E. URBAH
Requirements for an improved Basic Execution Service (BES)
2 / 21

LAL, Univ Paris-Sud, IN2P3/CNRS, Orsay, France
01 September 2011
Etienne URBAH urbah@lal.in2p3.fr
Distributed Data Processing – Production Grid Infrastructures
Requirements for an improved Basic Execution Service (BES)

Abstract

In the context of Distributed Data Processing, and in particular Production Grid Infrastructures, the Execution Service, which manages Jobs at the grid level, must integrate inside a framework of other grid services.

Based on OGF OGSA-BES 1.0, the work performed inside OGF HPC Profile, OGF PGI, and the existing gLite and 3G Bridge middleware stacks, this document presents a consistent set of requirements for an improved ‘Basic Execution Service’ (BES).
The goal of this consistent set of requirements is to permit then to write down a ‘BES Functional Specification’ mostly independent of any message transport technology, and then ‘BES Client Interface’ renderings for one or several technologies.

Table of Contents
31
Introduction to Requirements for improved BES

31.1
Terminology used this Document

31.2
Goal of this Document

31.3
Audience of this Document

41.4
Methodology used inside this Document

42
Context of a Job Execution Service

42.1
Prerequisites for a Job Execution Service : Data and Access Rights

42.2
Crossing Administrative Domains

52.3
Grid Middleware Framework

62.4
Important Grid Services collaborating with the Execution Service

83
Requirements concerning the BES Functional Specification

83.1
Abstraction level of the BES Functional Specification

83.2
Specifications for Job Description Documents

94
BES Non-Functional Requirements

94.1
General BES Non-Functional Requirements

94.1.1
General BES non-functional requirements for the Reuse of Standards

104.1.2
General BES non-functional requirements for Traceability

104.1.3
General BES non-functional requirements for Security and Robustness

104.2
BES Non-Functional Requirements for the Grid Middleware Framework

104.3
BES Non-Functional Requirements for the Client Interface

105
BES Requirements Applying Mainly to the Information System

115.1
BES Requirements for Publication of Information on BES itself

115.2
BES Requirements for Publication of Information on NOT managed Entities

116
BES requirements applying mainly to Security

126.1
BES Requirements for Server Authentication

126.2
BES Requirements for Publication of Security Information about BES

126.3
BES Requirements for Client Authentication

126.4
BES Requirements for Client Authorization

136.5
BES Requirements for Credential Delegation

137
BES requirements applying mainly to Application Repositories

148
BES requirements applying mainly to Accounting

149
BES requirements applying mainly to Logging and Bookkeeping

1510
BES requirements applying mainly to Job Management

1510.1
BES Requirements on supported Types of Jobs

1510.2
BES Requirements for Job management Endpoints and Job IDs

1710.3
BES Requirements for Jobs Submission

1710.4
BES Requirements for the Specification of Jobs inside Job Management Requests

1710.5
BES Requirements for Job Management

1810.6
BES Requirements for Publication of Information on Jobs

1810.7
BES Requirements for the management of the Execution Service itself

1911
BES requirements applying mainly to Job Description

1912
BES requirements applying mainly to the State Model

1913
BES requirements applying mainly to Data Management

1913.1
BES Requirements for Integration with Data Management

1913.2
BES Requirements for Data Management on the Client Interface

1914
Author, Acknowledgments, Copyright

1914.3
Author

1914.4
Acknowledgments

2014.5
Full Copyright Notice

2015
References

1 Introduction to Requirements for improved BES

This introduction covers the used terminology, the goal, the audience and the methodology.
1.1 Terminology used this Document

The context of this document is Distributed Data Processing, and in particular Production Grid Infrastructures. This context is quite complex and uses a terminology fully described in [1] ‘OGF-Production Grid Infrastructure: Glossary of Acronyms and Terms, Version 1.0’ at http://www.ogf.org/documents/GFD.181.pdf.
1.2 Goal of this Document
In the context of Distributed Data Processing, and in particular Production Grid Infrastructures, the Execution Service, which manages Jobs at the grid level between Job Submitters and Batch Systems, must integrate inside a framework of other grid services.

Based on [2] ‘OGF OGSA-BES 1.0’, the work performed inside OGF HPC Profile, OGF PGI, OGF JSDL, and the existing gLite and 3G Bridge middleware stacks, this document presents a consistent set of requirements for an improved ‘Basic Execution Service’ (BES).

‘Basic’ means that BES must provide only functionalities which all essential for Job processing. BES should be extensible for additional functionalities such as ‘SLA’, ‘Advanced Reservation’, ‘Co-Allocation’ and ‘Parameter Sweep’, but should not cover theses additional functionalities initially.
The requirements are written at the functionality level in order to define interfaces. They describe the context, the role of actors, the information having to be exchanged, the sequence of exchanged messages. They are mainly not tied to particular technologies, so that the future corresponding ‘Specifications’ document is also mainly not tied to particular technologies.
The goal of this consistent set of requirements is to permit then to write down a ‘BES Functional Specification’ mostly independent of any message transport technology, and then ‘BES Client Interface’ renderings for one or several technologies.

1.3 Audience of this Document
The audience of this document is personal having ICT knowledge, and covers the stakeholders directly interacting with Job processing inside Distributed Data Processing (Production Grid Infrastructures) :
· Developers of scientific applications,

· Integrators of scientific applications for grids,

· Providers of scientific workflow engines,

· Providers of scientific portals,

· Providers of SAGA,

· Site Administrators,

· VO Administrators,
· …
This explicitly excludes personal having no ICT knowledge, such as scientists starting applications manually only after remote login, or submitting jobs only through scientific portals.

1.4 Methodology used inside this Document
The methodology is Software Engineering. It is based on the description of the context, actors and functionalities of an Execution Service, in particular :
[3]
‘OGF-Production Grid Infrastructure: Use Case Collection, Version 1.0’ at http://www.ogf.org/documents/GFD.180.pdf
[4]
gLite 3.2 User Guide at https://edms.cern.ch/file/722398/1.4/gLite-3-UserGuide.pdf
It gathers in a consistent way many requirements expressed by OGF PGI at http://forge.gridforum.org/sf/go/doc16080 with details at http://forge.gridforum.org/sf/wiki/do/viewPage/projects.pgi-wg/wiki/RequirementsTable
It does not exactly follow the OGF PGI requirements, but presents in a consistent manner a set of requirements which is consistent with the other services present in the overall context.
Requirements coming from OGF PGI are followed by the PGI wiki page reference and PGI id inside parenthesis. For example : (Wiki NF2, Id 145)
It tries to clearly describe what the Execution Service MUST perform, what it SHOULD perform, what it MAY be unable to perform, what it SHOULD NOT try to perform, and what it MUST NOT assume.
2 Context of a Job Execution Service
A Job Execution Service has prerequisites, has to cross administrative domains, and has to integrate inside a grid middleware framework with other grid services :

2.5 Prerequisites for a Job Execution Service : Data and Access Rights
A Job Execution Service makes sense only if clients are able to submit Jobs and to retrieve Job results.
Job results retrievable by clients require management of data, including management of access rights to data.
Therefore, a Job Execution Service can be defined only if management of data and access rights are already well designed, implemented and operated.
A Job Execution Service MUST then handle data and access rights using only the functionalities provided by the tools managing data and access rights.
As comparison, Job execution is analogous to the transport of a large payload by a human driver :

· A suitable road MUST exist between end points, and be equipped with fuel stations.

· Traffic laws MUST define rules permitting road usage by several drivers.
· The driver MUST use a registered vehicle and be in possession of his driver licence, the vehicle registration document, the vehicle insurance certificate and the description of the payload.

2.6 Crossing Administrative Domains
Inside any single administrative domain, adequate tools and methods for sound management of data and access rights already exist. But worldwide, several incompatible tools and methods for data management and access rights are used currently, and there is no commonly agreed unified interface yet. This complicates writing down the requirements and specifications of a worldwide Job Execution Service.
As comparison, Job execution across administrative domains is analogous to the transport of a large payload by a human driver across country borders :
· All countries MUST have build roads of standardized quality, equipped with fuel stations delivering fuel with standardized quality.

· Traffic laws SHOULD be standardized. In particular, traffic lights and road signs MUST be standardized across all countries, so that the driver can understand them. Driving SHOULD be performed on the same side of the road in all countries (why didn’t everybody follow UK ?).

· This driver MUST use a registered vehicle, be in possession of a driver licence accepted by all countries, a vehicle registration document accepted by all countries, a vehicle insurance certificate accepted by all countries, and declare the transported payload with its value.

Inside Fig. 1 below, which was created by Morris RIEDEL (Jülich Supercomputing Centre) :

· Each area in white is a federation of several administrative domains agreeing on common interfaces and procedures. They are called grid infrastructures, or DCIs (Distributed Computing Infrastructures).

· Interoperability, as shown in green and red, is desired, but it is not achieved yet.

[image: image1]
Fig 1 : Desired interoperability across DCIs

2.7 Grid Middleware Framework

In the context of Distributed Data Processing, and in particular Production Grid Infrastructures, the Execution Service, which manages Jobs at the grid level between Job Submitters and Batch Systems, does not run as a standalone service, but must integrate inside a framework of other grid services.
The reason is that :

· the Execution Service has to manage Jobs, which are transient entities, in an efficient manner,

· Other services have to manage persistent and/or specialized entities (such as information records, security descriptors, alarms, …) and satisfy complex queries potentially having performance impact.

In such a framework, services have to provide both Client Interfaces for external clients, and Backend Interfaces for services of the same framework.
In particular, the Execution Service MUST, as shown in Fig 2 below :
· provide a Client Interface permitting Job Submitters to submit Jobs and manage submitted Jobs,
· use Client and Backend Interfaces provided by the Batch Systems and the other grid services.

	Operations
	
	Information Manager
	
	Security Officer
	
	Job Submitter
	
	Data Manager
	
	Batch System Manager
	
	Grid support
	
	Accountant

	[image: image2.wmf]
	
	
	
	
	
	↕
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	Execution Service Client Interface
	
	
	
	
	
	
	
	

	
	
	 ↓
	
	 ↓
	
	
	
	↓
	
	↓
	
	
	
	

	Monitoring Client Interface
	
	Information System Client Interface
	
	Security Client Interface
	
	Execution
	
	Data Storage Client Interface
	
	Batch System Client Interface
	
	Logging and Bookkeeping Client Interface
	
	Accounting Client Interface

	Monitoring
	
	Information System
	
	Security
	
	
	
	Data Storage
	
	Batch System
	
	Logging and Bookkeeping
	
	Accounting

	Monitoring Backend Interface
	
	Information System Backend Interface
	
	Security Backend Interface
	
	Service
	
	
	
	
	
	Logging and Bookkeeping Backend Interface
	
	Accounting Backend Interface

	↑
	
	↑
	
	↑
	
	
	
	
	
	
	
	↑
	
	↑

Fig 2 : Detailed Client Interfaces and Backend Interfaces of Functionalities

2.8 Important Grid Services collaborating with the Execution Service
As shown in Fig 2 above, important grid services collaborating with the Execution Service inside the Grid Middleware Framework are :
· An ‘Information System’ managing persistent information records and implementing [5] ‘GLUE 2.0’ as specified at http://www.ogf.org/documents/GFD.147.pdf
So, for information on the existence, capability, status, load and end points of its own entities, the Execution Service :

· MUST publish it to the Information System according to the Backend Interface provided by the Information System,

· MAY optionally publish it in its Client Interface, but that is NOT mandatory.

Also, in order to retrieve information about entities managed by other services, the Execution Service SHOULD use the Client Interface of this ‘Information System’.
· A ‘Security Framework’ (for example EMI ARGUS) managing persistent security descriptors and permitting :

· User authentication according to global grid identities (IGTF) or federated identities (InCommon),
· Delegation of user authorizations (SAML or X509 attributes) to the Batch System really executing the Job.
So, the Client Interface of the Execution Service MUST permit users to provide credentials, and to request their delegation.
The Execution Service MUST NOT consume or create these user credentials itself, but MUST transmit them to and from the Security Framework according to the Client and Backend Interfaces provided by the Security Framework.

· A ‘Monitoring Framework’ permitting local and grid operational staff to monitor running services and to be quickly alerted of incidents with sound information permitting quick incident management.

So, the Execution Service MUST publish as much as it can to the ‘Monitoring Framework’ according to the Backend Interface provided by the ‘Monitoring Framework’.
· An ‘Application Repository’ securely managing persistent Applications and Software libraries which have been validated and can be referenced by Jobs.

So, the Execution Service SHOULD be able to use the Client Interface of the Application Repository in order to retrieve an Application specified in the Job description by its Application Repository reference.
· An ‘Accounting Service’ managing persistent accounting records.
So, for accounting information, the Execution Service :

· MUST publish it as specified by the UR Backend Interface at http://www.ogf.org/documents/GFD.98.pdf
· MAY optionally publish it in its Client Interface, but that is NOT mandatory.

The Execution Service MUST comply to the ‘Grid Policy on the Handling of User-Level Job Accounting Data’ published by the 'EGI Security Policy Group' at https://documents.egi.eu/public/ShowDocument?docid=85
· A ‘Logging and Bookkeeping’ Service managing the persistent history of all events for each Job.

Standardization of this 'Logging and Bookkeeping' is under way inside OGF JSDL with the name 'Activity Instance' at http://forge.gridforum.org/sf/docman/do/listDocuments/projects.jsdl-wg/docman.root.working_drafts.activity_schema
So, for Job events, the Execution Service :
· MUST publish as much as it can to the 'Logging and Bookkeeping' Service according to the Backend Interface provided by the 'Logging and Bookkeeping' Service,

· MAY optionally publish them in its Client Interface, but that is NOT mandatory.

The Execution Service MUST comply to the ‘Grid Security Traceability and Logging Policy’ published by the 'EGI Security Policy Group' at https://documents.egi.eu/public/ShowDocument?docid=81
· ‘Batch Systems’ really executing the Jobs (this also includes other instances of the Execution Service to which the original Execution Service can delegate grid Jobs).

So, the Execution Service MUST transfer submitted Jobs to ‘Batch Systems’ according to the Client Interface provided by ‘Batch Systems’.
· ‘Data Services’ managing data acquisition or persistent data.

The Execution Service MUST NOT try to manage data acquisition or persistent data itself, but MUST transmit references of persistent data to and from ‘Data Services’ according to the Backend Interface provided by the ‘Data Services’.

3 Requirements concerning the BES Functional Specification
The requirements concerning the BES Functional Specification do not apply to the Basic Execution Service itself, but to the way to express these specifications, in particular the abstraction level and the management of a separate specification for Job description documents.
3.9 Abstraction level of the BES Functional Specification

The document describing the ‘BES Functional Specification’ MUST be written at the functionality level in order to define interfaces. It MUST :
· describe the context and the role of actors,

· describe the information having to be exchanged, the sequence of exchanged messages,
· provide a detailed description of the ‘BES Client Interface’, but MUST also take into account the usage of the Client and Backend Interfaces of the other grid services described above.
The ‘BES Functional Specification’ SHOULD mainly be not tied to particular technologies, and SHOULD ideally use UML diagrams and IDL language.

From this ‘BES Functional Specification’, it MUST be possible to write down ‘BES Client Interface’ renderings for several message transport layers :

· Primarily SOAP (WSDL),

· Optionally REST, ActiveMQ, RPC, Corba, …
3.10 Specifications for Job Description Documents
For the terminology used in this section, please refer to chapter 3 ‘JSDL Scope’ of [6] ‘Job Submission Description Language (JSDL) Specification, Version 1.0’ at http://www.ogf.org/documents/GFD.136.pdf
From Job Submitters, the Execution Service receives a ‘Job Description’ document specifying :
· Job identification,

· Resource requirements using a RRL,

· Data staging requirements,

· Environment requirements

· Application requirements (Executable + Parameters)

The specifications of the ‘Job Submission Description Language (JSDL)’ are currently in the separate document [6] mentioned above. But JSDL and BES are tightly coupled :
· BES MUST understand all job requirements expressed using JSDL, and honour them or return an explicit error message,

· JSDL SHOULD be able to describe all job requirements which BES may satisfy,

Therefore, work concerning BES and JSDL MUST be performed simultaneously in close coordination.
This ‘Job Description’ MAY also specify Job Lifetime Management (such as Hold States and manual interactions) using a JLML.
The ‘BES Functional Specification’ MUST specify that each BES instance MUST understand Job Lifetime Management specifications, but MAY be unable to honour them, and MUST in this case reject the Job with an explicit message.
This ‘Job Description’ MAY also contain following descriptions, and a particular Execution Service MAY understand and honour them, but the ‘BES Functional Specification’ MUST NOT provide any detail about them :

· Scheduling Description using a SDL,

· Service Level Description,
· Job Policy Description using a JPL.
4 BES Non-Functional Requirements

BES non-functional requirements target general requirements, the grid middleware framework and the client interface.
4.11 General BES Non-Functional Requirements

Many of these BES non-functional requirements were already presented in chapters 2 and 3 above.

They cover the reuse of standards, traceability, security and robustness.

4.11.1 General BES non-functional requirements for the Reuse of Standards
· BES specifications MUST enforce basic Software Engineering principles : implementation encapsulation, separation of policies, construction by composition. BES specifications MUST NOT re-invent new mechanisms when some already exist (Wiki NF12, Id 154).
· BES specifications MUST reuse as many existing standards as possible (Wiki NF2, Id 145).
· BES specifications MUST NOT require standards or interfaces with are not absolutely necessary. For example, BES specifications MUST NOT require RNS, WS-Naming, WS-I or SOAP.
· BES specifications and interface definitions MUST be clean, and SHOULD NOT keep obsolete and never used elements (by whom?) (Wiki NF8, Id 150).
· BES specifications SHOULD be an evolution of previous specifications : The scope and orientation of a spec should not change dramatically to the previous one, for example conceptual backward compatibility is a must. Unstable OGF standards could cause bad community reputation. Stable OGF standards ease OGF marketing efforts (Wiki NF10, Id 152).
· BES specifications SHOULD be so well designed that its interfaces are likely to be re-used by other Services (Wiki NF18, Id 159)

4.11.2 General BES non-functional requirements for Traceability
· The Execution Service MUST ensure traceability of the original author of a request (Wiki NF3, Id 146).

· The Execution Service MUST generate adequate logs (Wiki NF4, Id 147).

· The Execution Service MUST generate and propagate meaningful error messages, including context description (Wiki NF5, Id 148).

4.11.3 General BES non-functional requirements for Security and Robustness
· BES specifications MUST implement the Security Policies defined by EGI SPG (Security Policy Group), in order to be resilient to attacks (Wiki NF6, Id 162).

· BES specifications SHOULD prevent the occurrence of SPOFs and bottlenecks (Wiki NF7, Id 149).

· The Execution Service MUST provide high availability and reliability. Basic assumption is that input data will be incorrect and that communications will fail. (Wiki NF15, Id 156).
4.12 BES Non-Functional Requirements for the Grid Middleware Framework

· The Execution Service MUST NOT try to provide all grid functionalities, but MUST have a well defined scope, and MUST use the other grid services : Monitoring, Information, Security, Data, Logging and Bookkeeping, Accounting, … (Wiki NF13, Id 160).

· The Execution Service SHOULD implement abstraction layers permitting to plug adapters for the various interfaces provided by the miscellaneous instances of the other grid services.
4.13 BES Non-Functional Requirements for the Client Interface

· Whenever multiple protocols are possible, the Execution Service SHOULD implement at least the 2 most used protocols, so that Clients MAY implement only one, and are easier to implement and validate (Wiki NF1.2, Id 161).

5 BES Requirements Applying Mainly to the Information System
Each instance of the Execution Service MUST integrate with an instance of an ‘Information System’ managing persistent information records and implementing [5] ‘GLUE 2.0’ as specified at http://www.ogf.org/documents/GFD.147.pdf
So, for information on the existence, capability, status, load and end points of its own entities, the Execution Service :

· MUST publish it to the Information System according to the Backend Interface provided by the Information System,

· MAY optionally publish it in its Client Interface, but that is NOT mandatory.

Also, in order to retrieve information about entities managed by other services, the Execution Service SHOULD use the Client Interface of this ‘Information System’.

5.14 BES Requirements for Publication of Information on BES itself

· The Execution Service MUST describe its entities/attributes/metadata using the GLUE Information Model. If not possible, extensions for the GLUE Information Model are necessary (Wiki IS1, Id 1) and (Wiki IS3, Id 4).

· The Execution Service SHOULD use the latest version of the GLUE Information Model, currently GLUE 2.0. The appropriate sections of the GLUE XML rendering need to be identified (Wiki IS1.1) and (Wiki IS5, Id 6).
· The Execution Service MUST publish the Authentication and Authorization methods accepted by its Endpoints in conformance with GLUE recommendations (Wiki AA2, Id 11)

· The Execution Service SHOULD publish capabilities supported by the Data Services which are likely to be available for data-staging, for example protocols like GridFTP, ByteIO, ... (Wiki IS6, Id 7).
· If the Execution Service provides bulk functionalities, then it MUST publish the bulk limits as properties of GLUE Endpoints. If these bulk functionalities have different bulk limits, then they MUST be grouped inside separate GLUE Endpoints entities having each a homogeneous bulk limit (Wiki IS2.2, Id 3) and (Wiki IS7, Id 8).
· The Execution Service (whose goal is to efficiently manage Jobs, which are transient entities) SHOULD NOT be overloaded by implementing a full featured Information System managing persistent information records, which SHOULD be a separated Service (Wiki IS14, Id 172).

5.15 BES Requirements for Publication of Information on NOT managed Entities

· The Execution Service MUST NOT expose detailed information about the GLUE entities which the Execution Service does not manage (all that are not expressed by the computing part of GLUE). For example, Storage Element GLUE entity NOT exposed by Execution Service, NO details about Storage entity (Wiki IS4, Id 5).
6 BES requirements applying mainly to Security
· Authentication is the process of ensuring that a credential is valid and belongs to the entity which presents it.

· Authorization is the determination whether a particular entity has the rights to perform a given activity.
Each instance of the Execution Service MUST integrate with an instance of a ‘Security Framework’ (for example EMI ARGUS) managing persistent security descriptors and permitting :
· User authentication according to global grid identities (IGTF) or federated identities (InCommon),
· Delegation of user authorizations (SAML or X509 attributes) to the Batch System really executing the Job.

In particular :

· The Client Interface of the Execution Service MUST permit users to provide credentials, and to request their delegation.
· The Execution Service (whose goal is to efficiently manage Jobs, which are transient entities) MUST NOT be overloaded by implementing a full featured Security Framework managing persistent security descriptors, which MUST be a separated Service. The Execution Service MUST NOT consume or create user credentials itself, but MUST transmit user credentials to and from the Security Framework according to the Client and Backend Interfaces provided by the Security Framework.

· The Execution Service SHOULD NOT be tightly coupled to a particular Security Framework, but SHOULD use a security abstraction layer easing the implementation of suitable adaptors for several Security Frameworks.

6.16 BES Requirements for Server Authentication
· If a server authenticates itself to clients, then it MUST do so with X509 certificates on TLS. It MAY optionally use other mechanisms (Wiki AA1, Id 9).
· SSL certificates of servers MUST be signed by a CA belonging to a commonly agreed list of CA, for example IGTF (Wiki AA1.1, Id 10).

6.17 BES Requirements for Publication of Security Information about BES
· The Execution Service MUST publish the Authentication and Authorization methods accepted by its Endpoints in conformance with GLUE recommendations (Wiki AA2, Id 11).

· The Authentication and Authorization methods accepted by each Endpoint must be published inside the 'Capability' Attribute of the 'Endpoint' entity of the Information Service, as extensions of the 'security.authentication' and 'security.authorization' values of the 'Capability_t' data type (Wiki AA2.1).

· In order to keep middleware complexity and bandwidth usage as low as possible, the Execution Service SHOULD NOT send the full description of its security interface inside each message, but only when specifically requested (Wiki AA7, Id 27)

6.18 BES Requirements for Client Authentication

· For Client authentication, the Execution Service MUST require security credentials (Wiki AA3, Id 12).
· For Client authentication, the Execution Service MUST accept all following authentication methods: Full X509, RFC-3820-compliant X509 Proxy (Wiki AA3.5, Id 17).

· For Client authentication, the Execution Service MAY additionally accept following authentication methods: SAML assertions (Wiki AA3.3, Id 15), Shibboleth credentials (Wiki AA3.4, Id 16), Federated Identity Management, for example InCommon, OpenID, … (Wiki AA4.8, Id 26).

6.19 BES Requirements for Client Authorization

· For Client authorization, the Execution Service MUST require security credentials (Wiki AA4, Id 18).
· For Client authorization, the packaging of security credentials MUST be designed to prevent that any software component gains undue privilege by extracting only some credentials from the package (Wiki AA4.1, Id 19).

· For Client authorization, the Execution Service MAY accept security credentials among following ones : DN of the X509 certificate or RFC-3820-compliant X509 proxy (Wiki AA4.2, Id 20), X509 VOMS-style Attribute Certificates (VOMS extensions) (Wiki AA4.3, Id 21), SAML assertions (Wiki AA4.4, Id 22), Shibboleth credentials (Wiki AA4.5, Id 23), Federated Identity Management, for example InCommon, OpenID, … (Wiki AA4.8, Id 26).
· The Execution Service MUST provide a authorization mechanism allowing power users to manage Jobs submitted by other users. This authorization mechanism MUST be consistent across all instances of the Execution Service, for example by using the ARGUS Security Framework described at https://twiki.cern.ch/twiki/bin/view/EMI/ArgusEMIDocumentation (Wiki AA9, Id 32).
6.20 BES Requirements for Credential Delegation
The Execution Service, the Batch system, the User Job often have to access resources protected by security credentials. So, each of them requires the usage of (ideally restricted) security credentials from the Job Submitter, through a mechanism called ‘Delegation’.
· The Execution Service MUST offer interoperable methods for Credential delegation (Wiki AA8, Id 28).

· The Execution Service MUST support Credential delegation mechanisms requiring several steps, for example the GridSite Delegation Service at http://www.gridsite.org/wiki/Delegation_protocol (Wiki AA8.3, Id 29).
· The Execution Service MUST support renewal of Credential delegation, for example using a MyProxy Service described at http://grid.ncsa.illinois.edu/myproxy/doc.html (Wiki AA8.4, Id 30).

· The Execution Service MUST associate each Job to a Credential delegation (previously performed by the user wishing to submit a Job). On expiration of the Credential delegation, the Execution Service MAY kill all associated Jobs (Wiki AA8.5, Id 31).
7 BES requirements applying mainly to Application Repositories

Many computing resources already provide some Applications and Software libraries, and publish them in the Information System so that they can be referenced by Jobs for scheduling and execution purposes.
Moreover, there is a need for full featured ‘Application Repositories’ securely managing persistent Applications and Software libraries which have been validated and can be referenced by Jobs.
Therefore, each instance of the Execution Service MUST be able to understand and use references to ‘Installed Applications’ specified in the Job description (Wiki AR1, Id 34).
In particular :

· The Execution Service MUST use these references to ‘Installed Applications’ to perform Job Scheduling,

· The Execution Service MUST transmit to the Batch system these references to ‘Installed Applications’ in a way usable by the Batch system. This can require the Execution Service to use the Client Interfaces published by the Application Repositories to convert references to ‘Installed Applications’ into URLs.

· The Execution Service (whose goal is to efficiently manage Jobs, which are transient entities) SHOULD NOT be overloaded by implementing a full featured Application Repository managing persistent Applications and Software libraries. This Application Repository SHOULD be implemented by a separated Service.

8 BES requirements applying mainly to Accounting

Each instance of the Execution Service MUST integrate with an instance of an ‘Accounting Service’ managing persistent accounting records. So, for Job accounting information :
· The Execution Service MUST publish Job accounting information as specified by the UR Backend Interface at http://www.ogf.org/documents/GFD.98.pdf (Wiki Ac2, Id 36)
· The Execution Service MUST comply to the ‘Grid Policy on the Handling of User-Level Job Accounting Data’ published by the 'EGI Security Policy Group' at https://documents.egi.eu/public/ShowDocument?docid=85
· The Execution Service (whose goal is to efficiently manage Jobs, which are transient entities) SHOULD NOT be overloaded by implementing a full featured Accounting Service managing persistent accounting records, which SHOULD be a separated Service (Wiki Ac1).

9 BES requirements applying mainly to Logging and Bookkeeping
Each instance of the Execution Service MUST integrate with an instance of a ‘Logging and Bookkeeping’ Service managing the persistent history of all events for each Job.
Standardization of this 'Logging and Bookkeeping' is under way inside OGF JSDL with the name 'Activity Instance' at http://forge.gridforum.org/sf/docman/do/listDocuments/projects.jsdl-wg/docman.root.working_drafts.activity_schema
· The Execution Service MUST publish as much Job events as it can to the ‘Logging and Bookkeeping’ Service according to the Backend Interface provided by the 'Logging and Bookkeeping' Service (Wiki JM6, Id 62).
· The Execution Service MAY optionally publish Job events in its Client Interface, but that is NOT mandatory.

· The Execution Service MUST comply to the ‘Grid Security Traceability and Logging Policy’ published by the 'EGI Security Policy Group' at https://documents.egi.eu/public/ShowDocument?docid=81
· The Execution Service (whose goal is to efficiently manage Jobs, which are transient entities) SHOULD NOT be overloaded by implementing a full featured ‘Logging and Bookkeeping’ Service managing persistent history of Jobs, which SHOULD be a separated Service (Wiki LB8, Id 41).

10 BES requirements applying mainly to Job Management
10.21 BES Requirements on supported Types of Jobs

A ‘Single Job’ is defined by a simple Job Description containing only one local job executed by only one Batch system.
· The Execution Service MUST permit the creation and the management of a ‘Single Job’ (Wiki JM5, Id 55).

· The Execution Service MAY permit the creation and the management of following types of Jobs, and MUST return an explicit error message if not supported. They are outside the scope of the BES specification, which MUST NOT provide details about them :

· Collection Jobs (these are not vectors), which are containers for a limited number of explicitly described independent Single Jobs (Wiki JM5.3, Id 58),

· Parameter Sweep Jobs, which describe independent Single Jobs to be created dynamically (Wiki JM5.4, Id 59),

· DAG Jobs, which describe a DAG workflow of a limited number of explicitly described Single Jobs (Wiki JM5.5, Id 60),

· Interactive Jobs, where the Client can interact with the Job during its lifetime (Wiki JM8, Id 75),

· Jobs needing advance reservation and/or co-allocation.
· The concept of ‘Single Job’ includes Jobs running massively-parallel processes using MPI on one large-scale HPC System, and the Execution Service SHOULD support such Jobs (Wiki JM5.6, Id 61).
10.22 BES Requirements for Job management Endpoints and Job IDs
· For Job submission, Clients SHOULD query the Information Service in order to get an adequate Endpoint of an Execution Service. Clients SHOULD NOT cache those submission Endpoints for a long time (Wiki JM1, Id 42).
· Clients SHOULD NOT try to submit Jobs directly to specific Instances or Shares of an Execution Service (which are Site specific), but SHOULD express capability requirements inside the Job Description, and the Execution Service MUST be specified in a way permitting the Clients to express these capability requirements easily (Wiki JM1, Id 42)
· On creation of a Job, the Execution Service MUST return to the Client a Job ID permitting Clients to perform subsequent actions (Query, Cancel, ...) on this precise Job (Wiki JM4, Id 45).
· The Job ID MUST NOT be assigned by the Client, but it MUST be assigned by the Execution Service, in order to guarantee ID uniqueness inside the Execution Service (Wiki JM4.1, Id 46)

· The Job ID MUST be suitable for manual transfer by a human, in order to permit a user to manually enter the Job ID into a ticket describing an incident on the Job (Wiki JM4.3, Id 47).
There are mainly 3 levels of flexibility for the Job management Endpoint. Each of 3 these methods has a large impact on the structure of the Job ID and on the ease of implementation of the Client :
Single Endpoint (Wiki JM4.4, Id 48) and (Wiki JM4.7, Id 50)
· The Execution Service implements a single Endpoint, which is the same for Job submission and for Job management after creation of the Job. This is monolithic, with a risk of bottleneck for Job Management. In the case of migration of the Job to another Execution Service, the original Execution Service MUST stay the Job management Endpoint for the Client, and marshal all requests and responses.
· This permits that the Job ID assigned by the Execution Service to be completely opaque for the Client.

· The corresponding sequence diagram ‘PGI Execution Service with Single Endpoint’ is available at http://forge.gridforum.org/sf/go/doc16006
· Implementation of the Client is very simple.

Factory and Management Endpoints (Wiki JM4.5, Id 49) and (Wiki JM4.8, Id 51)
· The Execution Service implements a separation between the Job factory Endpoint and (possibly many) Job management Endpoints. This reduces the risk of bottleneck for Job management. Once defined, the Job management Endpoint stays fixed. In the case of migration of the Job to another Execution Service, the original Execution Service MUST stay the Job management Endpoint for the Client, and marshal all requests and responses.
· So, from the Job ID assigned by the Job factory Endpoint of the Execution Service, the Client MUST be able to extract the Endpoint for Job management.
· The corresponding sequence diagram ‘PGI Execution Service with Factory and Management Endpoints’ is available at http://forge.gridforum.org/sf/go/doc16007
· Since this Job management Endpoint is fixed, implementation of the Client is simple.

Transient Endpoints (Wiki JM4.6, Id 158) and (Wiki JM4.9, Id 52)

· The Execution Service implements flexible migration of the Job management Endpoint during the lifetime of the Job, using indirection through a Name Server.
· Therefore, from the Job ID assigned by the Job factory Endpoint of the Execution Service, the Client MUST be able (by querying the Name Server) to dynamically retrieve the Endpoint suitable for Job Management. Moreover, after each request to the old Job management Endpoint, the Client has to systematically check the response, and if necessary query the Name Server again in order to retrieve the new Job management Endpoint.
· The corresponding sequence diagram ‘PGI Execution Service with Transient Endpoints’ is available at http://forge.gridforum.org/sf/go/doc16008
· Implementation of the Client is complex.
As a summary : The ‘Single Endpoint’ method is monolithic, with a risk of bottleneck for Job Management. The ‘Transient Endpoints’ method requires an additional Name Server and a complex implementation of the Client.. Therefore, the BES requirement is :
· The level of flexibility for the Job management Endpoint MUST BE ‘Factory and Management Endpoints’ (Wiki JM4.5, Id 49) and (Wiki JM4.8, Id 51) :
· The Execution Service MUST implement a separation between the Job factory Endpoint and (possibly many) Job management Endpoints. This reduces the risk of bottleneck for Job management. Once defined, the Job management Endpoint MUST stay fixed. In the case of migration of the Job to another Execution Service, the original Execution Service MUST stay the Job management Endpoint for the Client, and marshal all requests and responses.

· So, from the Job ID assigned by the Job factory Endpoint of the Execution Service, the Client MUST be able to extract the Endpoint for Job management (which stays fixed).

· The corresponding sequence diagram ‘PGI Execution Service with Factory and Management Endpoints’ is available at http://forge.gridforum.org/sf/go/doc16007
10.23 BES Requirements for Jobs Submission
· On Job submission, Clients MUST provide a well-defined Job description document to the Execution Service (Wiki JM3, Id 44) :
· Job Description document must be complete - no required parts missing,
· Job Description must be correct - no syntax errors even in unused parts,
· Job Description must not be confusing - no self-contradicting parts and no parts which may be interpreted in various ways (relates to completeness).
· On Job submission, if the Execution Service fails to create the Job for any reason, the Execution Service MUST return to the Client an explicit error message (Wiki JM10, Id 81).

· The Execution Service MUST NOT be ignore optional Job Description elements. Iif the Execution Service does not support an optional Client request, the Execution Service MUST return to the Client an explicit error message (Wiki JM10.1, Id 82).

· The Execution Service SHOULD perform the validation of the Job description document (potentially several steps). The Execution Service SHOULD perform a first quick validation immediately, and MAY perform a full validation asynchronously (Wiki JM18, Id 90).
· The Execution Service MUST decide which level of validation is appropriate for the Job description document (Wiki JM18.2, Id 92).
10.24 BES Requirements for the Specification of Jobs inside Job Management Requests

Job management requests permit to retrieve Job status, cancel Job, change Job state, …
· The Execution Service MUST accept Job management requests sent for one Job to the Job management Endpoint extracted from the Job ID and containing, as input parameter, this Job ID (Wiki JM6.11).

· The Execution Service MAY accept Job management requests sent for a bulk of Jobs, and MUST return an explicit error message if not supported (Wiki JM5.1, Id 56).
· If the Execution Service permits that the bulk of Jobs spans across several Endpoints managing individual Jobs, then the Execution Service MUST provision at least one Endpoint accepting and transparently honouring such bulk requests.

· The Execution Service MAY have limits with respect to the size of the bulk due to implementation aspects. If the Execution Service receives a request exceeding an implementation limit, the Execution Service MUST return an explicit error message (Wiki JM5.2, Id 57).
10.25 BES Requirements for Job Management

· The Execution Service MUST permit Clients to perform following operations on Jobs on which the Client has authorization (Wiki JM5.1, Id 56) :

· Retrieve the status of a Job,
· Cancel a Job,

· Purge a Job in a final state (Wiki JM20, Id 94).

· For already finished Jobs, the Execution Service MAY return an error message stating that the Execution Service has no information about the Job (Wiki JM6.8, Id 67).

· In order to permit the Client to perform client-directed processing of submitted Jobs (for example client-directed data staging), the Execution Service MAY manage ‘Hold’ points for Jobs, MAY be able to create Job in ‘Hold’ state if specified by the Client on Job submission, and MUST return an explicit error message if not supported (Wiki JM9, Id 76), (Wiki JM9.1, Id 77) and (Wiki JM9.3, Id 79).

· In order to permit the Client to perform client-directed processing of submitted Jobs (for example client-directed data staging), the Execution Service MAY manage ‘Hold’ points for Jobs, and MUST return an explicit error message if not supported (Wiki JM9, Id 76) :

· If the Execution Service manages ‘Hold’ points for Jobs, it SHOULD permit Clients to specify inside the Job description document that the Job has to be created in the ‘Hold’ state, and MUST return an explicit error message if not supported (Wiki JM9.1, Id 77) and (Wiki JM9.3, Id 79).

· If the Execution Service manages ‘Hold’ points for Jobs, it SHOULD permit Clients to hold a Job and to resume a Job, that is to request the change of the Job state to and from the ‘Hold’ state, and MUST return an explicit error message if not supported (Wiki JM9.4, Id 80).
· After a Job has failed, the Execution Service MAY permit Clients to restart it, and MUST return an explicit error message if not supported or not possible for any reason (Wiki JM13, Id 85) :
· Job restart from its very beginning is often technically feasible,

· Job restart in the middle of its execution is difficult to specify, and the BES specification MUST NOT try to specify this.
10.26 BES Requirements for Publication of Information on Jobs

· For not yet finished Jobs, the Execution Service MUST accept requests querying the Status of a Job, and MUST return the Job Status with different levels of verbosity (basic, detailed, more detailed) (Wiki JM6.1, Id 63) and (Wiki JM6.2, Id 64).

· For not yet finished Jobs, the Execution Service MAY accept requests querying the Job history :

· If the Execution Service accepts requests querying the Job history, it MUST return this Job history with different levels of verbosity (basic, detailed, more detailed) (Wiki JM6.9, Id 68).

· In order to minimize polling of the Job Status, the Execution Service MAY implement a mechanism for notification, for example OASIS WS‑Notification (Wiki JM6.5, Id 65) and (Wiki JM6.6).
· The Execution Service MUST permit any Client to request the list of all Jobs managed by this instance on which the Client has authorization (Wiki JM6.7, Id 66).

· If the Execution Service manages ‘Hold’ points for Jobs, it SHOULD permit Clients to retrieve the location(s) for input and output files used by the Job, and MUST return an explicit error message if not supported (Wiki JM6.10, Id 79).

· For requests querying Job information, the Execution Service MAY accept, as input parameter, complex queries on Jobs expressed according to the GLUE model without explicit specification of the Job IDs. The Execution Service MAY accept complex query languages. The Execution Service MUST return an explicit error message if not supported (Wiki JM6.12, Id 70) and (Wiki JM6.15, Id 73).
10.27 BES Requirements for the management of the Execution Service itself

· For the management of the Execution Service itself, the Execution Service SHOULD permit requests such as StartAcceptingJobs() and StopAcceptingJobs(). This is useful for Desktop Grids and HTC. This would also preserve backwards compatibility (Wiki JM25, Id 99).

11 BES requirements applying mainly to Job Description

12 BES requirements applying mainly to the State Model

13 BES requirements applying mainly to Data Management

Each instance of the Execution Service MUST integrate with several instances of ‘Data Services’ managing data acquisition or persistent data.
The Execution Service MUST NOT try to manage data acquisition or persistent data itself, but MUST transmit references of persistent data to and from ‘Data Services’ according to the Backend Interface provided by the ‘Data Services’.

13.28 BES Requirements for Integration with Data Management
13.29 BES Requirements for Data Management on the Client Interface

14 Author, Acknowledgments, Copyright
14.30 Author

Etienne URBAH urbah@lal.in2p3.fr
LAL, Univ Paris-Sud, IN2P3/CNRS, Orsay, France
14.31 Acknowledgments

EDGI is an European project supported by the FP7 Capacities Programme under contract nr RI-261556.
14.32 Full Copyright Notice

Copyright (C) Open Grid Forum (2003-2005, 2007-2011). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the OGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the OGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE OPEN GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
15 References
[1]
Etienne Urbah. [GFD.181] OGF-Production Grid Infrastructure: Glossary of Acronyms and Terms, Version 1.0. http://www.ogf.org/documents/GFD.181.pdf 2011.
[2]
I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith, M. Theimer. [GFD.108] OGSA® Basic Execution Service Version 1.0. http://www.ogf.org/documents/GFD.108.pdf 2007.

[3]
Morris Riedel, Johannes Watzl. [GFD.180] OGF-Production Grid Infrastructure: Use Case Collection, Version 1.0. http://www.ogf.org/documents/GFD.180.pdf 2011.
[4]
Stephen Burke, Simone Campana, Antonio Delgado Peris, Flavia Donno, Patricia Mendez Lorenzo, Roberto Santinelli, Andrea Sciaba. gLite 3.2 User Guide.
https://edms.cern.ch/file/722398/1.4/gLite-3-UserGuide.pdf 2011.
[5]
Sergio Andreozzi, Stephen Burke, Felix Ehm, Laurence Field, Gerson Galang, Balazs Konya, Maarten Litmaath, Paul Millar, JP Navarro. [GFD.147] GLUE Specification v. 2.0. http://www.ogf.org/documents/GFD.147.pdf 2009.

[6]
Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly, Stephen McGough, Darren Pulsipher, Andreas Savva.
[GFD.136] Job Submission Description Language (JSDL) Specification, Version 1.0. http://www.ogf.org/documents/GFD.136.pdf 2008.

[7]
Blair Dillaway, Marty Humphrey, Chris Smith, Marvin Theimer, Glenn Wasson. [GFD.114] HPC Basic Profile Version 1.0. http://www.ogf.org/documents/GFD.114.pdf 2007.

[8]
M. Humphrey, C. Smith, M. Theimer, G. Wasson. [GFD.111] JSDL HPC Profile Application Extension, Version 1.0. http://www.ogf.org/documents/GFD.111.pdf 2007.

[9]
A. Savva. [GFD.115] JSDL SPMD Application Extension, Version 1.0. http://www.ogf.org/documents/GFD.115.pdf 2007.

[10]
G. Wasson, M. Humphrey. [GFD.135] HPC File Staging Profile, Version 1.0. http://www.ogf.org/documents/GFD.135.pdf 2008.

[11]
S. Newhouse, M. Krishna K.. [GFD.151] HPCBP Advanced Filter Extension. http://www.ogf.org/documents/GFD.151.pdf 2009.

[12]
R. Mach, R. Lepro-Metz, S. Jackson. [GFD.98] Usage Record - Format Recommendation. http://www.ogf.org/documents/GFD.98.pdf 2007.

[13]
X. Chen, A. Khan, J. Ainsworth, S. Newhouse, J. MacLaren. WSI Resource Usage Service (RUS) Core Specification (draft 19). http://forge.gridforum.org/sf/docman/do/downloadDocument/projects.rus-wg/docman.root.documents.version_1_0.draft_wsi_rus_19/doc14304/1 2007.

[14]
A. Powell, M. Beckerle, S. Hanson. [GFD.174] Data Format Description Language (DFDL) v1.0 Specification. http://www.ogf.org/documents/GFD.174.pdf 2011.

[15]
Mark Morgan. [GFD.87] ByteIO Specification 1.0. http://www.ogf.org/documents/GFD.87.pdf 2006.

[16]
Mark Morgan. [GFD.88] ByteIO OGSA® WSRF Basic Profile Rendering 1.0. http://www.ogf.org/documents/GFD.88.pdf 2006.

[17]
A. Sim, A. Shoshani, Paolo Badino, Olof Barring, Jean-Philippe Baud, Ezio Corso, Shaun De Witt, Flavia Donno, Junmin Gu, Michael Haddox-Schatz, Bryan Hess, Jens Jensen, Andy Kowalski, Maarten Litmaath, Luca Magnoni, Timur Perelmutov, Don Petravick, Chip Watson.
[GFD.129] The Storage Resource Manager Interface Specification Version 2.2. http://www.ogf.org/documents/GFD.129.pdf 2008.

[18]
W. Allcock, J. Bester, J. Bresnahan, S. Meder, P. Plaszczak, S. Tuecke. [GFD.20] GridFTP: Protocol Extensions to FTP for the Grid. http://www.ogf.org/documents/GFD.20.pdf 2003.

[19]
Igor Mandrichenko. [GFD.21] GridFTP Protocol Improvements. http://www.ogf.org/documents/GFD.21.pdf 2003.

[20]
T. Metsch, A. Edmonds, R. Nyren, A. Papaspyrou. [GDF.183] Open Cloud Computing Interface - Core. http://www.ogf.org/documents/GFD.183.pdf 2011.

[21]
T. Metsch, A. Edmonds. [GDF.184] Open Cloud Computing Interface - Infrastructure. http://www.ogf.org/documents/GFD.184.pdf 2011.

[22]
Mario Antonioletti, Michel Drescher, Allen Luniewski, Steven Newhouse, Ravi Madduri. [GFD.134] OGSA-DMI Functional Specification 1.0. http://www.ogf.org/documents/GFD.134.pdf 2008.

[23]
Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Andre Merzky, John Shalf, Christopher Smith. [GFD.90] A Simple API for Grid Applications. http://www.ogf.org/documents/GFD.90.pdf 2008.

[24]
Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, John P. Robarts Andreas Haas, Bill Nitzberg, Daniel Templeton, John Tollefsrud, Peter Tröger. [GFD.133] Distributed Resource Management Application API Specification 1.0. http://www.ogf.org/documents/GFD.133.pdf 2008.

[25]
M. Drescher, A. Anjomshoaa, G. Williams, D. Meredith. [GFD.149] JSDL Parameter Sweep Job Extension. http://www.ogf.org/documents/GFD.149.pdf 2009.

