understood, interoperable manner. Specific specializations of the base scheduler state set – or of other specializations thereof that have been previously defined – should be defined using profiles.

For example, one might define a profile that extends the “running” job state to include the state “suspended”, in order to represent the notion of a job that has started running but has been suspended from execution. The transition from “running” to “suspended” may be something that a client should be able to request. In that case, the job scheduling profile must define additional interface operations in addition to the extension states that enable clients to request “suspend” and “resume” state transitions.

Composition of Job Scheduling Profiles

If multiple independent job scheduling profiles are defined, the question arises of what it means for schedulers to implement multiple profiles, and how clients that may not understand some of the added profiles can still interact with the scheduler.

Consider the following three state diagrams, representing separate, independent extensions of the base job scheduling protocol. Profile A extends the base scheduling protocol to support the notion of job migration. Profile B extends it to support the notion of staging input data in from a client user to a compute node before a job executes on that compute node, and then staging result data out from the compute node back to the client user after the job has finished executing. Profile C extends the base scheduling protocol to support the notion of job suspension.

Figure 5. Profile A: Job state transition diagram for a job scheduling profile that extends the base protocol to support job migration.

Figure 6. Profile B: Job state transition diagram for a job scheduling profile that extends the base protocol to support the notion of staging in data to a compute node before a job runs and staging data out back to the client user after the job has finished execution.

Figure 7. Profile C: Job state transition diagram for a job scheduling profile that extends the base protocol to support job suspension.

These job scheduling profiles really represent “component” profiles since a scheduler might wish to implement both at the same time, yielding a scheduler capable of supporting both migration of jobs as well as data staging activities. However, a naïve composition of the profiles raises a number of questions:

· Can the migrate operation of profile A be applied to all the sub-states of “Running” that are defined in profile B? One can imagine that the migrate operation is meaningful/supported for a job that is in state “Stage-in” or state “Executing”, but not for a job in state “Stage-out”.

What response should a client issuing a migrate request for a job in state “Stage-out” get back? Should they get back a fault response indicating that the requested operation is illegal? Does that take them to state “Failed”? Should they get back a fault response that indicates that the requested operation is inapplicable, implying that the job stays in its current state because the request was effectively a no-op?

Similarly, what if the scheduler doesn’t support the migrate operation for jobs currently in state “Stage-in”? Should a migrate request result in a fault response? Should the semantics be that migrate request gets applied eventually, once the job is in state “Executing”?

Note that different schedulers could meaningfully support either the notion that migration is applicable to the “Stage-in” state or not. Does this mean that there needs to be two different job profiles defined to cover each case?

· Consider next the composition of profiles A, B, and C. Suppose that a client understands all three profiles and encounters a job in state “Suspended” that it wishes to migrate. The client is smart enough to know that if the suspended job was originally in state “Stage-out” then a migrate request is both inapplicable and unnecessary. However, unless the characterization of a job’s current state describes the union of all the sub-states that it is currently in, an intelligent client may not be able to decide on the most appropriate actions to take.

· Finally, consider a variation of profile B, in which the “Stage-in” state were a sub-state of state “Pending” instead of a sub-state of state “Running”. In this case, there would now be a state transition from a “Pending” sub-state to state “Failed”, which a base-level client would not understand.
To support schedulers wishing to implement both profiles one can take one of two approaches:

· One can require that schedulers only implement a single job scheduling profile (or at most only a set of completely independent profiles) and require profile designers to specify the power-set of all useful combinations of “component” job profiles.

· One can define rules for how schedulers may individually create compositions of selected “component” job scheduling profiles in a manner that results in meaningful interfaces and implementations.

The former approach will quickly become practically infeasible if any significant number of component job scheduling profiles is created; therefore the latter approach is chosen.

The following concepts/requirements are added to the base job scheduling design in order to support the composition of multiple job scheduling profiles:

· A job scheduling profile cannot add state transitions that aren’t “covered” by the state transitions already present in the base scheduling protocol and in the job scheduling profiles from which it is being extended. For example, no job profile may define sub-states of the “Pending” job state that may transition to the “Failed” job state. Thus, a client who understands fewer extensions than a scheduler it is interacting with will never see any unexpected state transitions.

· All clients and schedulers are expected to understand the fault response “operation not applicable to current sub-state”. When a client receives this response from a scheduler the semantics are that the requested operation was not performed and the state of the scheduler and the respective job remains unchanged.

A scheduler is free to decide to implement a requested operation (and associated state transition) by deferring it until the respective job or job is in a more suitable state. In this case the scheduler will treat the operation request as having been performed successfully (assuming that it actually gets performed successfully once the job has transitioned to a suitable state). The scheduler may optionally include informative information in the response it sends to such an operation request, or the scheduler may indicate the success or failure of the requested operation through a notification.

· In order to enable clients to understand as much as possible about the state of a job, state information must include the union of all sub-states that the job is currently in. For example, a job that was in state “Stage-in” and is currently migrating will have a state that consists of both “Stage-in” and “Migrating”. “Union states” of this sort can be easily represented as XML info-sets in which the top-level element is the base scheduling protocol state (e.g. “Running”) and sub-elements exist for each job profile sub-state that the job or job is logically in.

The result of adding these requirements is that clients must be prepared to sometimes have requested operations be rejected due to inapplicability, but they will never see job state transitions that they can’t understand. Furthermore, by defining the notion of “union states”, clients can be given as much information as possible about the current state that a job is in.

Although these requirements imply that the set of allowable job scheduling profiles and their “mixings” are restricted, the belief is that this design approach should be sufficient to support most job scheduling designs that people will desire in practice.

New

Pending

Running

Finished

Canceled

Failed

New

Pending

Running

Finished

Canceled

Failed

Running:

Migrating

Migrate

New

Pending

Running:

Stage-in

Finished

Canceled

Failed

Running:

Executing

Running:

Stage-in

New

Pending

Running

Finished

Canceled

Failed

Running:

Suspended

Suspend

