GWD-R(draft-ggf-ogsa-bes-spec-009)

Authors:
Open Grid Services Architecture
A. Grimshaw, U. Virginia

S. Newhouse, U. Southampton

Darren Pulsipher

M. Morgan, U. Virginia

http://forge.gridforum.org/projects/ogsa-bes-wg

11/30/2005
GWD-I (draft-ggf-ogsa-bes-spec-009)
11/30/2005

OGSA Basic Execution Service
Version 1.0
Status of This Memo

This document is in draft stage and should be considered as in flux. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2004, 2005). All Rights Reserved.

Abstract

The OGSA V1.0 document section 3.4, pages 17-25, describes an EMS (Execution Management Services) architecture consisting of a number of different services. This document describes one of these services – the “service container” – which is the focus of the Basic Execution Service (BES) specification developed by this working group. BES models execution of services in “containers” that may be implemented in a variety of ways, e.g., by a single Unix or Windows host, by a queuing system, by a hosting environment such as .Net or J2EE, or by more specialized execution containers yet to be invented. BES defines a set of port-types as well as resource properties (attributes)
 for the simplest – most basic container.
This document defines the scope and motivation for this work followed by an abstract definition of the BES interface. This interface is then rendered using the OGSA profiles into normative text in Appendix A
.
This document reflects the decisions taking by the working group as to the essential capabilities of a ‘Basic Execution Service’. Where relevant we have also captured the decisions as to the capabilities that are not part of a BES and the reasons behind the decisions at the end of the document. This section will be deleted from the document before submission to the editor.
Contents

31.
Introduction

31.1
Terminology

41.2
Namespaces

42.
Assumptions

53.
Service Interface

53.1
CreateActivityFromJSDL

63.2
GetActivityStatus

113.3
RequestActivityStateChanges

123.4
StopAcceptingNewActivities

123.5
StartAcceptingNewActivities

133.6
IsAcceptingNewActivities

133.7
GetActivityJSDLDocuments

134.
Subscribing to Generated Events

145.
Exposing Container Activity

146.
Management

147.
Security Considerations

158.
Authors Information

159.
Contributors

1510.
Acknowledgments

1511.
Intellectual Property Statement

1512.
Full Copyright Notice

16References

1613.
Appendix A – OGSA WSRF Base Profile Rendering

1613.1
Data Types

2013.2
CreateActivityFromJSDL

2313.3
GetActivityStatus

2613.4
RequestActivityStateChanges

2813.5
StopAcceptingNewActivities

3013.6
StartAcceptingNewActivities

3213.7
IsAcceptingNewActivities

3313.8
GetActivityJSDLDocuments

3614.
Issues Discussed & Resolved During Telecons

1. Introduction
The purpose of this document is to describe a web service interface to initiate, monitor & control activity on computational resources. This web service interface enables the creation, destruction and status determination of ‘activities’ (e.g. jobs, services, resources, …) within a container – an abstract representation of computational capability. Such a container may be a single machine, a cluster managed through a Distributed Resource Manager (DRM) such as Load Leveler, Sun Grid Engine, Portable Batch System, etc. or an interface into a web service hosting environment. Operational differences between container implementations are not expected to be reflected in the service implementation.

Considerable effort has been undertaken within the OGSA-WG EMS (Execution Management System) design team to define the different services and their interactions. The current high-level architecture for the execution of ‘legacy’ binary applications is encapsulated in this diagram.

[image: image1]
Figure 1: This figure is taken from the OGSA 1.0 informational document and has been modified slightly to reflect the I/O model of JSDL. Specifically, the “data container” has been replaced by a “disk” symbol. There is an assumption in JSDL that the execution context of a “job” as storage that can be accessed with the same path everywhere in the execution context, e.g., there is a shared file system.
The purpose of this service interface is to tackle the issues surrounding the ‘Service Container’ and to form part of the OGSA Basic Execution Profile. Other services described within the above architecture are considered to be out of scope of this activity.
1.1 Terminology

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, “OPTIONAL” in this document are to be interpreted as described in [RFC 2119].

In addition to the terms introduced in [RFC 2119], additional terms commonly used in this document are defined in the Glossary in the back.

When describing abstract data models, this specification uses the notational convention used by the [XML Infoset].

When describing concrete XML schemas, this specification uses the notational convention of [WS-Security]. Specifically, each member of an element’s [children] or [attributes] property is described using an XPath-like notation (e.g., /x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of an element wildcard (<xsd:any/>). The use of @{any} indicates the presence of an attribute wildcard (<xsd:anyAttribute/>).
1.2 Namespaces

The following namespaces are used in this document:

	Prefix
	Namespace

	s11
	http://schemas.xmlsoap.org/soap./envelope

	xsd
	http://www.w3.org/2001/XMLSchema

	wsa
	http://www.w3.org/2005/03/addressing

	jsdl
	http://schemas.ggf.org/jsdl/2005/11/jsdl

	jsdl-posix
	http://schemas.ggf.org/jsdl/2005/06/jsdl-posix

	bes
	http://schemas.ggf.org/bes/2005/11/bes

2. Assumptions
The word ‘activity’ will be used frequently from this point forward in the document. Within the context of this document an activity could be the execution of a legacy binary or the initiation of a web service within a container. From the perspective of an external observer this is a self contained operation. If it can be further decomposed, such decomposition is not visible through the service interface.

By the time a client invokes the Basic Execution Service (BES) we assume that the following issues have been resolved:

· Placement. The placement decision (where the ‘activity’ is going to run) has already been determined by some unspecified means. Possible means of identifying target placements include selection of appropriate properties or attributes from registries or from the BES container itself.
· Naming. An essential pre-requisite to many distributed computing activities is a ‘naming’ scheme that provides a globally unique identifier in time and space. BES expects to use the WS-Name schema being defined within the OGSA-Naming-WG. It is not our intention to duplicate work in this area.

· Job Submission Description Language (JSDL). BES will use JSDL. There are several assumptions, some explicit, and some implicit. One of the most relevant here is that JSDL provides a stage-in/stage-out model and associated “local” file system capability in which data is copied to/from the locus of execution. The presumption is that there is a local file system that is visible everywhere within the locus of execution – whether it is a single host or a large cluster.

· The ‘activity’ that is going to be initiated within the container has already been determined elsewhere and is fully specified in the JSDL document. Therefore we assume that the JSDL document presented to the service is ‘concrete’ in nature. This does not preclude the JSDL document being initially specified using, for example, logical file names but that these logical file locations have been replaced by real file locations by the time the document reaches the BES.
3. Service Interface

The interface port-types for the OGSA-BES service container are described in this section. The port-types are described using a combination of English and IDL. In Appendix A the port-types are rendered using the definitions found in the OGSA WSRF Base Profile document, i.e., conformant with the OGSA WSRF Base Profile.
3.1 CreateActivityFromJSDL

This operation is used to initiate a new activity within the BES container as specified in a JSDL document. Depending on the createInSuspendedState parameter the activity will either immediately enter the ‘New’ state (CreateActivityFromJSDL) or a ‘Suspended’ state – see Figure 2.
Input(s):
· JSDLDocument jobDescriptionDocument

Accepts an XML document conforming to JSDL 1.0 describing a single activity that is to be started within the BES container.
· Boolean
createInSuspendedState
If set to “true” the activity will move to a suspended state instead moving through the statenet.
Output(s):
· WS-Name activityIdentifier
On success a WS-Name identifying the requested activity is returned from the service.
Fault(s):
· NotAcceptingNewActivities: The BES-container is not accepting any new activities at this state.
· BadlyFormedJSDLDocumentFault: The XML contained within the JSDL document is badly formed, i.e. it is not good XML. The relevant parsing error is returned in the body of the fault.

· UnsupportedJSDLFault: This is a well formed XML document which describes a version of JSDL that is not supported by the container.

· UnsupportedFeatureFault: The well formed supported JSDL document contains an operation or a non-standard extension that is not supported by the BES. The feature that is not supported by the BES is returned in the body of the fault.
· JobSpecificationFault: Despite a well formed JSDL document that is understood by the BES the specified activity cannot be undertaken, e.g. mis-specified executable location or ftp file transfer. The unsupported JSDL elements are returned with the body of the fault.
· BackendFault: The implementation could not create the activity. For example, an access control fault, IO fault, or some other problem.

3.2 GetActivityStatus
The activity specified within the JSDL document may contain many different operations – staging in, job execution, staging out, etc. To capture the state of this potentially complex activity within the job we define an operation that allows the state of several of these activities to be retrieved from the BES.
Input(s):
· WS-Name[] activityIdentifiers
Passes in a vector of WS-Names (generated from the createActivityFromJSDL operation) which relate to the activities from which we require state information.
Output(s):
· ActivityStatus[] activityStatus
An XML document containing a vector of ActivityStatus elements.
Fault(s):
· None. However, if a WS-Name specified in the input vector cannot be resolved to an activity within the BES then its state is marked ‘NotKnown
’ and the only returned elements are the ActivityIdentifier and OverallStatus elements.
The state of each specified action within an activity, and the overall state of the activity referenced by the WS-Name are returned to the requester within an ActivityStatus element with the following structure:
<ActivityStatus>

 <ActivityIdentifier>WS-Name</ActivityIdentifier>

 <OverallStatus state=”(enumerated state)”

 laststate=”(enumerated state)”
 otherstate="(this container specific states)"? />
 <StageInStatus id=”file string” state=”(enumerated state)”
 laststate=”(enumerated state)” />*
 <StageOutStatus id=”file string” state=”(enumerated state)”
 laststate=”(enumerated state)” />*

</ActivityStatus>*

The state attribute records the current state of the activity or action, while the laststate attribute records the proceeding state of the activity or action. This enables the consumer of the state document to determine the state the activity or action was suspended from if it is now in a suspended state.
Because the number of files that could potentionally be included with any given activity, and the additional possibility of large numbers of activites being queried, this resultant state document may become quite large..

During discussions, several other items where identified which could be returned within the ActivtyStatus element:

· <ResourceAllocation>: Lists the resources that have been allocated to this activity. The allocated resources may differ from those requested by the activity within the JSDL document.
· <UsageRecord>: Use the UsageRecord schema to record the resource that has been consumed so far by the activity.

Currently, there are no plans to do any further work on these items.
The JSDL document comprises three sets of possible actions:

· Staging-in: Each staging-in action will have its own state.

· Execution: The single execution action is reflected in the overall activity state.

· Staging-out: Each staging-out action will have its own state.

There may be multiple staging-in/out actions but only a single execution action. The state of each staging-in/out action is reported in the ActivityStatus document. Note that the order of invocation of each stage-in/stage-out action with respect to other stage-in/stage-out actions is implementation dependent. We define a hierarchical state model where the state of the overall activity (directly referenced by the WS-Name) is derived from the state of the actions (staging-in/out & execution) specified within the JSDL document.
As the three identified sections within the JSDL document (staging-in, execution & staging-out) are optional (i.e. an empty JSDL document is legal), it is possible that not all states within the state diagram will be relevant for a particular JSDL document. BES requires that all legal states transitions are transitioned even if they are not relevant for a particular JSDL document. For instance, if an empty JSDL document is submitted to the BES then all the states from ‘new’ to ‘done’ will be transitioned through (i.e. Staging-in, Execution, etc) even though there is no underlying specified activity.
The state names described below have been aligned with those contained within the CIM schema where applicable.
Overall State of the Activity

The BES is able to report on its view of the overall state of a particular activity. However this ‘meta-state’ is dependent in turn on the state of the individual actions specified within the BES.

[image: image2.emf]Pending

Execution Pending

Running

Execution Complete

Cleaning Up

Done

ExceptionSuspended

UnknownOther

Shutting Down

Terminated

H*

New

All states can transistion

to Shutting Down except for the

Done and Exception States

Staging In *

Staging Out *

Figure 2: State diagram relating to the container activity referenced through the WS-Name.
These states are defined as follows:

· New: This is the intital state of the activity. An activity will be in this state when the JSDL document specified by the ‘createActivityFromJSDL’ operation has been parsed and accepted as by the BES. All sub actions (staging in and staging out) are in the “New” sub-state (See Figure 3). Under normal execution the activity transitions to the “Pending” state. If the createInPendingState Boolean flag is set then the activity will move to the “Suspended” state immediately after the “New” state.
· Pending: If there the createInPendingState Boolean flag is false or not set then the activity will move to the “Pending” state. The implementation is responsible for moving the activity from the “Pending” state to the “StagingIn” state. The Pending state states that nothing in the job description has been executed but that the activity is pending execution of the application, staging in or staging out actions.
· StagingIn: The “StagingIn” state is a composite state and consists of a sub-state net for each staging in action in the activity. There may be zero or more staging in actions defined in the job description according to the JSDL standard. From the “Pending” state the activity will transition to the “StagingIn” state. It will stay in the “Staging In” state until all staging in actions have moved to a terminal state (“Done”, “Exception”, or “Terminated”). If the terminal state of any staging in action is “Exception” then the activity will move to the “Exception” state. Transistion from the “StagingIn” state will only occur when all staging in actions are in a terminal state (Done, Exception, or Terminated). There is no order implied on the execution of the staging in actions it is assumed that they are executing concurrently. For more information on the substate net of the “StagingOut” state see Figure 3.
· ExecutionPending: The activity transitions to the “ExecutionPendinig” state when all of the staging in actions have reached the a “Terminated” or “Done” state. The executable is in place but the required resources (e.g. available memory or processors) are not yet available so the execution cannot yet start. Execution is pending until these resources are available. When the resources are available the activity will transition into the “Running” state.
· Running: When the resources available to start the execution action and the activity has started the activity will move into the “Running” state.
· ExecutionComplete: When the activity is completed running it will move to the “ExecutionComplete” state from the “Running’ state. This only means that the Activity has completed. It does not denote the state of the execution of the activity. That is to say the error status from the executing operating system.
· StagingOut: “StagingOut” state is a composite state and consists of a sub-state net for each staging out action in the activity. From the “ExecutionComplete” state the activity will transition to the “StagingOut” state.There may be zero or more staging out actions defined in the job description according to the JSDL standard. The activity will stay in the “StagingOut” state until all staging out actions have moved to a “Terminal” state (“Done”, “Exception”, “Terminated”). If the terminal state of any staging out actions is “Exception” then the activity will move to a “Exception” state. Transition from the “StagingOut” state will only occur when all staging in actions are in a terminal state (“Done”, “Exception”, or “Terminated”). There is no order implied on the execution of the staging out actions it is assumed that they are executing concurrently. For more information on the sub-state net of the “StagingOut” state see Figure 3.
·
· CleaningUp: When all of the ‘staging-out’ actions have reached the non exception terminal (“Terminated” or “Done’) state the activity will move into the “CleaningUp” state. The implementation of the service MAY perform some cleaning up actions to clean up after execution and staging of the activity.
· Complete: When the CleaningUp state completes its actions it will move to the “Completed” state. This is a terminal state for the activity.
· Exception: If any of the staging actions enter the ‘exception’ state then the whole activity enters the ‘exception’ state. Any other exception during the execution of actions in a state or during a transition from one state to another should halt execution and move directly to the “Exception” state. This is a terminal state.
· Suspended: If any of the staging actions enter the ‘suspended’ state the whole activity enters the ‘suspended’ state. When the RequestActivityStateChanges is called with a request to move to the “Suspended” state then the activity should be moved to the “Suspended” state unless it is already in a terminal state. A subsequent call to RequestActivityStateChanges should change the state to the requested state. [DWP: There is a problem here, how do we resume from where we left off. There is no Resume anymore so we are putting the responsibility to the submitter or controller to keep track of states.]
· ShuttingDown: This is a state that the activity enters into following a request to ‘terminate’ the activity via the call to RequestActivityStateChanges with the state request “Terminated”. Following such a call the BES will attempt to cancel any activity that has not already ‘failed’ or ‘completed’. [DWP: There is another problem here. What should be passed when asking to terminate an activity. “Terminated” or “ShuttingDown”. Or better yet should it be “Terminate”.]
· Terminated: When the request to terminate the activity is completed then the activity will move from the “ShuttingDown” state to the “Terminated” state. This means that all staging actions are in a terminal state All of the actions have entered an ‘exception’, ‘completed’ or ‘terminated’ state.

· Other: An activity within the BES can transition to the ‘other’ state from any other state. This container specific state is further qualified in the ‘OverallStatus’ element. .

· NotKnown
: The state of this activity cannot be determined. Instead of throwing a fault the error is recorded within the ActivityStatus document.
State of the staging-in/out actions
The “StagingIn” and “StagingOut” states are composite states and contain subnets inside them.The states of the staging in and staging out actions are defined as follows, and the transition between states in the following state diagram.

[image: image3.emf]Pending

RunningBlockedSuspended

Done

Exception

Terminated

Not Known

New

Exception can come from any

of the non-terminal states.

Figure 3: State diagram relating to an action (staging-in/out) specified within the JSDL document.
· New: The action has been recognised by the BES but has not progressed any further in terms of activity within the container. This is the intial state and all actions begin in this state.
· Pending: When the activity has entered the superstate “StagingIn” or “StagingOut” then all actions should move into the “Pending” state. The action has entered into a state that is external to the service but still internal to the container. For instance, the executable may have entered into a queue within a batch scheduling system or the file transfer may be queued into some service.
· Running: The action is underway.
· Blocked: The action cannot proceed any further at this time due to the unavailability of some resource external to the BES.
· Suspended: The action will not progress any further a this time at the instigation of the BES. This state is entered when the request to suspend the action or the activity is made.
· Done: The action is complete/done.
· Exception: This state can be reached from any state except Completed. This state is triggered by the BES due to un-recoverable external action or event. This is a terminal state. This does not effect the state of the activity.
· Terminated: This state can be reached from any state except Completed. This state is triggered by the BES due to other operations on the BES.
· NotKnown: The state of this action cannot be determined. Instead of throwing a fault the error is recorded within the ActivityStatus document.
3.3 RequestActivityStateChanges
This operation applies a set of state change requests to a set of activities within the BES. All state changes are with respect to the overall status of the activity, not to individual staging activities.
Input(s):
· StateChangeRequest [] requests

A vector of requested state changes identifying the target state and the WS-Name identifying the activity. The RequestedStateChange element has two attributes:

· from: An optional attribute that is an enumeration of the activity state referenced through the WS-Name that the activity state MUST be in order for the state change request to be applied
· to: A required attribute that specifies the requested state that the activity is to move to if the from element (if specified) is in the required state. This is an enumeration that can be one of Terminate, Suspend or Resume.
The ‘to’ and ‘from’ attributes enables a conditional state change request to be applied to the activity.
<bes:StateChangeRequest>
<ActivityIdentifier>WS-Name</ActivityIdentifier>
<bes:RequestedStateChange from=”Running” to=”Terminate” />
</bes:StateChangeRequest>
Output(s):
· StateChangeResponse[] responses
A vector detailing the response of the BES to the requested state change operation. The response can be one of Succeed (indicating the request was passed on to the named activity), Fail (indicating the request was not passed on to the named activity – as it could not be located) and IllegalStateChangeRequest (the requested state cannot be reached from the current state – violates BES state model).

<bes:StateChangeResponse>

<ActivityIdentifier>WS-Name</ActivityIdentifier>
<bes:Response>Succeeded</bes:Response>

</bes:StateChangeResponse>
Fault(s):
· None. However, failure to locate an activity for a specified WS-Name will result in a Fail being returned as part of the bes:Response element.
The BES attempts to initiate the requested state change in each activity specified in the list. As a consequence of this operation the specified activity MAY move from its current state to the requested state. This operation may fail immediately if the transition is not supported by the state model or the activity cannot be located, otherwise the request will be successfully passed on to the activity. However, this does not mean the activity will move into the requested state. The eventual success of this operation (i.e. to move the activity into the requested state) must be determined through other operations (e.g. GetActivityState) or by subscribing to any generated events.

If the ‘Terminate’ request is successful then the activity enters into a ‘Terminated’ state, possibly transitioning through the ‘Shutting Down’ state. Invoking a ‘Terminate’ operation on a ‘Terminated’ activity has no further effect. How long the activity remains in the ‘terminated’ state before the WS-Name no longer returns a reference to the activity is not defined.

‘Suspend’ or ‘Resume’ requests will not succeed if the current activity state does not support a transition to these new states and the response will be marked with an ‘IllegalStateChangeRequest’.
3.4 StopAcceptingNewActivities

This operation moves the BES into a state where it stops accepting new activities.

Input(s):
· None.

Output(s):

· None.
Fault(s):
· None.
3.5 StartAcceptingNewActivities

This operation moves the BES into a state where it starts accepting new activities.

Input(s):
· None.

Output(s):

· None.

Fault(s):
· None.
3.6 IsAcceptingNewActivities

This operation reports on the current ability of the BES in accepting new activities.

Input(s):
· None.

Output(s):

· Boolean response.
Return true if the service is accepting new activities or false if it is not..

Fault(s):
· None.
3.7 GetActivityJSDLDocuments
This operation returns the JSDL document that encapsulates the activity associated with the specified WS-Name. This JSDL document may be different from the JSDL document initially passed into the BES as the BES may alter its contents to reflect policy or process within the service. Effectively, this document reflects the activity being run as opposed what it was asked to run. If the submitter wishes to retrieve this document they should retain their own copy.
Input(s):
· WS-Name[] activityIdentifiers

Output(s):

· ActivityJSDLDocument [] documents.

Fault(s):
· None. However, if no JSDLDocument can be matched to the WS-Name within the BES then the ActivityJSDLDocument element is returned without the JobDescription element.
The output from this operation associates the returned JSDLDocument with its corresponding WS-Name by encapsulting both in an ActivityJSDLDocument element.:Failure to map a WS-Name to its corresponding JSDL representation within the BES is passed back to the client by the absence of the JSDLDocument
<bes:ActivtyJSDLDocument>
 <ActivityIdentifier>WS-Name</ActivityIdentifier>
 <jsdl:JobDescription>

...
 </jsdl:JobDescription>

</besLAcitivtyJSDLDocument>
4. Subscribing to Generated Events
The BES does not have an interface in the service container for the subscription or notification of state changes. The activity interface for the activities in the BES container should allow for the subscription or notification of state changes for the individual activites.

The BES describes a two level state model – an overall activity state referenced directly by a WS-Name and the state of each action (e.g. stage-in or stage-out transfer) that may take place as part of the overall activity. The changes in state of the overall activity and each action within the activity may be of interest to a client and must therefore be exposed for subscription.
[ISSUE 4/8/05: How should these be referenced/identified? DP will look into JSDL extensions to support this. Information on the event subscription could be placed in the JSDL document returned by GetActivityJSDLDocuments.]
Two mechanisms have been identified for event subscription:
· On activity creation. This is desirable to provide a single invocation that can submit a job and subscribe to its eventual state changes. To support this model a subscription matrix or state change mask would have to provided with/in the JSDL document enabling an initial set of subscriptions to be defined as part of the activity initiation – ensuring that no initial state changes where missed. Alternatively, the JSDL document may be submitted directly into a ‘hold’ state (such as the ‘submit on hold’ used in LSF or WS-GRAM) allowing subscriptions to be set up before being ‘released’ and the activity continuing.
[ISSUE 4/8/05: Decide on which mechanism OR both?]

· After activity creation: The events that have been subscribed to will need to be altered during the lifetime of the activity and a mechanism must be provided to support this.
[ISSUE: 4/8/05: Define a mechanism!]

In general there is no expectation that a subscription for state changes within an activity referenced by a WS-Name would continue beyond the duration of that activity within a BES.

[DISCUSSION 11/8/05: Should each sub activity have their own activity? WS-Names are OK but we do not want to make things more complicated!]
Proposal

Use the JSDLDocument as the basis of setting and reporting on the setting of event subscriptions. Embed requests for subscriptions in the JSDLDocument – place a subscription element where they are required – and use the GetActivityJSDLDocument to return a JSDLDocument with the current subscription details embedded within them.
5. Exposing Container Activity

The BES does not mandate that the activity started within the container provide a specific web service interface for management or control purposes. Profiles on the BES specification may mandate that the use of certain JSDL extensions (e.g. the POSIXApplication) will result in a web service interface (e.g. a POSIX control interface) to the resulting activity that can be referenced by the WS-Name (endpoint) returned from the ‘CreateActivityFromJSDL’ operation. Such interfaces are out of scope of this document.
6. Management

Currently no generic management infrastructure has been specified for OGSA services. We would expect such an infrastructure to support the termination of a BES following a duly authorized request. In terminating a BES, the impact on the activities taking place within the BES container is undefined.
Security Considerations

Security considerations are significant in execution management, both in terms of access control (authorization) to the various services, as well as identity mapping issues, e.g., run this activity as “Fred”. Authorization and authentication is outside of the scope of this document and is dependent on the ongoing activity within the OGSA Authorisation Working Group.

One requirement of such an infrastructure will be the ability to restrict the access to information contained within BES. For instance, the only person who may be able to obtain the state of an activity is the person who requested that the activity be instantiated. A specified person could be given rights to administer a job (e.g. manipulate the job state).
Authors Information

Andrew Grimshaw
Mark Morgan

Chris Smith

Darren Pulsipher

Steven Newhouse

Add your name here …

Contributors

We gratefully acknowledge the contributions made to this document by
Acknowledgments
We are grateful to numerous colleagues for discussions on the topics covered in this document, and to the people who provided comments on the public drafts. Thanks in particular to (in alphabetical order, with apologies to anybody we have missed) ….
Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2004, 2005). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

References
[RFC2119]
S.Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[XML-Infoset]
http://www.w3.org/TR/xml-infoset/
[XPATH]
http://www.w3.org/TR/xpath
[WS-Addressing]
D. Box and F. Curbera (ed.) Web Services Addressing 1.0 – Core (WS-Addressing), W3C Last Call 31 March 2005, http://www.w3.org/TR/2005/WD-ws-addr-core-20050331
 [SOAP 1.1]
http://www.w3.org/TR/soap11
OGSA WSRF Basic Profile definition
OGSA Authorization

WS-Naming

RNS
Appendix A – OGSA WSRF Base Profile Rendering

6.1 Data Types

6.2 This section describes various data types used and assumed by the WSRF Base Profile Rendering of this document.

6.3 overall-state-enumeration
6.4 The overall-state-enumeration is used to indicate which state from the previously described state diagram for an activity that activity is in or has been in. The valid values are:

· New

· Pending

· StagingIn

· ExecutionPending

· Running

· ExecutionComplete

· StagingOut

· CleaningUp

· Suspended

· ShuttingDown

· NotKnown

· Other

· Done

· Terminated

· Exception

6.5 data-staging-state-enumeration
6.6 The data-staging-state-enumeration is used to describe which state various data staging sub-activities are in or have been in. The valid values are:

· New

· Pending

· StagingIn

· Waiting

· StagingOut

· Blocked

· Suspended

· Done

· Exception

· Terminated

· NotKnown
6.7 state-change-response-enumeration

6.8 The state-change-response-enumeration includes the values which may be used to indicate the success or failure of a state-change-request operation on an activity.

· Succeeded

· Failed

6.9 activity-status-type
6.10 The activity-status-type is returned by the GetActivityStatus operation to describe the status of a single activity.
6.11 <bes:activity-status-type>
6.12
<bes:activity-identifier> wsa:EndpointReferenceType </bes:activity-identifier>

6.13
<bes:overall-status state=”bes:overall-state-enumeration”
6.14

last-state=”bes:overall-state-enumeration”?
6.15

other=”xsd:string”?/>

6.16
<bes:data-stage-status id=”xsd:string” state=”bes:data-staging-state-enumeration”
6.17

last-state=”bes:data-staging-state-enumeration”?/>*
6.18 </bes:activity-status-type>
6.19 The components of the activity-status-type are further described as follows:

6.20 /bes:activity-identifier

6.21 A WS-Naming compliant wsa:EndpointReferenceType which identifies which activity the status type report is associated with.

6.22 /bes:overall-status

6.23 Describes the overall status of the activity as a whole

6.24 /bes:overall-status/@state

6.25 The current overall status of the given activity

6.26 /bes:overall-status/@last-state

6.27 The state that the activity was last in prior to the current one. This value might be missing or null if the activity is in it’s initial state.

6.28 /bes:overall-status/@other

6.29 Any container specific state. This attribute can be null or missing if there is no container specific state.

6.30 /bes:data-state-status

6.31 This status element is used to describe a given data staging operation’s status.

6.32 /bes:data-state-status/@id

6.33 A string id that indicates which data staging activity is being referred to. This matches the id given in the JSDL document and may be absent if no id is available.

6.34 /bes:data-state-status/@state

6.35 The current staging state for this data staging activity.

6.36 /bes:data-state-status/@last-state

6.37 The state that the data staging activity was last in prior to the current one. This value might be missing or null if the data staging activity is in it’s initial state.

6.38 state-change-request-type
6.39 The state-change-request-type is used to indicate a request to change the overall state of exactly one activity. The format for this data type is as follows:

6.40 <bes:state-change-request-type>
6.41
<bes:activity-identifier> wsa:EndpointReferenceType </bes:activity-identifier>

6.42
<bes:requested-state-change from=”bes:overall-state-enumeration”?
6.43 to=”bes:overall-state-enumeration”/>
6.44 </bes:state-change-request-type>
6.45 The components of the state-change-request-type are further described as follows:

/bes:activity-identifier

A WS-Naming compliant wsa:EndpointReferenceType which identifies which activity the status type report is associated with.

6.46 /bes:requested-state-change

6.47 Describes the actual request to change the state.

6.48 /bes:requested-state-change/@from

6.49 An optional attribute which describes which overall state the activity MUST be in in order for the state change request to happen. If this option is specified, then any valid state may be transitioned to the new one.

6.50 /bes:requested-state-change/@to

6.51 A required attribute indicating which state the client wishes for the activity to transition to.

6.52 state-change-response-type

6.53 The state-change-response-type is used to indicate the result of a state change request. The format of this type is as follows:

6.54 <bes:state-change-response-type response=”bes:state-change-response-enumeration”>
6.55
<bes:activity-identifier> wsa:EndpointReferenceType </bes:activity-identifier>
6.56 </bes:state-change-response-type>
6.57 The components of the state-change-response-type are further described as follows:

6.58 /@response

6.59 An enumeration indicating whether or not the response represents a failure to change the state, or success in having done so.
/bes:activity-identifier

A WS-Naming compliant wsa:EndpointReferenceType which identifies which activity the status type report is associated with.

6.60 activity-jsdl-document-type

6.61 The activity-jsdl-document-type is used to describe the binding of a jsdl document with the activity that is the result of the BES container initiating that document. It’s format is as follows:

6.62 <bes:activity-jsdl-document-type>

6.63
<bes:activity-identifier> wsa:EndpointReferenceType </bes:activity-identifier>

6.64
<bes:job-description> jsdl:JobDefinitionType </bes:job-description>

6.65 </bes:activity-jsdl-document-type>
6.66 The components of the activity-jsdl-document-type are further described as follows:

/bes:activity-identifier

A WS-Naming compliant wsa:EndpointReferenceType which identifies which activity the status type report is associated with.

6.67 /bes:job-description
6.68 The JSDL document that was used to initiate the request. This JSDL document may be slightly different from the original one passed into createActivityFromJSDL as the container may alter it to reflect policy changes, etc.
6.69 CreateActivityFromJSDL

The format of the CreateActivityFromJSDL request message is:

…
<bes:CreateActivityFromJSDL>

<bes:job-description-document>

jsdl:JobDefinitionType

</bes:job-description-document>

<bes:create-suspended> xsd:boolean </bes:create-suspended>
</bes:CreateActivityFromJSDL>

…
The components of the CreateActivityFromJSDL message are further described as follows:

/bes:create-suspended

A boolean flag indicating whether or not the job should be created in a suspended state.
/bes:job-description-document

A valid JSDL document describing the job to create.
The response to the CreateActivityFromJSDL message is a message of the following form:
…

<bes:CreateActivityFromJSDLResponse>

<bes:activity-identifier>

wsa:EndpointReferenceType

</bes:activity-identifier>
</bes:CreateActivityFromJSDLResponse>

…

The components of the CreateActivityFromJSDLResponse message are further described as follows:

/bes:activity-identifier

A WS-Name compliant EndpointReferenceType that can be used to identify and possibly communicate with the job that was started.
6.69.1.1 Example SOAP Encoding of the CreateActivityFromJSDL Message Exchange

The following is a non-normative example of a CreateActivityFromJSDL message using [SOAP 1.1]

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:jsdl=”http://schemas.ggf.org/jsdl/2005/11/jsdl” >

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/CreateActivityFromJSDL

</wsa:Action>

<wsa:To s11:mustUnderstand=”1”>

http://www.tempuri.org/BESContainerResource

</wsa:To>

 </s11:Header>

 <s11:Body>
<bes:CreateActivityFromJSDL>

<bes:job-description-document>

<jsdl:JobDescription>

…contents omitted for brevity (see JSDL)…

</jsdl:JobDescription>

</bes:job-description-document>

<bes:create-suspended>false</bes:create-suspended>

</bes:CreateActivityFromJSD>

 </s11:Body>

</s11:Envelope>

The following is a non-normative example of a CreateActivityFromJSDL response message using [SOAP 1.1]:

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:name=”http://schemas.ggf.org/naming/2005/11/naming”>
 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/CreateActivityFromJSDLResponse

</wsa:Action>

<wsa:To>

http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:CreateActivityFromJSDLResponse>

<bes:activity-identifier>

<wsa:Address>http://someuri.org/some-service</wsa:Address>

<wsa:ReferenceProperties>

<bes:opaque-key>adslkfjasdlfjasf</bes:opaque-key>

</wsa:ReferenceProperties>

<name:AbstractName>urn:guid:some-guid</name:AbstractName>

</bes:activity-identifier>

</bes:CreateActivityFromJSDLResponse>

 </s11:Body>

</s11:Envelope>

6.70 GetActivityStatus

The format of the GetActivityStatus request message is:

…

<bes:GetActivityStatus>

<bes:activity-identifier>

wsa:EndpointReferenceType

</bes:activity-identifier>*
</bes:GetActivityStatus>

…

The components of the GetActivityStatus message are further described as follows:

/bes:activity-identifier

0 or more WS-Naming compliant EPRs that indicate which activities the container is being queried about.

The response to the GetActivityStatus message is a message of the following form:

…

<bes:GetActivityStatusResponse>

<bes:activity-status>

bes:activity-status-type

<bes:activity-status>*
</bes:GetActivityStatusResponse>

…

The components of the GetActivityStatusResponse message are further described as follows:

/bes:activity-status

A
n activity-status-type element describing the current status in detail of a single given activity.
6.70.1 Example SOAP Encoding of the GetActivityStatus Message Exchange

The following is a non-normative example of a GetActivityStatus message using [SOAP 1.1]

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:jsdl=”http://schemas.ggf.org/jsdl/2005/11/jsdl” >

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/GetActivityStatus

</wsa:Action>

<wsa:To s11:mustUnderstand=”1”>

http://www.tempuri.org/BESContainerResource

</wsa:To>

 </s11:Header>

 <s11:Body>
<bes:GetActivityStatus>

<bes:

activity-identifier>

<wsa:Address>http://someuri.org/some-service</wsa:Address>

<wsa:ReferenceProperties>

<bes:opaque-key>adslkfjasdlfjasf</bes:opaque-key>

</wsa:ReferenceProperties>

<name:AbstractName>urn:guid:some-guid</name:AbstractName>

</bes:activity-identifier>
</bes:GetActivityStatus>

 </s11:Body>

</s11:Envelope>

The following is a non-normative example of a GetActivityStatus response message using [SOAP 1.1]:

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:name=”http://schemas.ggf.org/naming/2005/11/naming”>

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/GetActivityStatusResponse

</wsa:Action>

<wsa:To>

http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:GetActivityStatusResponse>

<bes:activity-status>

<bes:activity-identifier>

<wsa:Address>http://someuri.org/some-service</wsa:Address>

<wsa:ReferenceProperties>

<bes:opaque-key>adslkfjasdlfjasf</bes:opaque-key>

</wsa:ReferenceProperties>

<name:AbstractName>urn:guid:some-guid</name:AbstractName>

</bes:activity-identifier>

<bes:overall-status state=”Running” last-state=”Suspended”/>

<bes:data-state-status id=”some-id” state=”Waiting”

last-state=”staging-in”/>

</bes:activity-status>

</bes:GetActivityStatusResponse>

 </s11:Body>

</s11:Envelope>

6.71 RequestActivityStateChanges

The format of the RequestActivityStateChanges request message is:

…

<bes:RequestActivityStateChanges>

<bes:state-change-request>

bes:state-change-request-type

</bes:state-change-request> *

</bes:RequestActivityStateChanges>

…

The components of the RequestActivityStateChanges message are further described as follows:

/bes:state-change-request

0 or more requested state changes for the container to make on the given set of activities.

The response to the RequestActivityStateChanges message is a message of the following form:

…

<bes:RequestActicityStateChangesResponse>

<bes:state-change-response>

bes:state-change-response-type

</bes:state-change-response> *
</bes:RequestActicityStateChangesResponse>

…

The components of the RequestActivityStateChangesResponse message are further described as follows:

/bes:state-change-response

An element describing the success or failure for each of the requested state changes.

6.71.1 Example SOAP Encoding of the RequestActivityStateChange Message Exchange

The following is a non-normative example of a RequestActivityStateChange message using [SOAP 1.1]

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:jsdl=”http://schemas.ggf.org/jsdl/2005/11/jsdl” >

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/RequestActivityStateChanges

</wsa:Action>

<wsa:To s11:mustUnderstand=”1”>

http://www.tempuri.org/BESContainerResource

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:RequestActivityStateChanges>

<bes:state-change-request>

<bes:activity-identifier>

<wsa:Address>http://someuri.org/some-service</wsa:Address>

<wsa:ReferenceProperties>

<bes:opaque-key>adslkfjasdlfjasf</bes:opaque-key>

</wsa:ReferenceProperties>

<name:AbstractName>urn:guid:some-guid</name:AbstractName>

</bes:activity-identifier>

</bes:state-change-request>

</bes:RequestActivityStateChanges>

 </s11:Body>

</s11:Envelope>

The following is a non-normative example of a RequestActivityStateChangesResponse response message using [SOAP 1.1]:

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:name=”http://schemas.ggf.org/naming/2005/11/naming”>

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/RequestActivityStateChangesResponse

</wsa:Action>

<wsa:To>

http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:RequestActivityStateChangesResponse>

<bes:state-change-response response=”Succeeded”>

<bes:activity-identifier>

<wsa:Address>http://someuri.org/some-service</wsa:Address>

<wsa:ReferenceProperties>

<bes:opaque-key>adslkfjasdlfjasf</bes:opaque-key>

</wsa:ReferenceProperties>

<name:AbstractName>urn:guid:some-guid</name:AbstractName>

</bes:activity-identifier>

</bes:state-change-response>

</bes:RequestActivityStateChangesResponse>

 </s11:Body>

</s11:Envelope>
6.72 StopAcceptingNewActivities

The format of the StopAcceptingNewActivities request message is:

…

<bes:StopAcceptingNewActivities/>
…
The response to the StopAcceptingNewActivities message is a message of the following form:

…

<bes:StopAcceptingNewActivitiesResponse/>

…

6.72.1 Example SOAP Encoding of the StopAcceptingNewActivities Message Exchange

The following is a non-normative example of a StopAcceptingNewActivities message using [SOAP 1.1]

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:jsdl=”http://schemas.ggf.org/jsdl/2005/11/jsdl” >

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/StopAcceptingNewActivities

</wsa:Action>

<wsa:To s11:mustUnderstand=”1”>

http://www.tempuri.org/BESContainerResource

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:StopAcceptingNewActivities/>

 </s11:Body>

</s11:Envelope>

The following is a non-normative example of a StopAcceptingNewActivitiesResponse response message using [SOAP 1.1]:

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:name=”http://schemas.ggf.org/naming/2005/11/naming”>

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/StopAcceptingNewActivitiesResponse

</wsa:Action>

<wsa:To>

http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:StopAcceptingNewActivitiesResponse/>

 </s11:Body>

</s11:Envelope>
6.73 StartAcceptingNewActivities

The format of the StartAcceptingNewActivities request message is:

…

<bes:StartAcceptingNewActivities/>
…
The response to the SartpAcceptingNewActivities message is a message of the following form:

…

<bes:StartAcceptingNewActivitiesResponse/>

…

6.73.1 Example SOAP Encoding of the StartAcceptingNewActivities Message Exchange

The following is a non-normative example of a StartAcceptingNewActivities message using [SOAP 1.1]

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:jsdl=”http://schemas.ggf.org/jsdl/2005/11/jsdl” >

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/StartAcceptingNewActivities

</wsa:Action>

<wsa:To s11:mustUnderstand=”1”>

http://www.tempuri.org/BESContainerResource

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:StartAcceptingNewActivities/>

 </s11:Body>

</s11:Envelope>

The following is a non-normative example of a StartAcceptingNewActivitiesResponse response message using [SOAP 1.1]:

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:name=”http://schemas.ggf.org/naming/2005/11/naming”>

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/StopAcceptingNewActivitiesResponse

</wsa:Action>

<wsa:To>

http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:StartAcceptingNewActivitiesResponse/>

 </s11:Body>

</s11:Envelope>
6.74 IsAcceptingNewActivities

The format of the IsAcceptingNewActivities request message is:

…

<bes:IsAcceptingNewActivities/>
…
The response to the IsAcceptingNewActivities message is a message of the following form:

…

<bes:IsAcceptingNewActivitiesResponse>

<bes:response> xsd:boolean </bes:response>

</bes:IsAcceptingNewActivitiesResponse>
…
The components of the IsAcceptingNewActivitiesResponse message are further described as follows:

/bes:response

A boolean value indicating whether or not the container is currently accepting new activities.
6.74.1 Example SOAP Encoding of the IsAcceptingNewActivities Message Exchange

The following is a non-normative example of a IsAcceptingNewActivities message using [SOAP 1.1]

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:jsdl=”http://schemas.ggf.org/jsdl/2005/11/jsdl” >

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/IsAcceptingNewActivities

</wsa:Action>

<wsa:To s11:mustUnderstand=”1”>

http://www.tempuri.org/BESContainerResource

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:IsAcceptingNewActivities/>

 </s11:Body>

</s11:Envelope>

The following is a non-normative example of a IsAcceptingNewActivitiesResponse response message using [SOAP 1.1]:

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:name=”http://schemas.ggf.org/naming/2005/11/naming”>

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/IsAcceptingNewActivitiesResponse

</wsa:Action>

<wsa:To>

http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:IsAcceptingNewActivitiesResponse>

<bes:response> true </bes:response>

</bes:IsAcceptingNewActivitiesResponse>
 </s11:Body>

</s11:Envelope>
6.75 GetActivityJSDLDocuments

The format of the GetActivityJSDLDocuments request message is:

…

<bes:GetActivityJSDLDocuments>

<bes:activity-identifier>

wsa:EndpointReferenceType

</bes:activity-identifier>*

</bes:GetActivityJSDLDocuments>

…

The components of the GetActivityJSDLDocuments message are further described as follows:

/bes:activity-identifier

0 or more WS-Naming compliant EPRs that indicate which activities the container is being queried about.

The response to the GetActivityJSDLDocuments message is a message of the following form:

…

<bes:GetActivityJSDLDocumentsResponse>

<bes:activity-jsdl-document>

bes:activity-jsdl-document-type

<bes:activity-jsdl-document>*

</bes:GetActivityJSDLDocumentsResponse>

…

The components of the GetActivityJSDLDocumentsResponse message are further described as follows:

/bes:activity-jsdl-document

An activity-jsdl-document-type element describing the JSDL document which represents the given activity..

6.75.1 Example SOAP Encoding of the GetActivityJSDLDocument Message Exchange

The following is a non-normative example of a GetActivityJSDLDocument message using [SOAP 1.1]

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:jsdl=”http://schemas.ggf.org/jsdl/2005/11/jsdl” >

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/GetActivityJSDLDocument

</wsa:Action>

<wsa:To s11:mustUnderstand=”1”>

http://www.tempuri.org/BESContainerResource

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:GetActivityJSDLDocument>

<bes:activity-identifier>

<wsa:Address>http://someuri.org/some-service</wsa:Address>

<wsa:ReferenceProperties>

<bes:opaque-key>adslkfjasdlfjasf</bes:opaque-key>

</wsa:ReferenceProperties>

<name:AbstractName>urn:guid:some-guid</name:AbstractName>

</bes:activity-identifier>

</bes:GetActivityJSDLDocument>

 </s11:Body>

</s11:Envelope>

The following is a non-normative example of a GetActivityJSDLDocumentResponse response message using [SOAP 1.1]:

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:name=”http://schemas.ggf.org/naming/2005/11/naming”>

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/GetActivityJSDLDocumentsResponse

</wsa:Action>

<wsa:To>

http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:GetActivityJSDLDocumentsResponse>

<bes:activity-jsdl-document>

<bes:activity-identifier>

<wsa:Address>http://someuri.org/some-service</wsa:Address>

<wsa:ReferenceProperties>

<bes:opaque-key>adslkfjasdlfjasf</bes:opaque-key>

</wsa:ReferenceProperties>

<name:AbstractName>urn:guid:some-guid</name:AbstractName>

</bes:activity-identifier>

<bes:job-description>

… some JSDL compliant jsdl:JobDefinitionType document …

</bes:job-description>

</bes:activity-jsdl-document>

</bes:GetActivityJSDLDocumentsResponse>

 </s11:Body>

</s11:Envelope>

Normative XSD Schema

6.76

6.77

6.78

6.79

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

 xmlns="http://schemas.ggf.org/bes/2005/11/bes"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:bes="http://schemas.ggf.org/bes/2005/11/bes"

xmlns:wsbf="http://docs.oasis-open.org/wsrf/bf-1"

 targetNamespace="http://schemas.ggf.org/bes/2005/11/bes"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

<xsd:import

 namespace="http://www.w3.org/2005/03/addressing"

 schemaLocation="http://www.w3.org/2005/03/addressing"/>

<xsd:import

 namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 schemaLocation="http://schemas.ggf.org/jsdl/2005/11/jsdl"/>

 <xsd:import

 namespace="http://docs.oasis-open.org/wsrf/bf-1"

 schemaLocation="http://docs.oasis-open.org/wsrf/bf-1"/>

<!-- Simple Types -->

<xsd:simpleType name="overall-state-enumeration">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="New"/>

<xsd:enumeration value="Pending"/>

<xsd:enumeration value="StagingIn"/>

<xsd:enumeration value="ExecutionPending"/>

<xsd:enumeration value="Running"/>

<xsd:enumeration value="ExecutionComplete"/>

<xsd:enumeration value="StagingOut"/>

<xsd:enumeration value="CleaningUp"/>

<xsd:enumeration value="Suspended"/>

<xsd:enumeration value="ShuttingDown"/>

<xsd:enumeration value="NotKnown"/>

<xsd:enumeration value="Other"/>

<xsd:enumeration value="Done"/>

<xsd:enumeration value="Terminated"/>

<xsd:enumeration value="Exception"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="data-staging-state-enumeration">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="New"/>

<xsd:enumeration value="Pending"/>

<xsd:enumeration value="StagingIn"/>

<xsd:enumeration value="Waiting"/>

<xsd:enumeration value="StagingOut"/>

<xsd:enumeration value="Blocked"/>

<xsd:enumeration value="Suspended"/>

<xsd:enumeration value="Done"/>

<xsd:enumeration value="NotKnown"/>

<xsd:enumeration value="Terminated"/>

<xsd:enumeration value="Exception"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="state-change-response-enumeration">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Succeeded"/>

<xsd:enumeration value="Failed"/>

</xsd:restriction>

</xsd:simpleType>

<!-- Complex Types -->

<xsd:complexType name="overall-status-type">

<xsd:attribute name="state" type="bes:overall-state-enumeration"

use="required"/>

<xsd:attribute name="last-state" type="bes:overall-state-enumeration"

use="optional"/>

<xsd:attribute name="other" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:element name="overall-status" type="bes:overall-status-type"/>

<xsd:complexType name="data-stage-status-type">

<xsd:attribute name="id" type="xsd:string" use="required"/>

<xsd:attribute name="state" type="data-staging-state-enumeration"

use="required"/>

<xsd:attribute name="last-state" type="data-staging-state-enumeration"

use="optional"/>

</xsd:complexType>

<xsd:element name="data-stage-status" type="bes:data-stage-status-type"/>

<xsd:complexType name="activity-status-type">

<xsd:sequence>

<xsd:element type="wsa:EndpointReferenceType"

name="activity-identifier" minOccurs="1" maxOccurs="1"/>

<xsd:element type="bes:overall-status-type"

name="overall-status" minOccurs="1" maxOccurs="1"/>

<xsd:element type="bes:data-stage-status-type"

name="data-stage-status" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="activity-status" type="bes:activity-status-type"/>

<xsd:complexType name="requested-state-change-type">

<xsd:attribute name="from" type="bes:overall-state-enumeration"

use="optional"/>

<xsd:attribute name="to" type="bes:overall-state-enumeration"

use="required"/>

</xsd:complexType>

<xsd:element name="requested-state-change"

type="bes:requested-state-change-type"/>

<xsd:complexType name="state-change-request-type">

<xsd:sequence>

<xsd:element type="wsa:EndpointReferenceType"

name="activity-identifier" minOccurs="1" maxOccurs="1"/>

<xsd:element type="bes:requested-state-change-type"

name="requested-state-change" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="state-change-request"

type="bes:state-change-request-type"/>

<xsd:complexType name="state-change-response-type">

<xsd:sequence>

<xsd:element type="wsa:EndpointReferenceType"

name="activity-identifier" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="response"

type="bes:state-change-response-enumeration"

use="required"/>

</xsd:complexType>

<xsd:element name="state-change-response"

type="bes:state-change-response-type"/>

<xsd:complexType name="activity-jsdl-document-type">

<xsd:sequence>

<xsd:element type="wsa:EndpointReferenceType"

name="activity-identifier" minOccurs="1" maxOccurs="1"/>

<xsd:element type="jsdl:JobDefinitionType"

name="job-description" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="activity-jsdl-document"

type="bes:activity-jsdl-document-type"/>

<!-- Fault Types -->

<xsd:complexType name="NotAcceptingNewActivitiesFaultType">

<xsd:complexContent>

<xsd:extension base="wsbf:BaseFaultType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="NotAcceptingNewActivitiesFault"

type="bes:NotAcceptingNewActivitiesFaultType"/>

<xsd:complexType name="BadlyFormedJSDLDocumentFaultType">

<xsd:complexContent>

<xsd:extension base="wsbf:BaseFaultType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="BadlyFormedJSDLDocumentFault"

type="bes:BadlyFormedJSDLDocumentFaultType"/>

<xsd:complexType name="UnsupportedJSDLFaultType">

<xsd:complexContent>

<xsd:extension base="wsbf:BaseFaultType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="UnsupportedJSDLFault"

type="bes:UnsupportedJSDLFaultType"/>

<xsd:complexType name="UnsupportedFeatureFaultType">

<xsd:complexContent>

<xsd:extension base="wsbf:BaseFaultType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="UnsupportedFeatureFault"

type="bes:UnsupportedFeatureFaultType"/>

<xsd:complexType name="JobSpecificationFaultType">

<xsd:complexContent>

<xsd:extension base="wsbf:BaseFaultType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="JobSpecificationFault"

type="bes:JobSpecificationFaultType"/>

<xsd:complexType name="BackendFaultType">

<xsd:complexContent>

<xsd:extension base="wsbf:BaseFaultType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="BackendFault"

type="bes:BackendFaultType"/>

</xsd:schema>
Normative WSDL

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions name="BES"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:wsa="http://www.w3.org/2005/03/addressing"

 xmlns:bes="http://schemas.ggf.org/bes/2005/11/bes"

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/10/jsdl"

xmlns:wsrp="http://docs.oasis-open.org/wsrf/rp-1"

xmlns:wsrpw="http://docs.oasis-open.org/wsrf/rpw-1"

xmlns:wsrl="http://docs.oasis-open.org/wsrf/rl-1"

xmlns:wsrlw="http://docs.oasis-open.org/wsrf/rlw-1"

xmlns:wsrf-rw="http://docs.oasis-open.org/wsrf/rw-1"

 targetNamespace="http://schemas.ggf.org/bes/2005/11/bes">

<wsdl:import

 namespace="http://docs.oasis-open.org/wsrf/rpw-1"

 location="http://docs.oasis-open.org/wsrf/rpw-1"/>

 <wsdl:import

 namespace="http://docs.oasis-open.org/wsrf/rlw-1"

 location="http://docs.oasis-open.org/wsrf/rlw-1"/>

 <wsdl:import

 namespace="http://docs.oasis-open.org/wsrf/rw-1"

 location="http://docs.oasis-open.org/wsrf/rw-1"/>

<!-- ===== Types Definitions ==== -->

 <wsdl:types>

 <xsd:schema

 targetNamespace="http://schemas.ggf.org/bes/2005/11/bes"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xsd:include schemaLocation="./bes.xsd"/>

 <xsd:import

namespace="http://www.w3.org/2005/03/addressing"

schemaLocation="http://www.w3.org/2005/03/addressing"/>

<xsd:import

namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl"

schemaLocation="./jsdl.xsd"/>

<xsd:import

 namespace="http://docs.oasis-open.org/wsrf/bf-1"

 schemaLocation="http://docs.oasis-open.org/wsrf/bf-1"/>

 <xsd:import

 namespace="http://docs.oasis-open.org/wsrf/rp-1"

 schemaLocation="http://docs.oasis-open.org/wsrf/rp-1"/>

 <xsd:import

 namespace="http://docs.oasis-open.org/wsrf/rl-1"

 schemaLocation="http://docs.oasis-open.org/wsrf/rl-1"/>

<!-- ==== Resource Property Related ==== -->

<!-- TODO -->

<!-- We need some stuff here for the OGSA WSRF Base Profile required

 Resource Properties -->

<!-- Message Helper Types -->

<xsd:element name="CreateActivityFromJSDL">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="job-description-document"

 type="jsdl:JobDefinitionType"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="create-suspended"

 type="xsd:boolean" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="CreateActivityFromJSDLResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="activity-identifier"

type="wsa:EndpointReferenceType"

minOccurs="1" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="GetActivityStatus">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="activity-identifier"

type="wsa:EndpointReferenceType"

minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

<xsd:element name="GetActivityStatusResponse">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="activity-status"

type="bes:activity-status-type"

minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

<xsd:element name="RequestActivityStateChanges">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="state-change-request"

type="bes:state-change-request-type"

minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

<xsd:element name="RequestActivityStateChangesResponse">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="state-change-response"

type="bes:state-change-response-type"

minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

<xsd:element name="StopAcceptingNewActivities"/>

<xsd:element name="StopAcceptingNewActivitiesResponse"/>

<xsd:element name="StartAcceptingNewActivities"/>

<xsd:element name="StartAcceptingNewActivitiesResponse"/>

<xsd:element name="IsAcceptingNewActivities"/>

<xsd:element name="IsAcceptingNewActivitiesResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="response" type="xsd:boolean"

minOccurs="1" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="GetActivityJSDLDocuments">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="activity-identifier"

type="wsa:EndpointReferenceType"

minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

<xsd:element name="GetActivityJSDLDocumentsResponse">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="activity-jsdl-document"

type="bes:activity-jsdl-document-type"

minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

 </wsdl:types>

 <!-- Fault Messages -->

<wsdl:message name="NotAcceptingNewActivitiesFault">

<wsdl:part name="NotAcceptingNewActivitiesFault"

element="bes:NotAcceptingNewActivitiesFault"/>

</wsdl:message>

<wsdl:message name="BadlyFormedJSDLDocumentFault">

<wsdl:part name="BadlyFormedJSDLDocumentFault"

element="bes:BadlyFormedJSDLDocumentFault"/>

</wsdl:message>

<wsdl:message name="UnsupportedJSDLFault">

<wsdl:part name="UnsupportedJSDLFault"

element="bes:UnsupportedJSDLFault"/>

</wsdl:message>

<wsdl:message name="UnsupportedFeatureFault">

<wsdl:part name="UnsupportedFeatureFault"

element="bes:UnsupportedFeatureFault"/>

</wsdl:message>

<wsdl:message name="JobSpecificationFault">

<wsdl:part name="JobSpecificationFault"

element="bes:JobSpecificationFault"/>

</wsdl:message>

<wsdl:message name="BackendFault">

<wsdl:part name="BackendFault"

element="bes:BackendFault"/>

</wsdl:message>

<!-- BES Messages -->

<wsdl:message name="CreateActivityFromJSDLRequest">

<wsdl:part name="CreateActivityFromJSDLRequest"

element="bes:CreateActivityFromJSDL"/>

</wsdl:message>

<wsdl:message name="CreateActivityFromJSDLResponse">

<wsdl:part name="CreateActivityFromJSDLResponse"

element="bes:CreateActivityFromJSDLResponse"/>

</wsdl:message>

<wsdl:message name="GetActivityStatusRequest">

<wsdl:part name="GetActivityStatusRequest"

element="bes:GetActivityStatus"/>

</wsdl:message>

<wsdl:message name="GetActivityStatusResponse">

<wsdl:part name="GetActivityStatusResponse"

element="bes:GetActivityStatusResponse"/>

</wsdl:message>

<wsdl:message name="RequestActivityStateChangesRequest">

<wsdl:part name="RequestActivityStateChangesRequest"

element="bes:RequestActivityStateChanges"/>

</wsdl:message>

<wsdl:message name="RequestActivityStateChangesResponse">

<wsdl:part name="RequestActivityStateChangesResponse"

element="bes:RequestActivityStateChangesResponse"/>

</wsdl:message>

<wsdl:message name="StopAcceptingNewActivitiesRequest">

<wsdl:part name="StopAcceptingNewActivitiesRequest"

element="bes:StopAcceptingNewActivities"/>

</wsdl:message>

<wsdl:message name="StopAcceptingNewActivitiesResponse">

<wsdl:part name="StopAcceptingNewActivitiesResponse"

element="bes:StopAcceptingNewActivitiesResponse"/>

</wsdl:message>

<wsdl:message name="StartAcceptingNewActivitiesRequest">

<wsdl:part name="StartAcceptingNewActivitiesRequest"

element="bes:StartAcceptingNewActivities"/>

</wsdl:message>

<wsdl:message name="StartAcceptingNewActivitiesResponse">

<wsdl:part name="StartAcceptingNewActivitiesResponse"

element="bes:StartAcceptingNewActivitiesResponse"/>

</wsdl:message>

<wsdl:message name="IsAcceptingNewActivitiesRequest">

<wsdl:part name="IsAcceptingNewActivitiesRequest"

element="bes:IsAcceptingNewActivities"/>

</wsdl:message>

<wsdl:message name="IsAcceptingNewActivitiesResponse">

<wsdl:part name="IsAcceptingNewActivitiesResponse"

element="bes:IsAcceptingNewActivitiesResponse"/>

</wsdl:message>

<wsdl:message name="GetActivityJSDLDocumentsRequest">

<wsdl:part name="GetActivityJSDLDocumentsRequest"

element="bes:GetActivityJSDLDocuments"/>

</wsdl:message>

<wsdl:message name="GetActivityJSDLDocumentsResponse">

<wsdl:part name="GetActivityJSDLDocumentsResponse"

element="bes:GetActivityJSDLDocumentsResponse"/>

</wsdl:message>

<!-- Port Type Definitions -->

<wsdl:portType name="BES">

<!-- extends wsrpw:ResourceProperties -->

<wsdl:operation name="GetResourceProperty">

<wsdl:input name="GetResourcePropertyRequest"

message="wsrpw:GetResourcePropertyRequest"/>

<wsdl:output name="GetResourcePropertyResponse"

message="wsrpw:GetResourcePropertyResponse"/>

<wsdl:fault name="ResourceUnknownFault"

message="wsrf-rw:ResourceUnknownFault"/>

<wsdl:fault name="InvalidResourcePropertyQNameFault"

message="wsrpw:InvalidResourcePropertyQNameFault"/>

</wsdl:operation>

<!-- extends wsrpw:GetMultiple -->

<wsdl:operation name="GetMultipleResourceProperties">

<wsdl:input name="GetMultipleResourcePropertiesRequest"

message="wsrpw:GetMultipleResourcePropertiesRequest"/>

<wsdl:output name="GetMultipleResourcePropertiesResponse"

message="wsrpw:GetMultipleResourcePropertiesResponse"/>

<wsdl:fault name="ResourceUnknownFault"

message="wsrf-rw:ResourceUnknownFault"/>

<wsdl:fault name="InvalidResourcePropertyQNameFault"

message="wsrpw:InvalidResourcePropertyQNameFault"/>

</wsdl:operation>

<!-- extends wsrpw:Query -->

<wsdl:operation name="QueryResourceProperties">

<wsdl:input name="QueryResourcePropertiesRequest"

message="wsrpw:QueryResourcePropertiesRequest"/>

<wsdl:output name="QueryResourcePropertiesResponse"

message="wsrpw:QueryResourcePropertiesResponse"/>

<wsdl:fault name="ResourceUnknownFault"

message="wsrf-rw:ResourceUnknownFault"/>

<wsdl:fault name="InvalidResourcePropertyQNameFault"

message="wsrpw:InvalidResourcePropertyQNameFault"/>

<wsdl:fault name="UnknownQueryExpressionDialectFault"

message="wsrpw:UnknownQueryExpressionDialectFault"/>

<wsdl:fault name="InvalidQueryExpressionFault"

message="wsrpw:InvalidQueryExpressionFault"/>

<wsdl:fault name="QueryEvaluationErrorFault"

message="wsrpw:QueryEvaluationErrorFault"/>

</wsdl:operation>

<!-- BES Specific -->

<wsdl:operation name="CreateActivityFromJSDL">

<wsdl:input message="bes:CreateActivityFromJSDLRequest"/>

<wsdl:output message="bes:CreateActivityFromJSDLResponse"/>

<wsdl:fault name="NotAcceptingNewActivitiesFault"

message="bes:NotAcceptingNewActivitiesFault"/>

<wsdl:fault name="BadlyFormedJSDLDocumentFault"

message="bes:BadlyFormedJSDLDocumentFault"/>

<wsdl:fault name="UnsupportedJSDLFault"

message="bes:UnsupportedJSDLFault"/>

<wsdl:fault name="UnsupportedFeatureFault"

message="bes:UnsupportedFeatureFault"/>

<wsdl:fault name="JobSpecificationFault"

message="bes:JobSpecificationFault"/>

<wsdl:fault name="BackendFault"

message="bes:BackendFault"/>

</wsdl:operation>

<wsdl:operation name="GetActivityStatus">

<wsdl:input message="bes:GetActivityStatusRequest"/>

<wsdl:output message="bes:GetActivityStatusResponse"/>

</wsdl:operation>

<wsdl:operation name="RequestActivityStateChanges">

<wsdl:input message="bes:RequestActivityStateChangesRequest"/>

<wsdl:output message="bes:RequestActivityStateChangesResponse"/>

</wsdl:operation>

<wsdl:operation name="StopAcceptingNewActivities">

<wsdl:input message="bes:StopAcceptingNewActivitiesRequest"/>

<wsdl:output message="bes:StopAcceptingNewActivitiesResponse"/>

</wsdl:operation>

<wsdl:operation name="StartAcceptingNewActivities">

<wsdl:input message="bes:StartAcceptingNewActivitiesRequest"/>

<wsdl:output message="bes:StartAcceptingNewActivitiesResponse"/>

</wsdl:operation>

<wsdl:operation name="IsAcceptingNewActivities">

<wsdl:input message="bes:IsAcceptingNewActivitiesRequest"/>

<wsdl:output message="bes:IsAcceptingNewActivitiesResponse"/>

</wsdl:operation>

<wsdl:operation name="GetActivityJSDLDocuments">

<wsdl:input message="bes:GetActivityJSDLDocumentsRequest"/>

<wsdl:output message="bes:GetActivityJSDLDocumentsResponse"/>

</wsdl:operation>

</wsdl:portType>

</wsdl:definitions>

7. Issues Discussed & Resolved During Telecons
To be deleted on submission:
At GGF 14 it was decided that specifying the attributes that describe the service was out of scope of the BES specification at this time. It was noted that work with CIM and the GLUE schema going on elsewhere within the Grid community would be relevant to BES in the future.
At GGF 14 we discussed supporting multiple job description documents in the CreateActivityFromJSDL. It was decided that it was not worth the trouble.

RESOLVED 28/7/05: In GetActivityStatus, instead of throwing a fault, failure to discover an activity state is recorded in the ActivityStatus document output.

RESOLVED 28/7/05: Should we adopt/use/extend the CIM state model that has an integer enumeration that can indicate the operational state of the job or the transitions between these states? We have aligned the BES states to those in the CIM where sensible equivalents exist.

	Job State
	Identifier
	Description
	

	New
	2
	Indicates that the job has never been started.
	

	Starting
	3
	Indicates that the job is moving from the 'New', 'Suspended', or 'Service' states into the 'Running' state.
	

	Running
	4
	Indicates that the Job is running.
	

	Suspended
	5
	Indicates that the Job is stopped, but may be restarted in a seamless manner.
	

	Shutting Down
	6
	Indicates the job is moving to a 'Completed', 'Terminated', or 'Killed' state.
	

	Completed
	7
	Indicates that the job has completed normally.
	

	Terminated
	8
	Indicates that the job has been stopped by a 'Terminate' state change request. The job and all its underlying processes are ended and may be restarted (this is job-specific) only as a new job.
	

	Killed
	9
	Indicates that the job has been stopped by a 'Kill' state change request. Underlying processes may have been left running and cleanup may be required to free up resources.
	

	Exception
	10
	Indicates that the Job is in an abnormal state that may be indicative of an error condition. Actual status may be surfaced though job-specific objects.
	

	Service
	11
	Indicates that the Job is in a vendor-specific state that supports problem discovery and/or resolution.
	

RESOLVED 4/8/05: GetActivityJSDLDocuments – when extracting a set of JSDLDocuments relating to the specified activities how should the WS-Name be inserted so as to identify the JSDL document with the activity? It was felt that as the BES owns the activity – and therefore its associated JSDL document – the WS-Name should be inserted into the document. The JSDLDocument submitted to the service may not represent the running activity. If the original document may be required at a later date then the client should keep a record. Otherwise we want what the activity thinks it is running.

Telecon notes 4/8/05: We have a two level state model – state changes in the activity specified by WS-Name and the action (stage-in/out) operation that may exist within the JSDL document (how can these be identified)? Draft text for notification/event generation section.
WSRF - Mark

WSI – William Lee

WSRF Microsoft - Saavas[image: image8.png]
Provisioning

Deployment

Configuration

Information Services

Service

Container

Accounting Services

Execution Planning Services

Candidate Set Generator (Work -Resource mapping)

Job Manager

Reservation

<WSDL Goes here >

	

�

�As of right now, this isn’t true – there are no properties defined.

�I suspect that this will cause the document to have appendices which are nearly as long as the document itself.

�Being less familiar with non-.NET systems, I can’t say for sure, but at least from the C# perspective, this is hard to deduce. Isn’t this fault the responsibility of the soap dispatching mechanism?

�Depending on the strict definition of “version”, this might fit into the same category as my previous comment about SOAP dispatching responsibilities.

�Both of these are starting to get into the arena whereby the create operation may not know that these faults are going to happen. These are things that in certain implementations may not happen until after the create activity call has returned. That isn’t a problem here, but it begs the question, “Should we have a way of getting the fault for a job that faulted outside of a soap operation.”

�If you look at the state diagram, this state doesn’t exist – do you mean “Unknown”? Or should the state diagram have an additional/alternatively named state called “Not Known” (which consequently would match the staging state diagram better).

�These two don’t match the JSDL model particularly well. In JSDL, they have a staging activity which can represent either stage-in, or stage-out, or both. In this last case (where the model represents both stage in and stage out), separating the two sides of the “coin” out don’t make since. What about simply changing this to a single <StageInOut id=”file string” state=”(enumerated state)” laststate=”(enumerated state)”/>* element for all staging activities.

�Again, as per my comment above about the stage-in/stage-out dualitiy, this isn’t entirely true – more correctly, I’d say it’s Data Staging and Execution.

�As per an earlier comment, this isn’t actually in your state diagram – probably should change the diagram to have this instead of “Unknown”.

�This whole state diagram has a fairly large problem I think. As commented on before, the JSDL document describes DataStaging, not Staging-in and Staging-out separately. Because we have operations which refer to the state of staging activities, this state diagram is difficult for staging which is both in and out. In an outgoing email I will recommend an alternative state diagram.

�What about notifications? Since this is the WSRF rendering, we should describe the notifications that could be generated and the bodies of those notification messages.

�Should the schemas be incorporated into the WSDL file? I prefer a separate XSD but we should be consistent so that elements from the same namespace be in the same XSD file. This is currently not the case. The WSDL contains elements with the same namespace as this standalone XSD.

�Should we use the JSDL defined top-level element <jsdl:JobDefinition> instead of inventing our own? <xsd:element ref=”jsdl:JobDefinition” minOccurs=”1” maxOccurs=”1”?

�Do we need separate WSDL for different rendering? This one contains WS-RF artifacts.

ogsa-wg@ggf.org
2

_1191325501.vsd
H*

Statechart

Pending

Execution Pending

Running

Execution Complete

Cleaning Up

Done

Exception

Suspended

Unknown

Other

Shutting Down

Terminated

New

All states can transistion
to Shutting Down except for the
Done and Exception States

Staging In *

Staging Out *

_1191324058.vsd
Statechart

Pending

Running

Blocked

Suspended

Done

Exception

Terminated

Not Known

New

Exception can come from any
of the non-terminal states.

