GFD-R(ggf-ogsa-bes-spec-1.0)

Authors:
Open Grid Services Architecture Basic Execution Service
A. Grimshaw, U. Virginia

S. Newhouse, U. Southampton

Darren Pulsipher, Ovoca LLC

M. Morgan, U. Virginia

http://forge.gridforum.org/projects/ogsa-bes-wg

5/22/2006
GFD-R (ggf-ogsa-bes-spec-1.0)
5/22/2006

OGSA Basic Execution Service
Version 1.0
Copyright Notice

Copyright © Global Grid Forum (2004-2006). All Rights Reserved.

Abstract

The OGSA V1.0 document section 3.4, pages 17-25, describes an EMS (Execution Management Services) architecture consisting of a number of different services. This document describes one of these services – the “service container” – which is the focus of the Basic Execution Service (BES) specification developed by this working group. BES models execution of services in “containers” that may be implemented in a variety of ways, e.g., by a single Unix or Windows host, by a queuing system, by a hosting environment such as .Net or J2EE, or by more specialized execution containers yet to be invented. BES defines a set of port-types as container attributes for the simplest – most basic container.
This document defines the scope and motivation for this work followed by an abstract definition of the BES interface. This interface is then rendered into normative text in Appendices A-D where Appendix A defines common XML schemas, Appendix B common normative text between the two renderings, Appendix C OGSA WSRF Profile rendering and Appendix D normative text for a plain WS rendering.
This document reflects the decisions taking by the working group as to the essential capabilities of a ‘Basic Execution Service’. Where relevant we have also captured the decisions as to the capabilities that are not part of a BES and the reasons behind the decisions at the end of the document.
Contents

1OGSA Basic Execution Service

1Version 1.0

41.
Background Information

41.1
Terminology

51.2
Namespaces

52.
Assumptions

63.
WS-Names vs. EPRs

64.
State Model

74.1
Specialization of States

115.
Information Model

115.1
Container Attributes

145.2
Container Resources

146.
Service Interface

146.1
CreateActivityFromJSDL

166.2
GetActivityStatus

176.3
RequestActivityStateChanges

186.4
StopAcceptingNewActivities

186.5
StartAcceptingNewActivities

196.6
GetActivityJSDLDocuments

197.
Subscribing to Generated Events

197.1
ActivityStateChange Event

207.2
DataStageStateChange Event

208.
Exposing Container Activity

209.
Management

2010.
Security Considerations

2011.
Authors Information

2012.
Contributors

2113.
Acknowledgments

2114.
Intellectual Property Statement

2115.
Full Copyright Notice

2116.
References

2217.
Appendix A – OGSA BES Common Rendering

2217.1
Data Types

2617.2
CreateActivityFromJSDL

2817.3
GetActivityStatus

2917.4
RequestActivityStateChanges

3117.5
StopAcceptingNewActivities

3217.6
StartAcceptingNewActivities

3317.7
GetActivityJSDLDocuments

3517.8
Normative XSD Schema

3917.9
Normative BES common WSDL

4518.
Appendix B – OGSA BES WSI Rendering

4518.1
WSI Fault Types (bes-wsi.xsd)

4518.2
Normative BES WSI WSDL

4719.
Appendix C – OGSA BES WSRF Base Profile Rendering

4719.1
Resource Properties

4819.2
Fault Type Mapping

4919.3
Normative OGSA BES WSRF WSDL

1. Background Information
The purpose of this document is to describe a web service interface to initiate, monitor & control Activity on computational resources. This web service interface enables the creation, destruction and status determination of ‘activities’ (e.g. jobs, services, resources, …) within a container – an abstract representation of computational capability. Such a container may be a single machine, a cluster managed through a Distributed Resource Manager (DRM) such as Load Leveler, Sun Grid Engine, Portable Batch System, etc. or an interface into a web service hosting environment. Operational differences between container implementations are not expected to be reflected in the service implementation.

Considerable effort has been undertaken within the OGSA-WG EMS (Execution Management System) design team to define the different services and their interactions. The current high-level architecture for the execution of ‘legacy’ binary applications is encapsulated in this diagram.

[image: image1]
Figure 1: This figure is taken from the OGSA 1.0 informational document and has been modified slightly to reflect the I/O model of JSDL. Specifically, the “data container” has been replaced by a “disk” symbol. There is an assumption in JSDL that the execution context of a “job” has storage that can be accessed with the same path everywhere in the execution context, e.g., there is a shared file system.
The purpose of this service interface is to tackle the issues surrounding the ‘Service Container’ and to form part of the OGSA Basic Execution Profile. Other services described within the above architecture are considered to be out of scope of this Activity.

1.1 Terminology

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, “OPTIONAL” in this document are to be interpreted as described in [RFC 2119].

In addition to the terms introduced in [RFC 2119], additional terms commonly used in this document are defined in the Glossary in the back.

When describing abstract data models, this specification uses the notational convention used by the [XML Infoset].

When describing concrete XML schemas, this specification uses the notational convention of [WS-Security]. Specifically, each member of an element’s [children] or [attributes] property is described using an XPath-like notation (e.g., /x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of an element wildcard (<xsd:any/>). The use of @{any} indicates the presence of an attribute wildcard (<xsd:anyAttribute/>).

1.2 Namespaces

The following namespaces are used in this document:

	Prefix
	Namespace

	s11
	http://schemas.xmlsoap.org/soap/envelope

	Xsd
	http://www.w3.org/2001/XMLSchema

	Wsa
	http://www.w3.org/2005/03/addressing

	Jsdl
	http://schemas.ggf.org/jsdl/2005/11/jsdl

	jsdl-posix
	http://schemas.ggf.org/jsdl/2005/11/jsdl-posix

	Bes
	http://schemas.ggf.org/bes/2005/11/bes

2. Assumptions
The word ‘Activity’ will be used frequently from this point forward in the document. Within the context of this document an Activity could be the execution of a legacy binary or the initiation of a web service within a container. From the perspective of an external observer this is a self contained operation. If it can be further decomposed, such decomposition is not visible through the service interface.

By the time a client invokes the Basic Execution Service (BES) we assume that the following issues have been resolved:

· Placement. The placement decision (where the ‘Activity’ is going to run) has already been determined by some unspecified means. Possible means of identifying target placements include selection of appropriate properties or attributes from registries or from the BES container itself.
· Naming. An essential pre-requisite to many distributed computing activities is a ‘naming’ scheme that provides a globally unique identifier in time and space. BES expects to use the WS-Name schema being defined within the OGSA-Naming-WG. It is not our intention to duplicate work in this area.

· Job Submission Description Language (JSDL). BES will use JSDL. There are several assumptions, some explicit, and some implicit. One of the most relevant here is that JSDL provides a stage-in/stage-out model and associated “local” file system capability in which data is copied to/from the locus of execution. The presumption is that there is a local file system that is visible everywhere within the locus of execution – whether it is a single host or a large cluster.

· The ‘Activity’ that is going to be initiated within the container has already been determined elsewhere and is fully specified in the JSDL document. Therefore we assume that the JSDL document presented to the service is ‘concrete’ in nature. This does not preclude the JSDL document being initially specified using, for example, logical file names but that these logical file locations have been replaced by real file locations by the time the document reaches the BES.
3. WS-Names vs. EPRs

There has recently been much discussion within the GGF and OGSA in particular about whether or not working groups and their resultant specifications should deal with WS-Addressing EndpointReferenceTypes or WS-Names. Seeing as how the matter is as of yet unresolved, the OGSA-BES working group has chosen to prefer a middle-of-the-road approach to this issue. All operations and/or properties which involve WS-Addressing EndpointReferenceTypes/EPRs (e.g., the result from a “CreateActivityFromJSDL” operation, or the ActivityIdentifier included with a GetActivityStatus result type) can be any EndpointReferenceType compliant data type (i.e., any data type which is compliant with WS-Addressing EndpointReferenceTypes but which may include profiled data in addition to the required elements as is the case with WS-Names). However, as a compromise, BES service containers MUST present a property or piece of metadata to clients which indicates what type of endpoint names that container deals with. The name and syntax of this metadata is left unspecified so that various profile renderings (WSRF Basic Profile Rendering, etc.) may choose an appropriate implementation strategy, however the semantics are such that the service container must always present an XML QName to clients and that this single QName MUST be one of a well-defined set of QNames that represent the types of endpoints that the BES container service deals with. At the moment, two QNames are defined:

· http://schemas.ggf.org/bes/2005/11/bes/naming:BasicWSAddressing
· http://schemas.ggf.org/bes/2005/11/bes/naming:ws-naming
· Managed_job_interface

To avoid confusion within this document, we will henceforth refer to these endpoint descriptors as AEDs (Activity Endpoint Descriptors).
4. State Model

Activities transition through a number of states. One of the challenges is to construct a state model that is simple, expressive, and extensible without confusing clients that are unaware of the extensions. We have chosen a very simple state model.

[image: image2]
Figure 2. Base task state transition diagram.

The base set of states that a task may be in is the following:

· New: This is the start state, in which a request to create the task has not yet been submitted to the scheduler by a client.

· Pending: The scheduler has accepted the task request but not yet sent it anywhere for actual execution.

· Running: The task is executing on some set of resources.

· Finished: The task has terminated. This is a terminal state.

· Canceled: The client – which might be some system administrator (and hence not necessarily the client who originated the request to create the task) – has issued a cancel task request. This is a terminal state.

· Failed: The task has failed due to some system error condition, such as failure of a compute node that was providing some (or all) of the resources reserved to the task that the task is part of. This is a terminal state.

4.1 Specialization of States
To enable interaction among clients and schedulers that understand differing levels of functionality, the notion of specialization of states is necessary. This enables a simple client who only understands base scheduler states to still interact with more complex schedulers, albeit only understanding such schedulers’ activities in base terms. Similarly, it provides a way for more complex clients to “down-level” their interactions with simpler schedulers in a well understood, interoperable manner. Specific specializations of the base scheduler state set – or of other specializations thereof that have been previously defined – should be defined using profiles.

An example of state specialization is the following: A profile might extend the “satisfied” job state to include the states “partially satisfied” and “fully satisfied”, to represent the notion of a job that can start executing tasks because it has some – but not all – of the resources it has asked to reserve. A client understanding only the base job state diagram could still create jobs on a scheduler that implements partially and fully satisfied job states; it would simply ignore the specialization of the “satisfied” state that jobs can be in. Similarly, a client understanding the extended job profile would still understand how to interact with a scheduler implementing only the base job states since those base states are a strict subset of those defined in the extended job profile.

An example for tasks might involve the definition of a profile that extends the “running” task state to include the state “suspended”, in order to represent the notion of a task that has started running but has been suspended from execution. This example has an important difference from the previous example: the transition from “running” to “suspended” may be something that a client should be able to request. In that case, the scheduling profile must define additional interface operations that enable clients to request “suspend” and “resume” state transitions.

If multiple independent scheduling profiles are defined the question arises of what it means for schedulers to implement multiple profiles, and how clients that may not understand some of the added profiles can still interact with the scheduler.

Consider the following three state diagrams, representing separate, independent extensions of the base scheduling protocol. Profile A extends the base scheduling protocol to support the notion of task migration. Profile B extends it to support the notion of staging input data in from a client user to a compute node before a task executes on that compute node, and then staging result data out from the compute node back to the client user after the task has finished executing. Profile C extends the base scheduling protocol to support the notion of task suspension.

[image: image3]
Figure 3. Profile A: Task state transition diagram for a scheduling profile that extends the base protocol to support task migration.

[image: image4]
Figure 4. Profile B: Task state transition diagram for a scheduling profile that extends the base protocol to support the notion of staging in data to a compute node before a task runs and staging data out back to the client user after the task has finished execution.

[image: image5]
Figure 5. Profile C: Task state transition diagram for a scheduling profile that extends the base protocol to support task suspension.

These scheduling profiles really represent “component” profiles since a scheduler might wish to implement both at the same time, yielding a scheduler capable of supporting both migration of tasks as well as data staging activities. However, a naïve composition of the profiles raises a number of questions:

· Can the migrate operation of profile A be applied to all the sub-states of “Running” that are defined in profile B? One can imagine that the migrate operation is meaningful/supported for a task that is in state “Stage-in” or state “Executing”, but not for a task in state “Stage-out”.

What response should a client issuing a migrate request for a task in state “Stage-out” get back? Should they get back a fault response indicating that the requested operation is illegal? Does that take them to state “Failed”? Should they get back a fault response that indicates that the requested operation is inapplicable, implying that the task stays in its current state because the request was effectively a no-op?

Similarly, what if the scheduler doesn’t support the migrate operation for tasks currently in state “Stage-in”? Should a migrate request result in a fault response? Should the semantics be that the migrate request gets applied eventually, once the task is in state “Executing”?

Note that different schedulers could meaningfully support either the notion that migration is applicable to the “Stage-in” state or not. Does this mean there need to somehow be two different task profiles defined to cover each case?

· Consider next the composition of profiles A, B, and C. Suppose that a client understands all three profiles and encounters a task in state “Suspended” that it wishes to migrate. The client is smart enough to know that if the suspended task was originally in state “Stage-out” then a migrate request is both inapplicable and unnecessary. However, unless the characterization of a task’s current state describes the union of all the sub-states that it is currently in, an intelligent client may not be able to decide on the most appropriate actions to take.

· Finally, consider a variation of profile B, in which the “Stage-in” state is a sub-state of state “Pending” instead of a sub-state of state “Running”. In this case, there would now be a state transition from a “Pending” sub-state to state “Failed”, which a base-level client would not understand.
To support schedulers wishing to implement both profiles one can take one of two approaches:

· One can require that schedulers only implement a single scheduling profile (or at most only a set of completely independent profiles) and require profile designers to specify the power-set of all useful combinations of “component” task profiles.

· One can define rules for how schedulers may individually create compositions of selected “component” scheduling profiles in a manner that results in meaningful interfaces and implementations.

The former approach will quickly become practically infeasible if any significant number of component scheduling profiles is created; therefore the latter approach is chosen.

The following concepts/requirements are introduced to support the composition of multiple scheduling profiles:

· A scheduling profile cannot add state transitions that aren’t “covered” by the state transitions already present in the base scheduling protocol and in the scheduling profiles from which it is being extended. For example, no task profile may define sub-states of the “Pending” task state that may transition to the “Failed” task state. Thus, a client who understands fewer extensions than a scheduler it is interacting with will never see any unexpected state transitions.

· All clients and schedulers are expected to understand the fault response “operation not applicable to current sub-state”. When a client receives this response from a scheduler the semantics are that the requested operation was not performed and the state of the scheduler and the respective job or task remains unchanged.

A scheduler is free to decide to implement a requested operation (and associated state transition) by deferring it until the respective job or task is in a more suitable state. In this case the scheduler should not reply until the operation has been performed successfully (assuming that it actually gets performed successfully once the job or task have transitioned to a suitable state). The scheduler may optionally include informative information in the response it sends to such an operation request.

· In order to enable clients to understand as much as possible about the state of a job or task, state information must include the union of all sub-states that the job or task are currently in. For example, a task that was in state “Stage-in” and is currently migrating will have a state that consists of both “Stage-in” and “Migrating”. “Union states” of this sort can be easily represented as XML info-sets in which the top-level element is the base scheduling protocol state (e.g. “Running”) and sub-elements exist for each task profile sub-state that the job or task is logically in.

The result of adding these requirements is that clients must be prepared to sometimes have requested operations be rejected due to inapplicability, but they will never see job or task state transitions that they can’t understand. Furthermore, by defining the notion of “union states”, clients can be given as much information as possible about the current state that a job or task is in.

Although these requirements imply that the set of allowable scheduling profiles and their “mixings” are restricted, the belief is that this design approach should be sufficient to support most job scheduling designs that people will desire in practice.

5. Information Model

5.1 Container Attributes

Concrete renderings of the BES Container MUST support a minimal set of attributes that can be used to drive container selection and report on the container status. The renderings described in the Appendices to this document render the container attributes in the most appropriate manner, e.g. ResourceProperties within WS-RF or a registry entry within WSI.

Table 1 lists the resource properties associated with a BES container. These were derived from the implied resource model inherent in JSDL 1.0, the Unicore resource model and the GRAM resource description.

JDSL = green
Other = blue
Implementation dependent = red
Not advertised = black

Changes to cardinality = pink
Table 2: Job Factory Interface Resource Properties

	Name

	N
	Type
	Description

	Name
	1
	String
	A human-readable name for the Job Factory.

	LocalResourceManagerType
	0..1
	String
	The local resource manager type (e.g, Condor, LSF, PBS, etc.)

	TotalNumberofJobs
	0
	Integer
	The number of Managed Jobs associated with this factory. Jobs that have been destroyed as not included, so this is a "live Job" count.

	JobReference
	≥ 0
	EPR
	An EPR to each Managed Job associated with this Job Factory.

	Description
	0 or 1
	String
	General text describing the resource/site/system/...

	Execution Service Location
	0..1
	URL
	The location of the execution service.

	Job Credential Service
	0..1
	EPR
	The credential service providing authorization credentials for the Managed Job.

	File Credential Service
	0..1
	EPR
	The credential service providing authorizations credentials for the file transfers needed by the Managed Job.

	Resource Description
	These are resource description elements taken from JSDL.

	OperatingSystem
	1
	jsdl:OperatingSystem
	The Operating System running on the local resource.

	OperatingSystemVersion
	0..1
	bes:Version
	Version of the OS

	MaxProcessesPerUser
	0..1
	bes:MaxProcessesPerUser
	Max processes that job can spawn

	CPUArchitecture
	1
	jsdl:CPUAchitecture
	The CPU architecture on the local resource

	CPUCount
	1
	jsdl:TotalCPUCount
	The total number of CPUs available at the local resource

	CPUSpeed
	1
	jsdl:IndividualCPUSpeed
	The speed of each CPU in the local resource

	PhysicalMemory
	1
	jsdl:TotalPhysicalMemory
	The total physical memory to jobs on the local resource

	VirtualMemory
	1
	jsdl:TotalVirtualMemory
	The total virtual memory available to jobs on the local resource

	WriteableFileSpace
	0..1
	bes:WriteableFileSpace
	Available file space in the job’s working environment (within the execution container)

	NetworkBandwidth
	1
	jsdl:IndividualNetworkBandwidth
	The maximum network bandwidth available to jobs on the local resource

	Library
	≥ 0
	esi:Library
	An ESI extension to JSDL describing libraries made available to jobs on the local resource.

	Job Request Constraints
	The following resource properties, if published, impose constraints to the maximum value the local resource allows jobs to consume. If one of the following RPs is not published in the Job Factory Interface, then the local resource grants unlimited usage of this resource property to any submitted job. For individual descriptions JSDL 1.0 specification.

	WallTime
	0..1
	jsdl-posix:WallTimeLimit
	See JSDL 1.0

	FileSize
	0..1
	jsdl-posix:FileSizeLimit
	See JSDL 1.0

	CoreDump
	0..1
	jsdl-posix:CoreDumpLimit
	See JSDL 1.0

	DataSegment
	0..1
	jsdl-posix:DataSegmentLimit
	See JSDL 1.0

	LockedMemory
	0..1
	jsdl-posix:LockedMemoryLimit
	See JSDL 1.0

	Memory
	0..1
	jsdl-posix:MemoryLimit
	See JSDL 1.0

	OpenDescriptors
	0..1
	jsdl-posix:OpenDescriptorsLimit
	See JSDL 1.0

	PipeSize
	0..1
	jsdl-posix:PipeSizeLimit
	See JSDL 1.0

	StackSize
	0..1
	jsdl-posix:StackSizeLimit
	See JSDL 1.0

	CPUTime
	0..1
	jsdl-posix:CPUTimeLimit
	See JSDL 1.0

	ProcessCount
	0..1
	jsdl-posix:ProcessCountLimit
	See JSDL 1.0

	VirtualMemory
	0..1
	jsdl-posix:VirtualMemoryLimit
	See JSDL 1.0

	ThreadCount
	0..1
	jsdl-posix:ThreadCountLimit
	See JSDL 1.0

	Extensibility
	≥ 0
	Any
	Extensibility elements: can be used to accommodate GLUE and other resource descriptions

	ResourcePropertyNames
	1
	
	Inherited from WSRF OGSA Base Profile

	FinalWSResourceInterface
	1
	
	

	WSResourceInterfaces
	1
	
	

	ResourceEndpointReference
	1
	
	

	CurrentTime
	1
	
	Inherited from the WS-ResourceLifetime specification

	TerminationTime
	1
	
	

5.1.1 IsAcceptingNewActivies : Boolean

If true then a CreateActivityFromJSDL operation MUST process the request. If false then a CreateActivityFromJSDL operation MUST return a NotAcceptingNewActivities fault and not process the request.

5.1.2 RenderingType : String[]

To describe which rendering has been used to describe the BES, the string value MUST be one (or more) of the following values:

· BES_WSRF 1_0

· BES_WSI_BP_1_1

Other rendering types can be added.

5.1.3 NotificationType : String[]

To describe which notification system is supported by the rendering, the value MUST be one (or more) of the following values:

· WS_Eventing_1_0

· WS_Notification_1_0

· Not_Supported

Other Notification Types can be added.

5.2 Container Resources

Container resources have not been defined specifically. When the information model and a standard resource model have been specified it should be available through the rendering of the BES. For example if WSRF is being used then ResourceProperties should be used to specify the resources levels, availability etc.. In the case of WSI rendering a UDDI registry or some other mechanism can be used.

6. Service Interface

The interface port-types for the OGSA-BES service container are described in this section. The port-types are described using a combination of English and IDL. In Appendix A the port-types are rendered using the definitions found in the OGSA WSRF Base Profile document, i.e., conformant with the OGSA WSRF Base Profile.

6.1 CreateActivityFromJSDL

This operation is used to initiate a new Activity within the BES container as specified in a JSDL document. Depending on the createInSuspendedState parameter the Activity will either immediately enter the ‘New’ state (CreateActivityFromJSDL) or a ‘Suspended’ state – see Figure 2.
6.1.1 Input(s):
· JSDLDocument jobDescriptionDocument

Accepts an XML document conforming to JSDL 1.0 describing a single Activity that is to be started within the BES container.
· Boolean
createInSuspendedState
If set to “true” the Activity will move to a suspended state instead of moving through the Activity state net.
6.1.2 Optional Input(s):

· Support for Idempotent Execution Semantics

If idempotent execution is required, following element SHOULD be used to identify uniquely a managed job instance to the client using a client-generated identifier. If present in a Job description, an implementation of the BES container MUST NOT execute the job containing this identifier more than once
.

<bes:IdempotentJobID>

 wsa:AttributedURI

</bes:IdempotentJobID>

· Termination Time

An optional element, indicating the requestor’s suggestion for the initial setting of the termination time resource property [WS-ResourceLifetime] of the Job WS-Resource.

There are two forms of this element, absolute time and duration. If the type of this element is xsd:dateTime, the value of the element is to be interpreted as an “absolute time”. If the type of this element is xsd:duration, the value of the element is to be interpreted as a “relative time” or “duration”. Regardless of the form, time is relative to the time source used by the BES container.

The duration form is used to “compute” the “absolute time” form in the following fashion. The value of this element in “absolute time” form is computed by adding the xsd:duration value to the current time value of the BES container.

The “absolute time” form (whether computed from a duration, or contained within the request message) is used to initialize the value of the TerminationTime resource property of the Job resource.

If the BES container is unable or unwilling to set the TerminationTime resource property of the Job resource to the given value of the “absolute time” form or a value greater, then the CreateActivityFromJSDL request MUST fault. If the value is not “in the future” relative to the current time as known by the BES container, the request MUST fault. The use of the xsi:nil attribute with value “true” indicates there is no scheduled termination time requested for the Job. If the element does not include the time zone designation, the value of the element MUST be interpreted as universal time (UTC) time. If a fault is returned, the operation MUST NOT have an effect.

If this element is not included, the initial value of the TerminationTime resource property is dependent on the implementation of the BES container.

· Notifications
An optional element, indicating that the client would like to receive notification message as described in the subscription request as described in [WS-BaseNotification]. This optional request provides an efficient means of subscribing to the newly created job without additional round-trip messages. Clients who subscribe afterwards must check the current status of the job, since the inherent race-condition means some state-changes may have occurred prior to the separate subscription request.

6.1.3 Output(s):
· AED ActivityIdentifier
On success an AED identifying the requested Activity is returned from the service.
6.1.4 Fault(s):
· NotAcceptingNewActivities: The BES-container is not accepting any new activities at this state.
· UnsupportedJSDLFault: This is a well formed XML document which describes a version of JSDL that is not supported by the container.
· UnsupportedFeatureFault: The well formed JSDL document contains an operation or an extension that is not supported by the BES. The feature that is not supported by the BES is returned in the body of the fault.
6.1.5 JSDL 1.0 Extensions

The following are extensions to the JSDL Job description are needed to support the use cases known to the authors.

This element MAY be used to identify libraries and other software components that are available at a resource. They MAY also be added to the Job Description Resource element to indicate that the job requires the giver library or software package.

<bes:Library>

 <LibraryName .../>?

 <LibraryVersion .../>?

 <Description .../>?

</bes:Library>

6.2 GetActivityStatus
The Activity specified within the JSDL document may contain many different actions (staging in, job execution, staging out). This operation returns the states of the activities specified in the ActivityIdentifiers argument.
6.2.1 Input(s):
· AED[] ActivityIdentifiers
Passes in a vector of AED (generated from the createActivityFromJSDL operation) which identify to the activities from which we require state information.
6.2.2 Output(s):
· ActivityStatus[] ActivityStatus
An XML document containing a vector of ActivityStatus elements.
6.2.3 Fault(s):
· None. However, if a AED specified in the input vector cannot be resolved to an Activity within the BES then its state is marked ‘Unknown’ and the only returned elements are the ActivityIdentifier and OverallStatus elements.
The state of each specified action within an Activity, and the overall state of the Activity referenced by the AED are returned to the requester within an ActivityStatus element with the following structure:

<ActivityStatus>

 <ActivityIdentifier>AED</ActivityIdentifier>

 <OverallStatus state=”(enumerated state)”

 laststate=”(enumerated state)”
 otherstate="(this container specific states)"?>

{any}*

 </OverAllStatus>

 <DataStageStatus id=”file string” state=”(enumerated state)”
 laststate=”(enumerated state)”>

{any}*

 </DataStageStatus>*

</ActivityStatus>*

The state attribute records the current state of the Activity or action, while the “laststate” attribute records the proceeding state of the Activity or action. This enables the consumer of the state document to determine the state the Activity or action was suspended from if it is now in a suspended state.

Because the number of staging actions that could potentially be included with any given Activity, and the additional possibility of large numbers of activities being queried, this resultant state document may become quite large.
The “{any}*” elements in the <OverallStatus> and <DataStageState> elements allow for extensibility of returned status from the implementation. The following are some examples of information that the implementation MAY add to the <ActivityStatus> element.

· <ResourceAllocation>: Lists the resources that have been allocated to this Activity. The allocated resources may differ from those requested by the Activity within the JSDL document.

· <UsageRecord>: Use the UsageRecord schema to record the resource that has been consumed so far by the Activity.

The JSDL document comprises two sets of possible actions:

· Data Staging (in and out)
· Execution

There may be multiple staging-in/out actions but only a single execution action. The state of each staging-in/out action is reported in the ActivityStatus document. Note that the order of invocation of each stage-in/stage-out action with respect to other stage-in/stage-out actions is implementation dependent. To accommodate possible parallelisms in container staging and Activity execution, we define parallel state diagrams to match. For any given Activity, the Activity itself will have a state derived from an appropriate Activity state diagram and each data staging operation will likewise have a parallel state derived from an appropriate data staging state diagram.
As the two identified sections within the JSDL document (data staging and execution) are optional (i.e. an empty JSDL document is legal), it is possible that not all states within the state diagram will be relevant for a particular JSDL document. BES requires that all legal states transitions are transitioned even if they are not relevant for a particular JSDL document. For instance, if an empty JSDL document is submitted to the BES then all the states from ‘new’ to ‘done’ will be transitioned through (i.e. Staging-in, Execution, etc) even though there is no underlying specified Activity.
The state names described below have been aligned with those contained within the CIM schema where applicable.
6.3 RequestActivityStateChanges
This operation applies a set of state change requests to a set of activities within the BES. All state changes are with respect to the overall status of the Activity, not to individual staging activities.
6.3.1 Input(s)

· StateChangeRequest [] requests

A vector of requested state changes identifying the target state and the AED identifying the Activity. The RequestedStateChange element has two attributes:

· from: An optional attribute that is an enumeration of the Activity state referenced through the AED that the Activity state MUST be in order for the state change request to be applied
· to: A required attribute that specifies the requested state that the Activity is to move to if the from element (if specified) is in the required state.
The ‘to’ and ‘from’ attributes enables a conditional state change request to be applied to the Activity.
<bes:StateChangeRequest>

<bes:ActivityIdentifier>AED</bes:ActivityIdentifier>

<bes:RequestedStateChange from=”Running” to=”Suspended” />

</bes:StateChangeRequest>

6.3.2 Output(s)

· StateChangeResponse[] responses
A vector detailing the response of the BES to the requested state change operation. The response can be one of Succeed (indicating the request was passed on to the named Activity), Fail (indicating the request was not passed on to the named Activity – as it could not be located) and IllegalStateChangeRequest (the requested state cannot be reached from the current state – violates BES state model).
<bes:StateChangeResponse>

<bes:ActivityIdentifier>AED</bes:ActivityIdentifier>

<bes:Response>Succeeded</bes:Response>

</bes:StateChangeResponse>

6.3.3 Fault(s)

· None. However, failure to locate an Activity for a specified AED will result in a Fail being returned as part of the bes:Response element.
The BES attempts to initiate the requested state change in each Activity specified in the list. As a consequence of this operation the specified Activity MAY move from its current state to the requested state. This operation may fail immediately if the transition is not supported by the state model or the Activity cannot be located, otherwise the request will be successfully passed on to the Activity. However, this does not mean the Activity will move into the requested state. The eventual success of this operation (i.e. to move the Activity into the requested state) must be determined through other operations (e.g. GetActivityState) or by subscribing to any generated events.

If the ‘Terminate’ request is successful then the Activity enters into a ‘Terminated’ state, possibly transitioning through the ‘Shutting Down’ state. Invoking a ‘Terminate’ operation on a ‘Terminated’ Activity has no further effect. How long the Activity remains in the ‘terminated’ state before the AED no longer returns a reference to the Activity is not defined.

‘Suspend’ or ‘Resume’ requests will not succeed if the current Activity state does not support a transition to these new states and the response will be marked with an ‘IllegalStateChangeRequest’.
6.4 StopAcceptingNewActivities

This operation moves the BES into a state where it stops accepting new activities.

6.4.1 Input(s)

· None.
6.4.2 Output(s)

· None.
6.4.3 Fault(s)

· None.

6.5 StartAcceptingNewActivities

This operation moves the BES into a state where it starts accepting new activities.

6.5.1 Input(s)

· None.
6.5.2 Output(s)

· None.
6.5.3 Fault(s)

· None
.
6.6 GetActivityJSDLDocuments
This operation returns the JSDL document that encapsulates the Activity associated with the specified AED. This JSDL document may be different from the JSDL document initially passed into the BES as the BES may alter its contents to reflect policy or process within the service. Effectively, this document reflects the Activity being run as opposed what it was asked to run. If the submitter wishes to retrieve this document they should retain their own copy.
6.6.1 Input(s)

· AED[] ActivityIdentifiers
6.6.2 Output(s)

· ActivityJSDLDocument [] documents. The output from this operation associates the returned JSDLDocument with its corresponding AED by encapsulating both in an ActivityJSDLDocument element.:Failure to map a AED to its corresponding JSDL representation within the BES is passed back to the client by the absence of the JSDLDocument.
6.6.3 Fault(s)

· None. However, if no JSDLDocument can be matched to the AED within the BES then the ActivityJSDLDocument element is returned without the JobDefinition element.
<bes:ActivityJSDLDocument>

 <bes:ActivityIdentifier>AED</bes:ActivityIdentifier>

 <jsdl:JobDefinition>

 ...

 </jsdl:JobDefinition>

</bes:ActivityJSDLDocument>
7. Subscribing to Generated Events
An OGSA-BES service container SHOULD allow for the subscription to and generation of asynchronous events. If the container implementer chooses to support this functionality, the following events MUST be generated (in addition to any other events). Note that these descriptions are generic and it is left to various profile renderings to choose appropriate syntax and mechanisms.

All states must be moved through and all states should send an event.

7.1 ActivityStateChange Event

An ActivityStateChange event is raised any time an Activity within the service container changes state from one state to another. This event MUST contain at least the Activity identifier and the old and new state as event data.

7.2 DataStageStateChange Event

The DataStageStateChange event is raised any time a action state changes within an Activity hosted by the container. This event MUST contain at least the Activity identifier, the data staging identifier, and the old and new states for the data staging component that changed.
8. Exposing Container Activity

The BES does not mandate that the Activity started within the container provide a specific web service interface for management or control purposes. Profiles on the BES specification may mandate that the use of certain JSDL extensions (e.g. the POSIXApplication) will result in a web service interface (e.g. a POSIX control interface) to the resulting Activity that can be referenced by the AED (endpoint) returned from the ‘CreateActivityFromJSDL’ operation. Such interfaces are out of scope of this document.
9. Management

Currently no generic management infrastructure has been specified for OGSA services. We would expect such an infrastructure to support the termination of a BES following a duly authorized request. In terminating a BES, the impact on the activities taking place within the BES container is undefined.

10. Security Considerations

Security considerations are significant in execution management, both in terms of access control (authorization) to the various services, as well as identity mapping issues, e.g., run this Activity as “Fred”. Authorization and authentication is outside of the scope of this document and is dependent on the ongoing Activity within the OGSA Authorization Working Group.

One requirement of such an infrastructure will be the ability to restrict the access to information contained within BES. For instance, the only person who may be able to obtain the state of an Activity is the person who requested that the Activity be instantiated. A specified person could be given rights to administer a job (e.g. manipulate the job state).

Another requirement might be identity mapping from a grid credential and the BES container’s authorization and authentication space. This is out of scope for this specification. The OGSA Basic security profile should contain the specification for authorization and authentication.
11. Authors Information

Andrew Grimshaw
Mark Morgan
Darren Pulsipher

Chris Smith

Steven Newhouse

William Lee

12.
Contributors

We gratefully acknowledge the contributions made to this document by

13. Acknowledgments

We are grateful to numerous colleagues for discussions on the topics covered in this document, and to the people who provided comments on the public drafts. Thanks in particular to (in alphabetical order, with apologies to anybody we have missed) ….

14. Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the GGF Executive Director.

15. Full Copyright Notice

Copyright (C) Global Grid Forum (2005, 2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

16. References
[RFC2119]
S.Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[XML-Infoset]
XML Information Set (Second Edition) W3C Recommendation 4 February 2004 - http://www.w3.org/TR/xml-infoset/
[XPATH]
XML Path Language (XPath) Version 1.0 W3C Recommendation, 16 November 1999 -http://www.w3.org/TR/xpath
[WS-Addressing]
D. Box and F. Curbera (ed.) Web Services Addressing 1.0 – Core (WS-Addressing), W3C Last Call 31 March 2005, http://www.w3.org/TR/2005/WD-ws-addr-core-20050331

 [SOAP 1.1]
Simple Object Access Protocol (SOAP) 1.1 , W3C 08 May 2000 – http://www.w3.org/TR/soap11

[OGSA WSRF BP] OGSA WSRF Basic Profile definition 1.0, GGF February, 2006
[OGSA Authorization] OGSA Authorization 1.0, GGF February 2006
[WS-Security] Web Services Security (WS-Security), Version 1.0 05 April 2002 - http://www-128.ibm.com/developerworks/webservices/library/ws-secure/
[WS-Naming] WS-Naming Specification 1.0 , GGF February 2006
17. Appendix A – OGSA BES Common Rendering

There are two renderings that are presented in the BES standard. Both renderings have a common xsd and wsdl that are used. This section describes the common elements that are in both renderings as well as the bes.xsd and bes-common.wsdl files.

17.1 Data Types

This section describes various data types used and assumed by the WSRF Base Profile Rendering of this document.

17.1.1 overall-state-enumeration

The overall-state-enumeration is used to indicate which state from the previously described state diagram for an Activity that Activity is in or has been in. The valid values are:

· New

· Pending

· StagingIn

· ExecutionPending

· Running

· ExecutionComplete

· StagingOut

· CleaningUp

· Suspended

· ShuttingDown

· NotKnown

· Other

· Done

· Terminated

· Exception

17.1.2 data-staging-state-enumeration

The data-staging-state-enumeration is used to describe which state various data staging sub-activities are in or have been in. The valid values are:

· New

· Pending

· StagingIn

· Waiting

· StagingOut

· Blocked

· Suspended

· Done

· Exception

· Terminated

· NotKnown

17.1.3 state-change-response-enumeration

The state-change-response-enumeration includes the values which may be used to indicate the success or failure of a state-change-request operation on an Activity.

· Succeeded

· Failed

17.1.4 Activity-status-type

The Activity-status-type is returned by the GetActivityStatus operation to describe the status of a single Activity.

<bes:Activity-status-type>

<bes:Activity-identifier> wsa:EndpointReferenceType </bes:Activity-identifier>

<bes:overall-status state=”bes:overall-state-enumeration”

last-state=”bes:overall-state-enumeration”?

other=”xsd:string”?>

{any}*

</bes:overall-status>

<bes:data-stage-status id=”xsd:string” state=”bes:data-staging-state-enumeration”

last-state=”bes:data-staging-state-enumeration”?>

 {any}*

 </bes:data-stage-status>

</bes:Activity-status-type>

The components of the Activity-status-type are further described as follows:

17.1.4.1 /bes:Activity-identifier

A WS-Naming compliant wsa:EndpointReferenceType which identifies which Activity the status type report is associated with.

17.1.4.2 /bes:overall-status

Describes the overall status of the Activity as a whole

17.1.4.3 /bes:overall-status/@state

The current overall status of the given Activity
17.1.4.4 /bes:overall-status/@last-state

This contains the state that the Activity was last in prior to the current one. This value might be missing or null if the Activity is in its initial state.

17.1.4.5 /bes:overall-status/@other

This value is any container’s specific state. This attribute can be null or missing if there is no container specific state.

17.1.4.6 /bes:overall-status/{any}

The overall status element may contain arbitrary information further describing the state of the Activity. For example, if the Activity is in an exception state, this may describe why the Activity is in an exception state.

17.1.4.7 /bes:data-stage-status

This status element is used to describe a given data staging operation’s status.

17.1.4.8 /bes:data-stage-status/@id

A string id that indicates which data staging Activity is being referred to. This matches the id given in the JSDL document and may be absent if no id is available.

17.1.4.9 /bes:data-statge-status/@state

This is the current staging state for this data staging Activity.

17.1.4.10 /bes:data-stage-status/@last-state

This is the state that the data staging Activity was last in prior to the current one. This value might be missing or null if the data staging Activity is in it’s initial state.

17.1.4.11 /bes:data-stage-status/{any}

The data-stage-status element may contain arbitrary information further describing the state of the data staging component. For example, if the component is in an exception state, this may describe what exception caused this problem.

17.1.5 state-change-request-type

The state-change-request-type is used to indicate a request to change the overall state of exactly one Activity. The format for this data type is as follows:

<bes:state-change-request-type>

<bes:Activity-identifier> wsa:EndpointReferenceType </bes:Activity-identifier>

<bes:requested-state-change from=”bes:overall-state-enumeration”?

 to=”bes:overall-state-enumeration”/>

</bes:state-change-request-type>

The components of the state-change-request-type are further described as follows:

17.1.5.1 /bes:Activity-identifier

A WS-Naming compliant wsa:EndpointReferenceType which identifies which Activity the status type report is associated with.

17.1.5.2 /bes:requested-state-change

This describes the actual request to change the state.

17.1.5.3 /bes:requested-state-change/@from

This is an optional attribute which describes which overall state the Activity MUST be in order for the state change request to happen. If this option is specified, then any valid state may be transitioned to the new one.

17.1.5.4 /bes:requested-state-change/@to

This is a required attribute indicating which state the client wishes for the Activity to transition to.

state-change-response-type

The state-change-response-type is used to indicate the result of a state change request. The format of this type is as follows:

<bes:state-change-response-type response=”bes:state-change-response-enumeration”>

<bes:Activity-identifier> wsa:EndpointReferenceType </bes:Activity-identifier>

</bes:state-change-response-type>

The components of the state-change-response-type are further described as follows:

17.1.5.5 /@response

This is an enumeration indicating whether or not the response represents a failure to change the state, or success in having done so.

17.1.5.6 /bes:Activity-identifier

A WS-Naming compliant wsa:EndpointReferenceType which identifies which Activity the status type report is associated with.

17.1.6 Activity-jsdl-document-type

The Activity-jsdl-document-type is used to describe the binding of a jsdl document with the Activity that is the result of the BES container initiating that document. Its format is as follows:

<bes:Activity-jsdl-document-type>

<bes:Activity-identifier> wsa:EndpointReferenceType </bes:Activity-identifier>

<bes:job-description> jsdl:JobDefinitionType </bes:job-description>

</bes:Activity-jsdl-document-type>

The components of the Activity-jsdl-document-type are further described as follows:

17.1.6.1 /bes:Activity-identifier

A WS-Naming compliant wsa:EndpointReferenceType which identifies which Activity the status type report is associated with.

17.1.6.2 /bes:job-description

This is the JSDL document that was used to initiate the request. This JSDL document may be slightly different from the original one passed into createActivityFromJSDL as the container may alter it to reflect policy changes, etc.

17.2 CreateActivityFromJSDL

The format of the CreateActivityFromJSDL request message is:

…

<bes:CreateActivityFromJSDL>

<bes:job-description-document>

jsdl:JobDefinitionType

</bes:job-description-document>

<bes:create-suspended> xsd:boolean </bes:create-suspended>

</bes:CreateActivityFromJSDL>

…

The components of the CreateActivityFromJSDL message are further described as follows:

17.2.1.1 /bes:create-suspended

This is a Boolean flag indicating whether or not the job should be created in a suspended state.

17.2.1.2 /bes:job-description-document

This is a valid JSDL document describing the job to create.

The response to the CreateActivityFromJSDL message is a message of the following form:

…

<bes:CreateActivityFromJSDLResponse>

<bes:Activity-identifier>

wsa:EndpointReferenceType

</bes:Activity-identifier>

</bes:CreateActivityFromJSDLResponse>

…

The components of the CreateActivityFromJSDLResponse message are further described as follows:

17.2.1.3 /bes:Activity-identifier

This is a WS-Name compliant EndpointReferenceType that can be used to identify and possibly communicate with the job that was started.

17.2.2 Example SOAP Encoding of the CreateActivityFromJSDL Message Exchange

The following is a non-normative example of a CreateActivityFromJSDL message using [SOAP 1.1]

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:jsdl=”http://schemas.ggf.org/jsdl/2005/11/jsdl” >

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/CreateActivityFromJSDL

</wsa:Action>

<wsa:To s11:mustUnderstand=”1”>

http://www.tempuri.org/BESContainerResource

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:CreateActivityFromJSDL>

<bes:job-description-document>

<jsdl:JobDescription>

…contents omitted for brevity (see JSDL)…

</jsdl:JobDescription>

</bes:job-description-document>

<bes:create-suspended>false</bes:create-suspended>

</bes:CreateActivityFromJSD>

 </s11:Body>

</s11:Envelope>

The following is a non-normative example of a CreateActivityFromJSDL response message using [SOAP 1.1]:

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:name=”http://schemas.ggf.org/naming/2005/11/naming”>

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/CreateActivityFromJSDLResponse

</wsa:Action>

<wsa:To>

http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:CreateActivityFromJSDLResponse>

<bes:Activity-identifier>

<wsa:Address>http://someuri.org/some-service</wsa:Address>

<wsa:ReferenceProperties>

<bes:opaque-key>adslkfjasdlfjasf</bes:opaque-key>

</wsa:ReferenceProperties>

<name:AbstractName>urn:guid:some-guid</name:AbstractName>

</bes:Activity-identifier>

</bes:CreateActivityFromJSDLResponse>

 </s11:Body>

</s11:Envelope>

17.3 GetActivityStatus

The format of the GetActivityStatus request message is:

…

<bes:GetActivityStatus>

<bes:Activity-identifier>

wsa:EndpointReferenceType

</bes:Activity-identifier>*

</bes:GetActivityStatus>

…

The components of the GetActivityStatus message are further described as follows:

17.3.1.1 /bes:Activity-identifier

0 or more WS-Naming compliant EPRs that indicate which activities the container is being queried about.

The response to the GetActivityStatus message is a message of the following form:

…

<bes:GetActivityStatusResponse>

<bes:Activity-status>

bes:Activity-status-type

<bes:Activity-status>*

</bes:GetActivityStatusResponse>

…

The components of the GetActivityStatusResponse message are further described as follows:

17.3.1.2 /bes:Activity-status

This is an Activity-status-type element describing the current status in detail of a single given Activity.

17.3.2 Example SOAP Encoding of the GetActivityStatus Message Exchange

The following is a non-normative example of a GetActivityStatus message using [SOAP 1.1]

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:jsdl=”http://schemas.ggf.org/jsdl/2005/11/jsdl” >

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/GetActivityStatus

</wsa:Action>

<wsa:To s11:mustUnderstand=”1”>

http://www.tempuri.org/BESContainerResource

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:GetActivityStatus>

<bes:Activity-identifier>

<wsa:Address>http://someuri.org/some-service</wsa:Address>

<wsa:ReferenceProperties>

<bes:opaque-key>adslkfjasdlfjasf</bes:opaque-key>

</wsa:ReferenceProperties>

<name:AbstractName>urn:guid:some-guid</name:AbstractName>

</bes:Activity-identifier>

</bes:GetActivityStatus>

 </s11:Body>

</s11:Envelope>

The following is a non-normative example of a GetActivityStatus response message using [SOAP 1.1]:

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:name=”http://schemas.ggf.org/naming/2005/11/naming”>

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/GetActivityStatusResponse

</wsa:Action>

<wsa:To>

http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:GetActivityStatusResponse>

<bes:Activity-status>

<bes:Activity-identifier>

<wsa:Address>http://someuri.org/some-service</wsa:Address>

<wsa:ReferenceProperties>

<bes:opaque-key>adslkfjasdlfjasf</bes:opaque-key>

</wsa:ReferenceProperties>

<name:AbstractName>urn:guid:some-guid</name:AbstractName>

</bes:Activity-identifier>

<bes:overall-status state=”Running” last-state=”Suspended”/>

<bes:data-state-status id=”some-id” state=”Waiting”

last-state=”staging-in”/>

</bes:Activity-status>

</bes:GetActivityStatusResponse>

 </s11:Body>

</s11:Envelope>

17.4 RequestActivityStateChanges

The format of the RequestActivityStateChanges request message is:

…

<bes:RequestActivityStateChanges>

<bes:state-change-request>

bes:state-change-request-type

</bes:state-change-request> *

</bes:RequestActivityStateChanges>

…

The components of the RequestActivityStateChanges message are further described as follows:

17.4.1.1 /bes:state-change-request

0 or more requested state changes for the container to make on the given set of activities.

The response to the RequestActivityStateChanges message is a message of the following form:

…

<bes:RequestActicityStateChangesResponse>

<bes:state-change-response>

bes:state-change-response-type

</bes:state-change-response> *

</bes:RequestActicityStateChangesResponse>

…

The components of the RequestActivityStateChangesResponse message are further described as follows:

17.4.1.2 /bes:state-change-response

This is an element describing the success or failure for each of the requested state changes.

17.4.2 Example SOAP Encoding of the RequestActivityStateChange Message Exchange

The following is a non-normative example of a RequestActivityStateChange message using [SOAP 1.1]

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:jsdl=”http://schemas.ggf.org/jsdl/2005/11/jsdl” >

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/RequestActivityStateChanges

</wsa:Action>

<wsa:To s11:mustUnderstand=”1”>

http://www.tempuri.org/BESContainerResource

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:RequestActivityStateChanges>

<bes:state-change-request>

<bes:Activity-identifier>

<wsa:Address>http://someuri.org/some-service</wsa:Address>

<wsa:ReferenceProperties>

<bes:opaque-key>adslkfjasdlfjasf</bes:opaque-key>

</wsa:ReferenceProperties>

<name:AbstractName>urn:guid:some-guid</name:AbstractName>

</bes:Activity-identifier>

</bes:state-change-request>

</bes:RequestActivityStateChanges>

 </s11:Body>

</s11:Envelope>

The following is a non-normative example of a RequestActivityStateChangesResponse response message using [SOAP 1.1]:

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:name=”http://schemas.ggf.org/naming/2005/11/naming”>

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/RequestActivityStateChangesResponse

</wsa:Action>

<wsa:To>

http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:RequestActivityStateChangesResponse>

<bes:state-change-response response=”Succeeded”>

<bes:Activity-identifier>

<wsa:Address>http://someuri.org/some-service</wsa:Address>

<wsa:ReferenceProperties>

<bes:opaque-key>adslkfjasdlfjasf</bes:opaque-key>

</wsa:ReferenceProperties>

<name:AbstractName>urn:guid:some-guid</name:AbstractName>

</bes:Activity-identifier>

</bes:state-change-response>

</bes:RequestActivityStateChangesResponse>

 </s11:Body>

</s11:Envelope>

17.5 StopAcceptingNewActivities

The format of the StopAcceptingNewActivities request message is:

…

<bes:StopAcceptingNewActivities/>

…

The response to the StopAcceptingNewActivities message is a message of the following form:

…

<bes:StopAcceptingNewActivitiesResponse/>

…

17.5.1 Example SOAP Encoding of the StopAcceptingNewActivities Message Exchange

The following is a non-normative example of a StopAcceptingNewActivities message using [SOAP 1.1]

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:jsdl=”http://schemas.ggf.org/jsdl/2005/11/jsdl” >

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/StopAcceptingNewActivities

</wsa:Action>

<wsa:To s11:mustUnderstand=”1”>

http://www.tempuri.org/BESContainerResource

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:StopAcceptingNewActivities/>

 </s11:Body>

</s11:Envelope>

The following is a non-normative example of a StopAcceptingNewActivitiesResponse response message using [SOAP 1.1]:

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:name=”http://schemas.ggf.org/naming/2005/11/naming”>

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/StopAcceptingNewActivitiesResponse

</wsa:Action>

<wsa:To>

http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:StopAcceptingNewActivitiesResponse/>

 </s11:Body>

</s11:Envelope>

17.6 StartAcceptingNewActivities

The format of the StartAcceptingNewActivities request message is:

…

<bes:StartAcceptingNewActivities/>

…

The response to the SartpAcceptingNewActivities message is a message of the following form:

…

<bes:StartAcceptingNewActivitiesResponse/>

…

17.6.1 Example SOAP Encoding of the StartAcceptingNewActivities Message Exchange

The following is a non-normative example of a StartAcceptingNewActivities message using [SOAP 1.1]

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:jsdl=”http://schemas.ggf.org/jsdl/2005/11/jsdl” >

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/StartAcceptingNewActivities

</wsa:Action>

<wsa:To s11:mustUnderstand=”1”>

http://www.tempuri.org/BESContainerResource

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:StartAcceptingNewActivities/>

 </s11:Body>

</s11:Envelope>

The following is a non-normative example of a StartAcceptingNewActivitiesResponse response message using [SOAP 1.1]:

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:name=”http://schemas.ggf.org/naming/2005/11/naming”>

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/StopAcceptingNewActivitiesResponse

</wsa:Action>

<wsa:To>

http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:StartAcceptingNewActivitiesResponse/>

 </s11:Body>

</s11:Envelope>

17.7 GetActivityJSDLDocuments

The format of the GetActivityJSDLDocuments request message is:

…

<bes:GetActivityJSDLDocuments>

<bes:Activity-identifier>

wsa:EndpointReferenceType

</bes:Activity-identifier>*

</bes:GetActivityJSDLDocuments>

…

The components of the GetActivityJSDLDocuments message are further described as follows:

17.7.1.1 /bes:Activity-identifier

0 or more WS-Naming compliant EPRs that indicate which activities the container is being queried about.

The response to the GetActivityJSDLDocuments message is a message of the following form:

…

<bes:GetActivityJSDLDocumentsResponse>

<bes:Activity-jsdl-document>

bes:Activity-jsdl-document-type

<bes:Activity-jsdl-document>*

</bes:GetActivityJSDLDocumentsResponse>

…

The components of the GetActivityJSDLDocumentsResponse message are further described as follows:

17.7.1.2 /bes:Activity-jsdl-document

An Activity-jsdl-document-type element describing the JSDL document which represents the given Activity..

17.7.2 Example SOAP Encoding of the GetActivityJSDLDocument Message Exchange

The following is a non-normative example of a GetActivityJSDLDocument message using [SOAP 1.1]

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:jsdl=”http://schemas.ggf.org/jsdl/2005/11/jsdl” >

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/GetActivityJSDLDocument

</wsa:Action>

<wsa:To s11:mustUnderstand=”1”>

http://www.tempuri.org/BESContainerResource

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:GetActivityJSDLDocument>

<bes:Activity-identifier>

<wsa:Address>http://someuri.org/some-service</wsa:Address>

<wsa:ReferenceProperties>

<bes:opaque-key>adslkfjasdlfjasf</bes:opaque-key>

</wsa:ReferenceProperties>

<name:AbstractName>urn:guid:some-guid</name:AbstractName>

</bes:Activity-identifier>

</bes:GetActivityJSDLDocument>

 </s11:Body>

</s11:Envelope>

The following is a non-normative example of a GetActivityJSDLDocumentResponse response message using [SOAP 1.1]:

<s11:Envelope

xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

xmlns:wsa=”http://www.w3.org/2005/03/addressing”

xmlns:bes=”http://schemas.ggf.org/bes/2005/11/bes”

xmlns:name=”http://schemas.ggf.org/naming/2005/11/naming”>

 <s11:Header>

<wsa:Action>

http://schemas.ggf.org/bes/2005/11/bes/GetActivityJSDLDocumentsResponse

</wsa:Action>

<wsa:To>

http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:To>

 </s11:Header>

 <s11:Body>

<bes:GetActivityJSDLDocumentsResponse>

<bes:Activity-jsdl-document>

<bes:Activity-identifier>

<wsa:Address>http://someuri.org/some-service</wsa:Address>

<wsa:ReferenceProperties>

<bes:opaque-key>adslkfjasdlfjasf</bes:opaque-key>

</wsa:ReferenceProperties>

<name:AbstractName>urn:guid:some-guid</name:AbstractName>

</bes:Activity-identifier>

<bes:job-description>

… some JSDL compliant jsdl:JobDefinitionType document …

</bes:job-description>

</bes:Activity-jsdl-document>

</bes:GetActivityJSDLDocumentsResponse>

 </s11:Body>

</s11:Envelope>

17.8 Normative XSD Schema

This is the xsd schema for the common aspects of the BES rendering. The file should be named bes.xsd.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

 xmlns="http://schemas.ggf.org/bes/2005/11/bes"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:bes="http://schemas.ggf.org/bes/2005/11/bes"

 xmlns:wsa="http://www.w3.org/2005/03/addressing"

 targetNamespace="http://schemas.ggf.org/bes/2005/11/bes"

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xsd:import

 namespace="http://www.w3.org/2005/03/addressing"

 schemaLocation="http://www.w3.org/2005/03/addressing" />

 <xsd:import

 namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 schemaLocation="./jsdl.xsd" />

 <!-- Simple Types -->

 <xsd:simpleType name="overall-state-enumeration">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="New" />

 <xsd:enumeration value="Pending" />

 <xsd:enumeration value="StagingIn" />

 <xsd:enumeration value="ExecutionPending" />

 <xsd:enumeration value="Running" />

 <xsd:enumeration value="ExecutionComplete" />

 <xsd:enumeration value="StagingOut" />

 <xsd:enumeration value="CleaningUp" />

 <xsd:enumeration value="Suspended" />

 <xsd:enumeration value="ShuttingDown" />

 <xsd:enumeration value="NotKnown" />

 <xsd:enumeration value="Other" />

 <xsd:enumeration value="Done" />

 <xsd:enumeration value="Terminated" />

 <xsd:enumeration value="Exception" />

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="data-staging-state-enumeration">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="New" />

 <xsd:enumeration value="Pending" />

 <xsd:enumeration value="StagingIn" />

 <xsd:enumeration value="Waiting" />

 <xsd:enumeration value="StagingOut" />

 <xsd:enumeration value="Blocked" />

 <xsd:enumeration value="Suspended" />

 <xsd:enumeration value="Done" />

 <xsd:enumeration value="NotKnown" />

 <xsd:enumeration value="Terminated" />

 <xsd:enumeration value="Exception" />

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="state-change-response-enumeration">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Succeeded" />

 <xsd:enumeration value="Failed" />

 </xsd:restriction>

 </xsd:simpleType>

 <!-- Complex Types -->

 <xsd:complexType name="overall-status-type">

 <xsd:attribute

 name="state"

 type="bes:overall-state-enumeration"

 use="required" />

 <xsd:attribute

 name="last-state"

 type="bes:overall-state-enumeration"

 use="optional" />

 <xsd:attribute

 name="other"

 type="xsd:string"

 use="optional" />

 </xsd:complexType>

 <xsd:element

 name="overall-status"

 type="bes:overall-status-type" />

 <xsd:complexType name="data-stage-status-type">

 <xsd:attribute

 name="id"

 type="xsd:string"

 use="required" />

 <xsd:attribute

 name="state"

 type="data-staging-state-enumeration"

 use="required" />

 <xsd:attribute

 name="last-state"

 type="data-staging-state-enumeration"

 use="optional" />

 </xsd:complexType>

 <xsd:element

 name="data-stage-status"

 type="bes:data-stage-status-type" />

 <xsd:complexType name="Activity-status-type">

 <xsd:sequence>

 <xsd:element

 type="wsa:EndpointReferenceType"

 name="Activity-identifier"

 minOccurs="1"

 maxOccurs="1" />

 <xsd:element

 type="bes:overall-status-type"

 name="overall-status"

 minOccurs="1"

 maxOccurs="1" />

 <xsd:element

 type="bes:data-stage-status-type"

 name="data-stage-status"

 minOccurs="0"

 maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element

 name="Activity-status"

 type="bes:Activity-status-type" />

 <xsd:complexType name="requested-state-change-type">

 <xsd:attribute

 name="from"

 type="bes:overall-state-enumeration"

 use="optional" />

 <xsd:attribute

 name="to"

 type="bes:overall-state-enumeration"

 use="required" />

 </xsd:complexType>

 <xsd:element

 name="requested-state-change"

 type="bes:requested-state-change-type" />

 <xsd:complexType name="state-change-request-type">

 <xsd:sequence>

 <xsd:element

 type="wsa:EndpointReferenceType"

 name="Activity-identifier"

 minOccurs="1"

 maxOccurs="1" />

 <xsd:element

 type="bes:requested-state-change-type"

 name="requested-state-change"

 minOccurs="1"

 maxOccurs="1" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element

 name="state-change-request"

 type="bes:state-change-request-type" />

 <xsd:complexType name="state-change-response-type">

 <xsd:sequence>

 <xsd:element

 type="wsa:EndpointReferenceType"

 name="Activity-identifier"

 minOccurs="1"

 maxOccurs="1" />

 </xsd:sequence>

 <xsd:attribute

 name="response"

 type="bes:state-change-response-enumeration"

 use="required" />

 </xsd:complexType>

 <xsd:element

 name="state-change-response"

 type="bes:state-change-response-type" />

 <xsd:complexType name="Activity-jsdl-document-type">

 <xsd:sequence>

 <xsd:element

 type="wsa:EndpointReferenceType"

 name="Activity-identifier"

 minOccurs="1"

 maxOccurs="1" />

 <xsd:element

 type="jsdl:JobDefinition_Type"

 name="job-description"

 minOccurs="1"

 maxOccurs="1" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element

 name="Activity-jsdl-document"

 type="bes:Activity-jsdl-document-type" />

 <xsd:complexType name="NotAcceptingNewActivitiesFaultType" />

 <xsd:element

 name="NotAcceptingNewActivitiesFault"

 type="bes:NotAcceptingNewActivitiesFaultType" />

 <xsd:complexType name="BadlyFormedJSDLDocumentFaultType" />

 <xsd:element

 name="BadlyFormedJSDLDocumentFault"

 type="bes:BadlyFormedJSDLDocumentFaultType" />

 <xsd:complexType name="UnsupportedJSDLFaultType" />

 <xsd:element

 name="UnsupportedJSDLFault"

 type="bes:UnsupportedJSDLFaultType" />

 <xsd:complexType name="UnsupportedFeatureFaultType" />

 <xsd:element

 name="UnsupportedFeatureFault"

 type="bes:UnsupportedFeatureFaultType" />

 <xsd:complexType name="JobSpecificationFaultType" />

 <xsd:element

 name="JobSpecificationFault"

 type="bes:JobSpecificationFaultType" />

 <xsd:complexType name="BackendFaultType" />

 <xsd:element

 name="BackendFault"

 type="bes:BackendFaultType" />

</xsd:schema>
17.9 Normative BES common WSDL

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions

 name="BES"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:wsa="http://www.w3.org/2005/03/addressing"

 xmlns:bes="http://schemas.ggf.org/bes/2005/11/bes"

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 targetNamespace="http://schemas.ggf.org/bes/2005/11/bes">

 <!-- ===== Types Definitions ==== -->

 <wsdl:types>

 <xsd:schema

 targetNamespace="http://schemas.ggf.org/bes/2005/11/bes"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xsd:include schemaLocation="./bes.xsd" />

 <xsd:import

 namespace="http://www.w3.org/2005/03/addressing"

 schemaLocation="http://www.w3.org/2005/03/addressing" />

 <xsd:import

 namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 schemaLocation="./jsdl.xsd" />

 <!-- Message Helper Types -->

 <xsd:element name="CreateActivityFromJSDL">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element

 ref="jsdl:JobDefinition"

 minOccurs="1"

 maxOccurs="1" />

 <xsd:element

 name="create-suspended"

 type="xsd:boolean"

 minOccurs="1"

 maxOccurs="1" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="CreateActivityFromJSDLResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element

 name="Activity-identifier"

 type="wsa:EndpointReferenceType"

 minOccurs="1"

 maxOccurs="1" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="GetActivityStatus">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element

 name="Activity-identifier"

 type="wsa:EndpointReferenceType"

 minOccurs="0"

 maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="GetActivityStatusResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element

 name="Activity-status"

 type="bes:Activity-status-type"

 minOccurs="0"

 maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="RequestActivityStateChanges">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element

 name="state-change-request"

 type="bes:state-change-request-type"

 minOccurs="0"

 maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="RequestActivityStateChangesResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element

 name="state-change-response"

 type="bes:state-change-response-type"

 minOccurs="0"

 maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="StopAcceptingNewActivities" />

 <xsd:element name="StopAcceptingNewActivitiesResponse" />

 <xsd:element name="StartAcceptingNewActivities" />

 <xsd:element name="StartAcceptingNewActivitiesResponse" />

 <xsd:element name="IsAcceptingNewActivities" />

 <xsd:element name="IsAcceptingNewActivitiesResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element

 name="response"

 type="xsd:boolean"

 minOccurs="1"

 maxOccurs="1" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="GetActivityJSDLDocuments">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element

 name="Activity-identifier"

 type="wsa:EndpointReferenceType"

 minOccurs="0"

 maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="GetActivityJSDLDocumentsResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element

 name="Activity-jsdl-document"

 type="bes:Activity-jsdl-document-type"

 minOccurs="0"

 maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

 </wsdl:types>

<!-- Fault Messages -->

 <wsdl:message name="NotAcceptingNewActivitiesFault">

 <wsdl:part

 name="NotAcceptingNewActivitiesFault"

 element="bes:NotAcceptingNewActivitiesFault" />

 </wsdl:message>

 <wsdl:message name="BadlyFormedJSDLDocumentFault">

 <wsdl:part

 name="BadlyFormedJSDLDocumentFault"

 element="bes:BadlyFormedJSDLDocumentFault" />

 </wsdl:message>

 <wsdl:message name="UnsupportedJSDLFault">

 <wsdl:part

 name="UnsupportedJSDLFault"

 element="bes:UnsupportedJSDLFault" />

 </wsdl:message>

 <wsdl:message name="UnsupportedFeatureFault">

 <wsdl:part

 name="UnsupportedFeatureFault"

 element="bes:UnsupportedFeatureFault" />

 </wsdl:message>

 <wsdl:message name="JobSpecificationFault">

 <wsdl:part

 name="JobSpecificationFault"

 element="bes:JobSpecificationFault" />

 </wsdl:message>

 <wsdl:message name="BackendFault">

 <wsdl:part

 name="BackendFault"

 element="bes:BackendFault" />

 </wsdl:message>

 <!-- BES Messages -->

 <wsdl:message name="CreateActivityFromJSDLRequest">

 <wsdl:part

 name="CreateActivityFromJSDLRequest"

 element="bes:CreateActivityFromJSDL" />

 </wsdl:message>

 <wsdl:message name="CreateActivityFromJSDLResponse">

 <wsdl:part

 name="CreateActivityFromJSDLResponse"

 element="bes:CreateActivityFromJSDLResponse" />

 </wsdl:message>

 <wsdl:message name="GetActivityStatusRequest">

 <wsdl:part

 name="GetActivityStatusRequest"

 element="bes:GetActivityStatus" />

 </wsdl:message>

 <wsdl:message name="GetActivityStatusResponse">

 <wsdl:part

 name="GetActivityStatusResponse"

 element="bes:GetActivityStatusResponse" />

 </wsdl:message>

 <wsdl:message name="RequestActivityStateChangesRequest">

 <wsdl:part

 name="RequestActivityStateChangesRequest"

 element="bes:RequestActivityStateChanges" />

 </wsdl:message>

 <wsdl:message name="RequestActivityStateChangesResponse">

 <wsdl:part

 name="RequestActivityStateChangesResponse"

 element="bes:RequestActivityStateChangesResponse" />

 </wsdl:message>

 <wsdl:message name="StopAcceptingNewActivitiesRequest">

 <wsdl:part

 name="StopAcceptingNewActivitiesRequest"

 element="bes:StopAcceptingNewActivities" />

 </wsdl:message>

 <wsdl:message name="StopAcceptingNewActivitiesResponse">

 <wsdl:part

 name="StopAcceptingNewActivitiesResponse"

 element="bes:StopAcceptingNewActivitiesResponse" />

 </wsdl:message>

 <wsdl:message name="StartAcceptingNewActivitiesRequest">

 <wsdl:part

 name="StartAcceptingNewActivitiesRequest"

 element="bes:StartAcceptingNewActivities" />

 </wsdl:message>

 <wsdl:message name="StartAcceptingNewActivitiesResponse">

 <wsdl:part

 name="StartAcceptingNewActivitiesResponse"

 element="bes:StartAcceptingNewActivitiesResponse" />

 </wsdl:message>

 <wsdl:message name="IsAcceptingNewActivitiesRequest">

 <wsdl:part

 name="IsAcceptingNewActivitiesRequest"

 element="bes:IsAcceptingNewActivities" />

 </wsdl:message>

 <wsdl:message name="IsAcceptingNewActivitiesResponse">

 <wsdl:part

 name="IsAcceptingNewActivitiesResponse"

 element="bes:IsAcceptingNewActivitiesResponse" />

 </wsdl:message>

 <wsdl:message name="GetActivityJSDLDocumentsRequest">

 <wsdl:part

 name="GetActivityJSDLDocumentsRequest"

 element="bes:GetActivityJSDLDocuments" />

 </wsdl:message>

 <wsdl:message name="GetActivityJSDLDocumentsResponse">

 <wsdl:part

 name="GetActivityJSDLDocumentsResponse"

 element="bes:GetActivityJSDLDocumentsResponse" />

 </wsdl:message>

 <!-- Port Type Definitions -->

 <wsdl:portType name="BES">

 <wsdl:operation name="CreateActivityFromJSDL">

 <wsdl:input message="bes:CreateActivityFromJSDLRequest" />

 <wsdl:output message="bes:CreateActivityFromJSDLResponse" />

 <wsdl:fault

 name="NotAcceptingNewActivitiesFault"

 message="bes:NotAcceptingNewActivitiesFault" />

 <wsdl:fault

 name="BadlyFormedJSDLDocumentFault"

 message="bes:BadlyFormedJSDLDocumentFault" />

 <wsdl:fault

 name="UnsupportedJSDLFault"

 message="bes:UnsupportedJSDLFault" />

 <wsdl:fault

 name="UnsupportedFeatureFault"

 message="bes:UnsupportedFeatureFault" />

 <wsdl:fault

 name="JobSpecificationFault"

 message="bes:JobSpecificationFault" />

 <wsdl:fault

 name="BackendFault"

 message="bes:BackendFault" />

 </wsdl:operation>

 <wsdl:operation name="GetActivityStatus">

 <wsdl:input message="bes:GetActivityStatusRequest" />

 <wsdl:output message="bes:GetActivityStatusResponse" />

 </wsdl:operation>

 <wsdl:operation name="RequestActivityStateChanges">

 <wsdl:input message="bes:RequestActivityStateChangesRequest" />

 <wsdl:output message="bes:RequestActivityStateChangesResponse" />

 </wsdl:operation>

 <wsdl:operation name="StopAcceptingNewActivities">

 <wsdl:input message="bes:StopAcceptingNewActivitiesRequest" />

 <wsdl:output message="bes:StopAcceptingNewActivitiesResponse" />

 </wsdl:operation>

 <wsdl:operation name="StartAcceptingNewActivities">

 <wsdl:input message="bes:StartAcceptingNewActivitiesRequest" />

 <wsdl:output message="bes:StartAcceptingNewActivitiesResponse" />

 </wsdl:operation>

 <wsdl:operation name="IsAcceptingNewActivities">

 <wsdl:input message="bes:IsAcceptingNewActivitiesRequest" />

 <wsdl:output message="bes:IsAcceptingNewActivitiesResponse" />

 </wsdl:operation>

 <wsdl:operation name="GetActivityJSDLDocuments">

 <wsdl:input message="bes:GetActivityJSDLDocumentsRequest" />

 <wsdl:output message="bes:GetActivityJSDLDocumentsResponse" />

 </wsdl:operation>

 </wsdl:portType>

</wsdl:definitions>
18. Appendix B – OGSA BES WSI Rendering
The BES WSI Rendering has the binding of the bsi-common.wsdl definitions. It also includes Fault definitions for the WSI rendering. The WSI and WSRF rendering require different fault definitions.
18.1 WSI Fault Types (bes-wsi.xsd)
The fault types for BES must be defined for each rendering in the specification. In the WSI rendering all of the fault types are basic SOAP faults. The following is the mapping for WSI fault types.

 <xsd:complexType name="NotAcceptingNewActivitiesFaultType" />

 <xsd:element name="NotAcceptingNewActivitiesFault" type="bes:NotAcceptingNewActivitiesFaultType" />

 <xsd:complexType name="BadlyFormedJSDLDocumentFaultType" />

 <xsd:element name="BadlyFormedJSDLDocumentFault" type="bes:BadlyFormedJSDLDocumentFaultType" />

 <xsd:complexType name="UnsupportedJSDLFaultType" />

 <xsd:element name="UnsupportedJSDLFault" type="bes:UnsupportedJSDLFaultType" />

 <xsd:complexType name="UnsupportedFeatureFaultType" />

 <xsd:element name="UnsupportedFeatureFault" type="bes:UnsupportedFeatureFaultType" />

 <xsd:complexType name="JobSpecificationFaultType" />

 <xsd:element name="JobSpecificationFault" type="bes:JobSpecificationFaultType" />

 <xsd:complexType name="BackendFaultType" />

 <xsd:element name="BackendFault" type="bes:BackendFaultType" />

18.2 Normative BES WSI WSDL
<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions

 name="BESWSI"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:wsa="http://www.w3.org/2005/03/addressing"

 xmlns:bes="http://schemas.ggf.org/bes/2005/11/bes"

 xmlns:beswsi="http://schemas.ggf.org/bes/2005/11/beswsi"

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 targetNamespace="http://schemas.ggf.org/bes/2005/11/beswsi">

 <wsdl:import

 namespace="http://schemas.ggf.org/bes/2005/11/bes"

 location="./bes-common.wsdl" />

 <!-- binding -->

 <wsdl:binding

 name="BESSOAPBinding"

 type="bes:BES">

 <soap:binding

 style="document"

 transport="http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="CreateActivityFromJSDL">

 <soap:operation soapAction="" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 <wsdl:fault name="NotAcceptingNewActivitiesFault">

 <soap:fault

 name="NotAcceptingNewActivitiesFault"

 use="literal" />

 </wsdl:fault>

 <wsdl:fault name="BadlyFormedJSDLDocumentFault">

 <soap:fault

 name="BadlyFormedJSDLDocumentFault"

 use="literal" />

 </wsdl:fault>

 <wsdl:fault name="UnsupportedJSDLFault">

 <soap:fault

 name="UnsupportedJSDLFault"

 use="literal" />

 </wsdl:fault>

 <wsdl:fault name="UnsupportedFeatureFault">

 <soap:fault

 name="UnsupportedFeatureFault"

 use="literal" />

 </wsdl:fault>

 <wsdl:fault name="JobSpecificationFault">

 <soap:fault

 name="JobSpecificationFault"

 use="literal" />

 </wsdl:fault>

 <wsdl:fault name="BackendFault">

 <soap:fault

 name="BackendFault"

 use="literal" />

 </wsdl:fault>

 </wsdl:operation>

 <wsdl:operation name="GetActivityStatus">

 <soap:operation soapAction="" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="RequestActivityStateChanges">

 <soap:operation soapAction="" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="StopAcceptingNewActivities">

 <soap:operation soapAction="" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="StartAcceptingNewActivities">

 <soap:operation soapAction="" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="IsAcceptingNewActivities">

 <soap:operation soapAction="" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetActivityJSDLDocuments">

 <soap:operation soapAction="" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

</wsdl:definitions>

19. Appendix C – OGSA BES WSRF Base Profile Rendering
The WSRF rendering has the addition of Resource Properties and the standard Get,Set,Query Resource operations as defined in the WSRF service standards.
19.1 Resource Properties

The following resource properties are defined for the OGSA-BES service container resource

<xsd:element name="endpoint-profile" type="xsd:anyURI"

 minOccurs=”1” maxOccurs=”1” nillable=”false” settable=”false”/>

<xsd:element name=”is-accepting-new-activities” type=”xsd:boolean”

minOccurs=”1” maxOccurs=”1” nullable=”false” settable=”false”/>
19.2 Fault Type Mapping

 <!-- Fault Types -->

<xsd:complexType name="NotAcceptingNewActivitiesFaultType">

<xsd:complexContent>

<xsd:extension base="wsbf:BaseFaultType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="NotAcceptingNewActivitiesFault"

type="bes:NotAcceptingNewActivitiesFaultType"/>

<xsd:complexType name="BadlyFormedJSDLDocumentFaultType">

<xsd:complexContent>

<xsd:extension base="wsbf:BaseFaultType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="BadlyFormedJSDLDocumentFault"

type="bes:BadlyFormedJSDLDocumentFaultType"/>

<xsd:complexType name="UnsupportedJSDLFaultType">

<xsd:complexContent>

<xsd:extension base="wsbf:BaseFaultType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="UnsupportedJSDLFault"

type="bes:UnsupportedJSDLFaultType"/>

<xsd:complexType name="UnsupportedFeatureFaultType">

<xsd:complexContent>

<xsd:extension base="wsbf:BaseFaultType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="UnsupportedFeatureFault"

type="bes:UnsupportedFeatureFaultType"/>

<xsd:complexType name="JobSpecificationFaultType">

<xsd:complexContent>

<xsd:extension base="wsbf:BaseFaultType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="JobSpecificationFault"

type="bes:JobSpecificationFaultType"/>

<xsd:complexType name="BackendFaultType">

<xsd:complexContent>

<xsd:extension base="wsbf:BaseFaultType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="BackendFault"

type="bes:BackendFaultType"/>

19.3 Normative OGSA BES WSRF WSDL

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions

 name="BES"

 targetNamespace="http://schemas.ggf.org/bes/2005/11/bes"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:wsa="http://www.w3.org/2005/03/addressing"

 xmlns:bes="http://schemas.ggf.org/bes/2005/11/bes"

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:wsrp="http://docs.oasis-open.org/wsrf/rp-1"

 xmlns:wsrpw="http://docs.oasis-open.org/wsrf/rpw-1"

 xmlns:wsrl="http://docs.oasis-open.org/wsrf/rl-1"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:wsrlw="http://docs.oasis-open.org/wsrf/rlw-1"

 xmlns:wsrf-rw="http://docs.oasis-open.org/wsrf/rw-1">

 <wsdl:import

 namespace="http://docs.oasis-open.org/wsrf/rpw-1"

 location="http://docs.oasis-open.org/wsrf/rpw-1" />

 <wsdl:import

 namespace="http://docs.oasis-open.org/wsrf/rlw-1"

 location="http://docs.oasis-open.org/wsrf/rlw-1" />

 <wsdl:import

 namespace="http://docs.oasis-open.org/wsrf/rw-1"

 location="http://docs.oasis-open.org/wsrf/rw-1" />

 <wsdl:import

 namespace="http://schemas.ggf.org/bes/2005/11/bes"

 location="./bes-common.wsdl" />

 <!-- ===== Types Definitions ==== -->

 <wsdl:types>

 <xsd:schema

 targetNamespace="http://schemas.ggf.org/bes/2005/11/bes"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xsd:include schemaLocation="./bes.xsd" />

 <xsd:import

 namespace="http://www.w3.org/2005/03/addressing"

 schemaLocation="http://www.w3.org/2005/03/addressing" />

 <xsd:import

 namespace="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 schemaLocation="./jsdl.xsd" />

 <xsd:import

 namespace="http://docs.oasis-open.org/wsrf/bf-1"

 schemaLocation="http://docs.oasis-open.org/wsrf/bf-1" />

 <xsd:import

 namespace="http://docs.oasis-open.org/wsrf/rp-1"

 schemaLocation="http://docs.oasis-open.org/wsrf/rp-1" />

 <xsd:import

 namespace="http://docs.oasis-open.org/wsrf/rl-1"

 schemaLocation="http://docs.oasis-open.org/wsrf/rl-1" />

 <!-- ==== Resource Property Related ==== -->

 <xsd:element

 name="endpoint-profile"

 type="xsd:anyURI"

 nillable="false" />

 <xsd:element

 name="is-accepting-new-activities"

 type="xsd:boolean"

 nillable="false" />

 </xsd:schema>

 </wsdl:types>

 <!-- Port Type Definitions -->

 <wsdl:portType name="BESWSRF">

 <wsdl:operation name="CreateActivityFromJSDL">

 <wsdl:input message="bes:CreateActivityFromJSDLRequest" />

 <wsdl:output message="bes:CreateActivityFromJSDLResponse" />

 <wsdl:fault

 name="NotAcceptingNewActivitiesFault"

 message="bes:NotAcceptingNewActivitiesFault" />

 <wsdl:fault

 name="BadlyFormedJSDLDocumentFault"

 message="bes:BadlyFormedJSDLDocumentFault" />

 <wsdl:fault

 name="UnsupportedJSDLFault"

 message="bes:UnsupportedJSDLFault" />

 <wsdl:fault

 name="UnsupportedFeatureFault"

 message="bes:UnsupportedFeatureFault" />

 <wsdl:fault

 name="JobSpecificationFault"

 message="bes:JobSpecificationFault" />

 <wsdl:fault

 name="BackendFault"

 message="bes:BackendFault" />

 </wsdl:operation>

 <wsdl:operation name="GetActivityStatus">

 <wsdl:input message="bes:GetActivityStatusRequest" />

 <wsdl:output message="bes:GetActivityStatusResponse" />

 </wsdl:operation>

 <wsdl:operation name="RequestActivityStateChanges">

 <wsdl:input message="bes:RequestActivityStateChangesRequest" />

 <wsdl:output message="bes:RequestActivityStateChangesResponse" />

 </wsdl:operation>

 <wsdl:operation name="StopAcceptingNewActivities">

 <wsdl:input message="bes:StopAcceptingNewActivitiesRequest" />

 <wsdl:output message="bes:StopAcceptingNewActivitiesResponse" />

 </wsdl:operation>

 <wsdl:operation name="StartAcceptingNewActivities">

 <wsdl:input message="bes:StartAcceptingNewActivitiesRequest" />

 <wsdl:output message="bes:StartAcceptingNewActivitiesResponse" />

 </wsdl:operation>

 <wsdl:operation name="IsAcceptingNewActivities">

 <wsdl:input message="bes:IsAcceptingNewActivitiesRequest" />

 <wsdl:output message="bes:IsAcceptingNewActivitiesResponse" />

 </wsdl:operation>

 <wsdl:operation name="GetActivityJSDLDocuments">

 <wsdl:input message="bes:GetActivityJSDLDocumentsRequest" />

 <wsdl:output message="bes:GetActivityJSDLDocumentsResponse" />

 </wsdl:operation>

 <!-- extends wsrpw:ResourceProperties -->

 <wsdl:operation name="GetResourceProperty">

 <wsdl:input

 name="GetResourcePropertyRequest"

 message="wsrpw:GetResourcePropertyRequest" />

 <wsdl:output

 name="GetResourcePropertyResponse"

 message="wsrpw:GetResourcePropertyResponse" />

 <wsdl:fault

 name="ResourceUnknownFault"

 message="wsrf-rw:ResourceUnknownFault" />

 <wsdl:fault

 name="InvalidResourcePropertyQNameFault"

 message="wsrpw:InvalidResourcePropertyQNameFault" />

 </wsdl:operation>

 <!-- extends wsrpw:GetMultiple -->

 <wsdl:operation name="GetMultipleResourceProperties">

 <wsdl:input

 name="GetMultipleResourcePropertiesRequest"

 message="wsrpw:GetMultipleResourcePropertiesRequest" />

 <wsdl:output

 name="GetMultipleResourcePropertiesResponse"

 message="wsrpw:GetMultipleResourcePropertiesResponse" />

 <wsdl:fault

 name="ResourceUnknownFault"

 message="wsrf-rw:ResourceUnknownFault" />

 <wsdl:fault

 name="InvalidResourcePropertyQNameFault"

 message="wsrpw:InvalidResourcePropertyQNameFault" />

 </wsdl:operation>

 <!-- extends wsrpw:Query -->

 <wsdl:operation name="QueryResourceProperties">

 <wsdl:input

 name="QueryResourcePropertiesRequest"

 message="wsrpw:QueryResourcePropertiesRequest" />

 <wsdl:output

 name="QueryResourcePropertiesResponse"

 message="wsrpw:QueryResourcePropertiesResponse" />

 <wsdl:fault

 name="ResourceUnknownFault"

 message="wsrf-rw:ResourceUnknownFault" />

 <wsdl:fault

 name="InvalidResourcePropertyQNameFault"

 message="wsrpw:InvalidResourcePropertyQNameFault" />

 <wsdl:fault

 name="UnknownQueryExpressionDialectFault"

 message="wsrpw:UnknownQueryExpressionDialectFault" />

 <wsdl:fault

 name="InvalidQueryExpressionFault"

 message="wsrpw:InvalidQueryExpressionFault" />

 <wsdl:fault

 name="QueryEvaluationErrorFault"

 message="wsrpw:QueryEvaluationErrorFault" />

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding

 name="BESWSRFBinding"

 type="bes:BESWSRF">

 <soap:binding

 style="document"

 transport="http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="CreateActivityFromJSDL">

 <soap:operation soapAction="" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 <wsdl:fault name="NotAcceptingNewActivitiesFault">

 <soap:fault

 name="NotAcceptingNewActivitiesFault"

 use="literal" />

 </wsdl:fault>

 <wsdl:fault name="BadlyFormedJSDLDocumentFault">

 <soap:fault

 name="BadlyFormedJSDLDocumentFault"

 use="literal" />

 </wsdl:fault>

 <wsdl:fault name="UnsupportedJSDLFault">

 <soap:fault

 name="UnsupportedJSDLFault"

 use="literal" />

 </wsdl:fault>

 <wsdl:fault name="UnsupportedFeatureFault">

 <soap:fault

 name="UnsupportedFeatureFault"

 use="literal" />

 </wsdl:fault>

 <wsdl:fault name="JobSpecificationFault">

 <soap:fault

 name="JobSpecificationFault"

 use="literal" />

 </wsdl:fault>

 <wsdl:fault name="BackendFault">

 <soap:fault

 name="BackendFault"

 use="literal" />

 </wsdl:fault>

 </wsdl:operation>

 <wsdl:operation name="GetActivityStatus">

 <soap:operation soapAction="" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="RequestActivityStateChanges">

 <soap:operation soapAction="" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="StopAcceptingNewActivities">

 <soap:operation soapAction="" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="StartAcceptingNewActivities">

 <soap:operation soapAction="" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="IsAcceptingNewActivities">

 <soap:operation soapAction="" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetActivityJSDLDocuments">

 <soap:operation soapAction="" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <operation name="GetResourceProperty">

 <soap:operation style="document" />

 <input>

 <soap:body use="literal" />

 </input>

 <output>

 <soap:body use="literal" />

 </output>

 <fault name="ResourceUnknownFault">

 <soap:fault

 name="ResourceUnknownFault"

 use="literal" />

 </fault>

 <fault name="InvalidResourcePropertyQNameFault">

 <soap:fault

 name="InvalidResourcePropertyQNameFault"

 use="literal" />

 </fault>

 </operation>

 <operation name="GetMultipleResourceProperties">

 <soap:operation style="document" />

 <input>

 <soap:body use="literal" />

 </input>

 <output>

 <soap:body use="literal" />

 </output>

 <fault name="ResourceUnknownFault">

 <soap:fault

 name="ResourceUnknownFault"

 use="literal" />

 </fault>

 <fault name="InvalidResourcePropertyQNameFault">

 <soap:fault

 name="InvalidResourcePropertyQNameFault"

 use="literal" />

 </fault>

 </operation>

 <operation name="QueryResourceProperties">

 <soap:operation style="document" />

 <input>

 <soap:body use="literal" />

 </input>

 <output>

 <soap:body use="literal" />

 </output>

 <fault name="ResourceUnknownFault">

 <soap:fault

 name="ResourceUnknownFault"

 use="literal" />

 </fault>

 <fault name="InvalidResourcePropertyQNameFault">

 <soap:fault

 name="InvalidResourcePropertyQNameFault"

 use="literal" />

 </fault>

 <fault name="UnknownQueryExpressionDialectFault">

 <soap:fault

 name="UnknownQueryExpressionDialectFault"

 use="literal" />

 </fault>

 <fault name="InvalidQueryExpressionFault">

 <soap:fault

 name="InvalidQueryExpressionFault"

 use="literal" />

 </fault>

 <fault name="QueryEvaluationErrorFault">

 <soap:fault

 name="QueryEvaluationErrorFault"

 use="literal" />

 </fault>

 </operation>

 </wsdl:binding>

</wsdl:definitions>

[image: image6.png]

Provisioning

Deployment

Configuration

Information Services

Service

Container

Accounting Services

Execution Planning Services

Candidate Set Generator (Work -Resource mapping)

Job Manager

Reservation

New

Pending

Running

Finished

Canceled

Failed

New

Pending

Running

Finished

Canceled

Failed

Running:

Migrating

Migrate

New

Pending

Running:

Stage-in

Finished

Canceled

Failed

Running:

Executing

Running:

Stage-out

New

Pending

Running

Finished

Canceled

Failed

Running:

Suspended

Suspend

� These credential services should be optional in the sense that the client MAY ignore them. In particular it should be possible to submit to a Globus based implementation of ESI without GSI, e.g. using the OGSA Basic Security Profiles.

�I think we should reference a namespace for the proposed managedjob EPR “type”. ASG

�Do we still need this described this way? Or should we put them in the table?

�I think this should be merged into the table (all the stuff in red)

�This doesn’t match the actual appendices, A being common renderings, and C the WSRF BP rendering. Also, you probably want a reference to [OGSA WSRF BP] here.

Darren: This will change so let’s hold off on this until we have this completed.

�The next four sub sections are taken almost verbatim from the Snelling/Foster ESI document. ASG

�I think we need to time box how long the container must keep track of whether it has executed something in the past. ASG

�This section is largely from the ESI document. Note also that we had discussed building an input wrapper document that contains JSDL as the parameter to create activity from jsdl, or add sub-documents to jsdl documents – I decided on the latter, though we can of course change it back. ASG.

�4.4 and 4.5 describe management operations on the “BES container” which in principle could require elevated privilege to invoke. I’m therefore surprised to see no provision here for a “not authorized” or “insufficient privilege” fault.

�As 4.4.3.

�To be completed.

�This list os longer than the list of authors in the header on page 1.

�To be completed.

�To be completed.

ogsa-bes-wg@ggf.org
14

