
TERAGRID 2007 CONFERENCE, MADISON, WI (SUBMITTED) 1

GT4 GRAM: A Functionality and Performance Study

Martin Feller1, Ian Foster1,2,3, and Stuart Martin1,2

Abstract— The Globus Toolkit’s pre-Web Services GRAM service (“GRAM2”) has been widely deployed on grids around the world for many

years. Recent work has produced a new, Web Services-based GRAM service (“GRAM4”). We describe and compare the functionality and per-

formance of the GRAM2 and GRAM4 job execution services included in Globus Toolkit version 4 (GT4). GRAM4 provides significant improve-

ments in functionality and scalability over GRAM2 in many areas. GRAM4 is faster in the case of many concurrent submissions, but slower for

sequential submissions and when file staging is involved. (Optimizations to address the latter cases are in progress.) This information should be

useful when considering an upgrade from GRAM2 to GRAM4, and when comparing GRAM against other job execution services.

Index Terms— Globus, Grid, Job Execution Service, GRAM, GRAM2, GRAM4, Audit

—————————— � ——————————

1 INTRODUCTION

Grid applications frequently require mechanisms for executing

remote jobs. While this requirement might appear straightfor-

ward, its practical realization can be challenging due to the

need to (for example) address security, reliability, and per-

formance concerns; enable both client and server management

of resources consumed by remote jobs; propagate error mes-

sages and failure notifications; and move data to/from remote

computations. Thus, in practice, the creation of secure, reli-

able, and performant job execution services is difficult.

In Globus Toolkit version 4 (GT4) GT4 [1], remote job execu-

tion is supported by the Grid Resource Allocation and Man-

agement (GRAM) service, which defines mechanisms for

submitting requests to execute jobs (defined in a job descrip-

tion language) and for monitoring and controlling the resulting

job executions. More precisely, GT4 includes two different

GRAM services: the “pre-WS GRAM,” or GRAM2 [2], first

introduced in GT2, and the newer Web Services-based

“WS GRAM,” or GRAM4, first included in GT4.

We describe and compare first the functionality (Section 2)

and then the performance (Section 3) of GRAM2 and

GRAM4: specifically, the code to be distributed as the “pre-

WS GRAM” and “WS GRAM” services in the GT4.0.5 re-

lease. We see that GRAM4 provides significantly improve-

ments in functionality and scalability over GRAM2. GRAM4

performs well for concurrent submissions, but is slower than

GRAM2 for sequential submissions and when file staging is

involved—areas in which optimizations are planned, along

with further functionality improvements, in forthcoming 4.0.x

and 4.2.x releases (see Section 4).

Other systems providing functionality similar to GRAM in-

clude GridSAM [3], CREAM [4], and WSRF.NET [5]. The

functionality and performance data provided here should pro-

vide a basis for detailed qualitative and quantitative compari-

sons with and between those and other systems.

2 FUNCTIONALITY

We present a point-by-point comparison of GRAM2 and

GRAM4 functionality, both in summary form (Table 1) and in

more detail in the following. We divide functionality into

three parts: security, file staging, and general. In each case, the

short description is shaded (in the table) or underlined (in the

text) to indicate where GRAM4 offers significantly better

functionality than GRAM2. No shading or underline indicates

that the two versions offer similar functionality.

We emphasize that this long list of GRAM features does not

translate into a complex service for the user. The GRAM2 and

GRAM4 client interfaces are simple; the rich functionality

described here ensures that remote job execution, monitoring,

and management are secure, reliable, and efficient.

2.1 Security Features

Privilege limiting model. 2: Gatekeeper as root; 4: Service

with sudo privileges. In a typical deployment, the GRAM

server must be able to start jobs submitted by remote users

under different user ids, and thus must be able to execute some

code as “root.” It is generally viewed as preferable to limit the

amount of such “privileged” code. In GRAM2, the entire

“gatekeeper” service runs as root. In GRAM4, the GRAM

service does not itself require privileges. Instead, it uses

“sudo” to invoke operations for which privileges are required.

Authentication. 2: TLS; 4: TLS, Secure Message, WS-

Security. A client can authenticate with a GRAM service using

a variety of protocols. In GRAM2, only SSL/TLS is sup-

ported; in GRAM4, the standard message-level WS-Security

and channel-level WS-SecureConversation are also supported,

with the choice of protocol supported by a particular GRAM4

deployment specified in the service configuration.

Credential delegation. 2: Yes (required); 4: Yes (optional). A

job submitted to a GRAM service may require a delegated

credential [6] if it is to stage files or perform other remote op-

erations for which authentication is required. In GRAM2, a

delegated credential is passed with every request. In GRAM4,

a separate delegation interface is provided, allowing a client to

delegate a credential only when required, and to share a dele-

gated credential among multiple jobs. The GRAM4 approach

has the potential to be more efficient; in addition, it allows for

the use of standard authentication protocols unmodified.

————————————————
1 Computation Institute, University of Chicago & Argonne National
Laboratory, USA

2 Math & Computer Science Division, Argonne National Laboratory,
Argonne IL, USA

3 Department of Computer Science, University of Chicago, IL, USA

2 TERAGRID 2007 CONFERENCE, MADISON, WI

Table 1: Functionality comparison of GRAM2 and GRAM4 (see text for details)

Feature GRAM2 GRAM4

1) SECURITY

Privilege limiting model Gatekeeper as root Service with sudo privileges

Authentication options TLS TLS, Secure Message, WS-Security

Credential delegation Yes (required) Yes (optional)

Credential refresh Yes Yes

Share credentials among jobs No Yes

Authorization callouts Yes (single PDP callout) Yes (PDP callout chain)

2) FILE MANAGEMENT

File staging Yes Yes

File staging retry policy None RFT supported

Incremental output staging (“streaming”) Stdout, stderr only stdout, stderr, & any output files

Standard input access Yes (from file) Yes (from file)

Throttle staging work No Yes

Load balance staging work No Yes

3) GENERAL

Access protocol GRAM-specific HTTP Web Services, SOAP

Job description language RSL JDD

Extensible job description language Yes Yes

Local resource manager interface PERL scripts PERL scripts

Local resource managers
Fork, Condor, SGE, PBS, LSF,

LoadLeveler, ...

Fork, Condor, SGE, PBS, LSF, LoadLeveler,

GridWay, …

Fault tolerance Yes (client initiated) Yes (service initiated)

State access: pull Yes Yes

State access: push (subscription) Yes: callbacks Yes: WS-Notification

Audit logging Yes (experimental) Yes (experimental)

At most once job submission Yes (2 phase commit) Yes (UUID on create)

Job cancellation Yes Yes

Job lifetime management Yes Yes

Maximum active jobs ~250 32,000

Parallel job support Yes Yes

MPICH-G support Yes Yes

Basic Execution Service (BES) interface No Prototyped

Credential refresh. 2: Yes; 4: Yes. Credentials have a life-

time, which may expire before a job has completed execution.

Thus, we may want to supply a new credential. Both GRAM2

and GRAM4 provide this capability. In GRAM4, the refresh is

performed via the same delegation service used to supply the

credential in the first place. A client can both request notifica-

tion of imminent expiration and refresh the credential.

Share credentials among jobs. 2: No; 4: Yes. See “credential

delegation” (above) for discussion.

Authorization callouts. 2: Yes—single PDP callout; 4: Yes—

PDP callout chain. Following authentication, GRAM checks

to see whether the request should be authorized. In GRAM2, a

single (pluggable) policy decision point (PDP) or authoriza-

tion function can be called, to check (for example) a “grid-

map” file acting as an access control list. In GRAM4, multiple

PDPs can be combined together, allowing for richer policies.

GRAM4 also allows Policy Information Points to be included

in the chain for attribute-based authorization. Thus, for exam-

ple, policies can be defined that check supplied attributes, con-

tact remote attribute services, and/or check local conditions

such as server load.

2.2 File Management

File staging. 2: Yes; 4: Yes. Both GRAM2 and GRAM4 allow

job descriptions to specify that files are to be staged prior to

job execution and/or during or after job completion.

File staging retry policy. 2: None; 4: RFT supported. In

GRAM2, if a file staging operation fails, the job is aborted. In

GRAM4, a failed file staging operation can be retried by the

GRAM file staging service—the reliable file transfer (RFT)

service [7]. RFT’s retry policy can be set as a service default

for all transfers and also be overridden by a client for a spe-

cific transfer. For example, the Condor-G client sets the num-

ber of retries to five.

Incremental output staging (“streaming”). 2: Stdout, stderr

only; 4: Stdout, stderr, and any output files. It can be useful to

obtain access to data produced by a program as it executes. In,

GRAM2, a job’s standard output and standard error streams

can be accessed in this way. In GRAM4, any output file can

also be specified as “streaming.”

Standard input access. 2: Yes—from a file; 4: Yes—from a

file. In both GRAM2 and GRAM4, the contents of a specified

file can be passed to a job’s standard input.

FELLER ET AL.: GT4 GRAM 3

Throttle staging work. 2: No; 4: Yes. A GRAM submission

that specifies file staging operations imposes load on the “ser-

vice node” executing the GRAM service. In GRAM2, this

load was not managed, and so many simultaneous submissions

could result in a large number of concurrent transfers and thus

excessive load on the “service node.” GRAM4 can be config-

ured to limit the number of “worker” threads that process

GRAM4 work and thus the maximum number of concurrent

staging operations. In 4.0.5, the default value for this configu-

ration parameter is 30.

Load balance staging work. 2: No; 4: Yes. In GRAM2, stag-

ing work must be performed on the same “service node” as the

GRAM2 service. In GRAM4, staging work can be distributed

over several “service nodes.” A “GRAM and GridFTP file

system mapping” configuration file allows a system adminis-

trator to specify one or more GridFTP servers, each associated

with a local resource manager (LRM) type and one or more

file system mappings. Based on a job’s LRM type and file

paths in the staging directives, GRAM then chooses the

matching GridFTP server(s).

2.3 General

Access protocol. 2: GRAM-specific HTTP; 4: Web Service,

SOAP. GRAM2 uses a custom HTTP-based protocol to trans-

fer requests and replies. GRAM4 uses Web Services, thus

providing for a convenient standard representation of protocol

messages (WSDL) and enabling the use of standard tooling to

develop clients.

Job description language. 2: RSL; 4: JDD. GRAM2 uses a

custom, string-based Resource Specification Language (RSL).

GRAM4 supports an XML-based version of RSL, the Job De-

scription Document (JDD). A prototype implementation of the

Job Submission Description Language (JSDL) has also been

developed for GRAM4: see Section 4.

Extensible job description language. 2: Yes; 4: Yes. Both

RSL and JDD support user-defined extensibility elements.

Local resource manager interface. 2: Perl scripts; 4: Perl

scripts. A GRAM service that receives a job submission re-

quest passes that request (assuming successful authentication

and authorization) to a local resource manager (LRM). Both

GRAM2 and GRAM4 can interface to many LRMs.

Local resource managers. 2: Fork, Condor, SGE, PBS, LSF,

LoadLeveler; 4: Fork, Condor, SGE, PBS, LSF, LoadLeveler,

GridWay. Both GRAM2 and GRAM4 support a simple “fork”

LRM (that simply starts jobs on the same computer as the

GRAM server) and a range of other commonly used LRMs,

including Sun Grid Engine (SGE), Portable Batch System

(PBS), Load Sharing Facility (LSF), Condor, and LoadLev-

eler. GRAM4 also supports GridWay. Both are easily extensi-

ble to support new schedulers.

Fault tolerance. 2: Yes—client initiated; 4: Yes—service initi-

ated. It is important that a GRAM service be fault tolerant, by

which we mean that if it fails (e.g., because the computer on

which it is running crashes) and is then restarted, it and its

clients can reconnect with any running jobs [8]. GRAM2 pro-

vides a limited form of fault tolerance, requiring a client to

supply a “job contact” that the GRAM service then uses to

reconnect with the job. GRAM4 provides a more general solu-

tion: it persists the job contact information itself, and thus can

monitor and control all jobs that it created, without the in-

volvement of clients.

State access: push (subscription). 2: Yes—callbacks; 4:

Yes—WS-Notification. Both GRAM2 and GRAM4 allow a

client to request notifications of changes in job state. In

GRAM2, the client registers a call back. In GRAM4, standard

WS-Notification operations are applied to the “job status”

resource property.

Audit logging. 2: Yes; 4: Yes. This recent enhancement to

both GRAM2 and GRAM4 allows an audit record to be in-

serted into an audit database when a job completes. This

mechanisms is used, for example, by TeraGrid to obtain both a

unique grid ID for a job and job resource usage data from

TeraGrid’s accounting. Extensions have already been contrib-

uted (for GRAM4 only) by Gerson Galang (APAC Grid) to

insert the job’s audit record at the beginning of the job and to

update the record after submission and again at job end.

At most once job submission. 2: Yes—two-phase commit; 4:

Yes—UUID on create. A simple request-reply job submission

protocol has the problem that if the reply message is lost, a

client cannot know whether a job has been started. Thus, both

GRAM2 and GRAM4 provide protocol features that a client

can use to ensure that the same job is not submitted twice.

GRAM2 uses a 2-phase commit protocol: the client submits a

request, obtains a job contact, and then starts the job. GRAM4

adopts an alternative approach: the client supplies a client-

created unique identifier (UUID) and the GRAM service guar-

antees not to start a job with a duplicate identifier. The

GRAM4 approach allows a job submission to proceed with

one rather than two roundtrips and is thus more efficient.

Job cancellation. 2: Yes; 4: Yes. Both GRAM2 and GRAM4

support operations that allow a client to request the cancella-

tion (i.e., termination) of a job.

Job lifetime management. 2: Yes; 4: Yes. Both GRAM2 and

GRAM4 provide similar functionality for job state lifetime

management, in order for a client to control when a job’s state

is cleaned up. GRAM2 implements a set of job directives and

operations that control this functionality. GRAM4 leverages

standard WS-ResourceLifetime operations.

Maximum active jobs. 2: ~250; 4: 32,000. GRAM2 creates a

“job manager” process for each submitted job, a strategy that

both creates excessive load on the “service node” where the

GRAM2 service runs and limits the number of jobs that a

GRAM2 service can support concurrently. In contrast,

GRAM4 runs as a single process that maintains information

about each active job in structure file. In the current imple-

mentation, the number of concurrent jobs that can be sup-

ported is limited by the number of files that can be created in a

directory; this limit can easily be increased, if desired.

Parallel job support. 2: Yes; 4: Yes. Both GRAM2 and

GRAM4 support jobs of type MPI.

MPICH-G [9] support. 2: Yes; 4: Yes. GRAM2 supports

multi-jobs (i.e., jobs that span multiple computers) via the

client-side DUROC library [10], which performs interprocess

4 TERAGRID 2007 CONFERENCE, MADISON, WI

“bootstrapping” for id, rank, and barrier via a custom jobman-

ager protocol. GRAM4 uses a multi-job service, which per-

forms “bootstrapping” via a Rendezvous Web Service.

BES interface. 2: No; 4: Prototyped. The (soon-to-be-

standard) Basic Execution Service (BES) specification [11]

can easily be implemented in GRAM4 (and has been proto-

typed), but not in GRAM2 due to the lack of support for Web

Services in the latter system.

3 PERFORMANCE COMPARISON

We present, in Tables 2 and 3, GRAM2 and GRAM4 per-

formance data for a variety of scenarios. In each row, shading

indicates where one version offers significantly better per-

formance than the other; a lack of shading indicates that the

two versions offer similar performance.

We conducted all experiments in an environment comprising

two computers connected by Gigabit/s Ethernet. Both the cli-

ent and server are a 4-CPU Dual Core AMD Opteron™ Proc-

essor 275 (2.2GHz). The client computer has 3.4 GB memory

and runs Scientific Linux CERN Rel 3.0.8; the server has 4

GB memory and runs RHEL 4.x. The server is also connected

by Gigabit/s Ethernet to a 240-node Condor pool running

Condor v.6.8.1. We used the GRAM2 and GRAM4 code sup-

plied to VDT to build version 1.6.0; this code does not corre-

spond to any released GT version, but will soon be available

(with additional improvements) as GT4.0.5.

Table 2 presents results for sequential job submissions, in

which jobs are submitted in sequence on the client using

command line client programs (globusrun for GRAM2 and

globusrun-ws for GRAM4), and executed on the server side

using the simplest GRAM LRM, “fork,” which simply forks a

process to execute the application. We do not stage executa-

bles, and we execute a simple job that does not involve com-

putation but can be requested to stage in and/or stage out a

single file. We also vary the use of delegation. In each run,

100 jobs are submitted, and the time from first submission to

last completion is measured at the client, then divided by 100

to get the average per-job time. We see that GRAM4 is some-

what slower than GRAM2 for simple sequential jobs and con-

siderably slower when file operations are involved. The latter

slowdown is due to the use of Web Services calls from the

GRAM server to a local RFT service. We have plans to im-

prove this situation and expect to match or exceed GRAM2

performance in the near future.

 Table 2: Average seconds/job; sequential scenario.

Delegation StageIn StageOut GRAM2 GRAM4

None None None N/A 1.70

Per job None None 1.07 1.71

Per job 1x10KB None 1.78 5.57

Shared 1x10KB None N/A 5.41

Per job 1x10KB 1x10KB 2.44 9.08

Shared 1x10KB 1x10KB N/A 7.91

Table 3 presents results for concurrent jobs. In these experi-

ments, a single Condor-G [12] client submits 1000 jobs to the

server, which uses the GRAM Condor LRM interface to exe-

cute the jobs on a Condor pool. There is no client-side throt-

tling of jobs; thus, Condor-G submits the jobs as fast as it can.

Again, we do not stage the executable, and execute a simple

job that does not involve computation but can be instructed to

perform simple file operations.

The times given in Table 3 are from first submission to last

completion, as measured by the client. We do not divide by

1000 to obtain a per-job time, as there is presumably some

“ramp up” and “ramp down” time at the start and end of the

experiment, and thus the resulting numbers would perhaps not

be accurate “per-job” times. We note that Condor-G automati-

cally shares delegated credentials for GRAM4 jobs, but cannot

do so for GRAM2 jobs. We see again that GRAM4 currently

performs somewhat less well than GRAM2 when file opera-

tions are involved; however, we are encouraged to see that it

performs better than GRAM2 in the absence of staging. As

noted in the discussion of the sequential results, we plan op-

timizations to improve staging performance.

Table 3: Average seconds/1000 jobs; concurrent scenario.

4 RELEVANT GT 4.0.X DEVELOPMENT PLANS

We outline some of the enhancements to GRAM4 functional-

ity and performance that we plan for imminent 4.0.x releases.

Make audit data available during job execution. Currently,

GRAM4 audit records are inserted into the audit database at

the end of a job. A patch contributed by Gerson Galang of the

Australian Partnership for Advanced Computing inserts each

audit record at the beginning of the job, update the record after

the LRM job submission, and then again at the end of the job.

Improve performance of staging jobs. We have determined

that the performance of file operations (e.g., staging and

cleanup) can be improved significantly in the case that the

GRAM4 and the RFT service that performs those operations

are collocated: we simply replace the Web Services calls to

the RFT service with local Java object calls.

5 RELEVANT GT 4.2.X DEVELOPMENT PLANS

We outline some of the enhancements to GRAM4 functional-

ity and performance that we plan for future 4.2.x releases.

Support JSDL. We plan an alpha-quality version of the Job

Submission Description Language (JSDL) [13] for Q1 07.

This work will leverage the current GRAM4 internals that are

used with the current custom XML job description language.

Connection caching. The Java Web Services Core performs

connection caching for communication between clients and

services. This optimization should allow a single client sub-

mitting many jobs to the same service to realize a performance

Stage

In

Stage

Out

File

Clean

Up

Unique

Job

Dir

GRAM2 GRAM4

None None No No 2552 2100

1x10KB 1x10KB No No 2608 3779

1x10KB 1x10KB Yes Yes 2698 5695

FELLER ET AL.: GT4 GRAM 5

improvement without making any code modifications. This

improvement has been committed to the Globus software re-

pository and will be included in 4.2.x.

Flexible authorization framework. The attribute processing

framework now has richer attribute processing, including a

normalized attribute representation to combine attributes about

entities from disparate sources. The enhanced authorization

framework now allows custom combining algorithms, sup-

ports distinct access and administrative rights, and provides a

default combining algorithm that uses permit override with

delegation of rights to ascertain decision. These improvements

have been committed and will be included in GT 4.2.x.

6 CONCLUSIONS

Grids around the world have used GRAM2 for remote job

submission for years. The implementation of a Web Services-

based GRAM has taken time due to the concurrent evolution

of Web Services standards. However, those developments are

now behind us. We have finally reached a point at which

GRAM4 is to be preferred to GRAM2, for the following rea-

sons:

• GRAM4 provides vastly better functionality than

GRAM2, in numerous respects.

• GRAM4 provides better scalability than GRAM2, in

terms of the number of concurrent jobs that can be sup-

port. It also greatly reduces load on service nodes, and

permits management of that load.

• GRAM4 performance is roughly comparable to that of

GRAM2. (We still need to improve sequential submission

and file staging performance, and we have plans for doing

that, and also for other performance optimizations.)

We encourage those deploying applications and developing

tools that require remote job submission services to adopt

GRAM4, and to provide feedback on their experiences.

7 ACKNOWLEDGMENTS

The authors wish to thank those that contributed in various

ways to the work reported in this paper, in particular, Rachana

Ananthakrishnan, Joe Bester, Lisa Childers, Jarek Gawor, Carl

Kesselman, and Peter Lane. This work was supported in part

by the National Science Foundation under contract OCI-

0534113 and by the Office of Advanced Scientific Computing

Research, Office of Science, U.S. Dept. of Energy, under Con-

tract DE-AC02-06CH11357.

8 REFERENCES

[1] I. Foster, "Globus Toolkit Version 4: Software for Ser-

vice-Oriented Systems," in IFIP International Confer-

ence on Network and Parallel Computing, 2005, pp. 2-

13.

[2] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S.

Martin, W. Smith, and S. Tuecke, "A Resource Manage-

ment Architecture for Metacomputing Systems," in 4th

Workshop on Job Scheduling Strategies for Parallel

Processing, 1998, pp. 62-82.

[3] W. Lee, A. S. McGough, and J. Darlington, "Performance

Evaluation of the GridSAM Job Submission and Moni-

toring System," in UK eScience Program All Hands

Meeting, 2005.

[4] P. Andreetto, S. Borgia, A. Dorigo, and others, "CREAM:

A Simple, GRID-Accessible, Job Management System

for Local Computational Resources;," in Computing in

High Energy and Nuclear Physics Mumbai, India, 2006.

[5] G. Wasson and M. Humphrey, "Exploiting WSRF and

WSRF.NET for Remote Job Execution in Grid Environ-

ments," in International Parallel and Distributed Proc-

essing Symposium Denver CO, 2005.

[6] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, "A

Security Architecture for Computational Grids," in 5th

ACM Conference on Computer and Communications Se-

curity, 1998, pp. 83-91.

[7] W. E. Allcock, I. Foster, and R. Madduri, "Reliable Data

Transport: A Critical Service for the Grid," in Building

Service Based Grids Workshop, Global Grid Forum 11,

2004.

[8] D. Thain and M. Livny, "Building Reliable Clients and

Services," in The Grid: Blueprint for a New Computing

Infrastructure (2nd Edition): Morgan Kaufmann, 2004.

[9] N. Karonis, B. Toonen, and I. Foster, "MPICH-G2: A

Grid-Enabled Implementation of the Message Passing In-

terface," Journal of Parallel and Distributed Computing,

vol. 63, pp. 551-563, 2003 2003.

[10] K. Czajkowski, I. Foster, and C. Kesselman, "Co-

allocation Services for Computational Grids," in 8th

IEEE International Symposium on High Performance

Distributed Computing, 1999.

[11] A. Grimshaw and others, "Basic Execution Services

(BES) Specification," 2007.

[12] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S.

Tuecke, "Condor-G: A Computation Management Agent

for Multi-Institutional Grids," Cluster Computing, vol. 5,

pp. 237-246, 2002.

[13] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A.

Ly, S. McGough, D. Pulsipher, and A. Savva, "Job Sub-

mission Description Language (JSDL) Specification

V1.0," Open Grid Forum, GFD 56 2005.

