High Performance Computing Profile 2
The Great Leap Forward

Andrew Grimshaw

With inputs from many, many, others

1 Basic idea

There is widespread agreement that the collective effort to produce interoperable implementations of BES, JSDL, and other specifications as profiled in the HPC profile has resulted in a tremendous success. Rather than just pat ourselves on the back and sit back on our laurels many people think we should capitalize on the momentum and enthusiasm generated by the interop fest to take the next step forward.

In my discussion with a number of you three themes for the next step have come to the fore repeatedly: stage-in/out support, application “naming”, and authentication beyond username/password.

Driving use case:

As always a use case drives the requirements. The next use case is of a resource base in a virtual organization consisting of several different compute clusters. The objective is to provide users (or the application frameworks and portals representing them
) the ability to start jobs up in any one of many different compute clusters (subject to access control) represented by different BES services. It cannot be assumed that there is either a single shared file system visible to each BES service, nor is there a single authentication domain.

2.1 A Modest Proposal

Before I go into detail there are a few background points. I will refer to several specification that have heretofore not been included in the HPC profile. These include: Gridftp, RNS, ByteIO, and ACS. Gridftp is a secure alternative to FTP. RNS is a WS service that maps strings (path-names) to EPR’s, ByteIO is a WS service that mimics POSIX file and stream IO, e.g., read, write, etc., and ACS is Applications Context Service. Gridftp is an OGF standard. RNS is in public comment in OGF, ByteIO is out of public comment and wending its way to becoming a standards, and ACS is pre-public comment (I think).
2.2 Stage-in/out:
The mechanism in JSDL to cope with disjoint file system namespaces is to specify a set of files that must be copied into the local execution context before application execution, and a set of files to be copied out of the local execution environment post execution. In other words stage-in/out.
An important question for the profile is “what protocols must be supported?” For example http for input and mailto for output make a great deal of sense. Other protocols to consider are (in no particular order): ftp, scp, https, rns/byteio, and gridftp.

Another important issue in stage-in/out depends on the authentication mechanism. If the BES service is to stage-in or out a file, under what identity is the staging done and how is that managed? I think this will be one of the most difficult issue to settle – because some model of delegation may need to be assumed.
2.3 Application-naming:

Many folks complained that needing to know the exact path of an application in a particular BES container was difficult and is an unnessary burden. It was suggested that some sort of “more generic name” might be used. One possibility floated was using RNS path names for the application, and that the RNS path could resolve to an EPR of either a document that gave path names – or more interestingly an ACS service endpoint that had sufficient information to determine the path or download the application.
2.4 Authentication:

It is clear to most of us that we cannot build production systems – either in academia or in the commercial space, with just username/password. The problem is that once you go beyond username/password it is very difficult to get consensus. There are several working groups trying to hash out the final solution to this problem. Our challenge is how to make progress, generate a profile that can be used, and still be able to easily incorporate future policy decisions and innovations.

It had been suggested that perhaps simple X.509 certs could be used – then somebody else said “Kerberos is ubiquitous”
 – and so the debate was on. Rich C. had an interesting idea – don’t decided. Rather have a mechanism by which the BES endpoint or other endpoint could describe its capabilities and requirements, for example via WSDL or extra metadata in the EPR.

Personally I had hoped for a single mechanism. I am not sanguine of any agreement on a single choice – and am leaning to something along the lines that Rich suggested. I’d suggest that we use metadata fields in the EPR to indicate what the service will take.
Thoughts?
2.5 A few other thoughts

Beyond the basics above, I suggest it might be time to start weaving in some other OGSA concepts to make this a more powerful profile. I suggest three in particular: RNS, ByteIO, and WS-Naming.

Recall that RNS and WS-Naming together provide a classic three layer name scheme: human names (paths) map to abstract, location-transparent, endpoint identifiers, which in turn can be mapped – and re-mapped to different addresses (EPR’s). RNS provides a name space that has semantic meaning to people, e.g., “/apps/public/genomic/blast”, “/data/public/geneomic/pir21.sqf”, “/users/us/Virginia/grimshaw”. These string can be mapped to either URL’s directly, or more interestingly, to EPR’s – in particular to WS-Names, EPR’s that have embedded identity information (EPI’s) and rebinding information (resolver EPR’s) so that underlying entity (object, stateful web service, whatever you want to call it) can migrate, fail and recover, or have multiple replica’s all without the client needing to be aware. Thus, client requests can be redirected and managed at two different levels – providing all of the usual distributed system transparencies. (More examples available on demand.)
If we switch to RNS names whenever possible (e.g., stage-in/out sources and targets, application names, etc.) then we provide a level of implementation flexibility – and we can support multiple replicated copies of files for performance and availability reasons, we can migrate endpoints closer to consumers, etc.

ByteIO provides both read/write, seek, but also stream interfaces. The advantage of ByteIO is that it maps one-to-one to the paradigm that programmers are used to – and supports partial file operations naturally.

Similarly – if we are ever so bold to support streams as inputs/outputs, it gives us a natural starting point.

FINALLY – Let the discussion begin.

� This corresponds to the “job manager” in the EMS architecture. It could be a web portal, or a load management system like LSF or PBS controlling a number of different resources.

� I disagree.

