
Draft Ralf Nyrén, Independent1

OCCI-WG Andy Edmonds, ICCLab, ZHAW2

Thijs Metsch, Intel3

Boris Parák, CESNET February 4, 20134

Updated: January 28, 20165

Open Cloud Computing Interface - HTTP Protocol6

Status of this Document7

This document provides information to the community regarding the specification of the Open Cloud Computing8

Interface. Distribution is unlimited.9

Copyright Notice10

Copyright c©Open Grid Forum (2013-2015). All Rights Reserved.11

Trademarks12

OCCI is a trademark of the Open Grid Forum.13

Abstract14

This document, part of a document series produced by the OCCI working group within the Open Grid Forum15

(OGF), provides a high-level definition of a Protocol and API. The document is based upon previously gathered16

requirements and focuses on the scope of important capabilities required to support modern service offerings.17

GFD-R January 28, 2016

Contents18

1 Introduction 419

2 Notational Conventions 420

3 OCCI RESTful HTTP Protocol 521

4 Namespace 522

4.1 Bound and Unbound Paths . 523

5 Headers and Status Codes 524

5.1 Requests Headers . 525

5.2 Response Headers . 626

5.3 Versioning . 627

5.4 Status Codes . 628

6 Pagination 729

7 Filtering 730

7.1 Query Interface . 731

7.2 Entity Sub-type Instance Collection . 832

8 HTTP Methods Overview 833

9 HTTP Methods Applied to Query Interface 834

9.1 GET Method . 935

9.2 PUT Method . 936

9.3 POST Method . 937

9.4 DELETE Method . 938

10 HTTP Methods Applied to Entity Instances 939

10.1 GET Method . 940

10.2 PUT Method . 1041

10.2.1 Create . 1042

10.2.2 Replace . 1043

10.3 POST Method . 1044

10.3.1 Partial Update . 1045

10.3.2 Trigger Action . 1146

10.4 DELETE Method . 1147

occi-wg@ogf.org 2

GFD-R January 28, 2016

11 HTTP Methods Applied to Collections 1148

11.1 GET Method . 1149

11.2 PUT Method . 1250

11.3 POST Method . 1251

11.3.1 Create Entity Instance . 1252

11.3.2 Associate Mixin with Entity Instance . 1253

11.3.3 Trigger Action . 1254

11.4 DELETE Method . 1355

11.4.1 Delete Entity Instances . 1356

11.4.2 Disassociate Mixin from Entity Instances . 1357

12 Security Considerations 1358

13 Glossary 1459

14 Contributors 1460

15 Intellectual Property Statement 1561

16 Disclaimer 1562

17 Full Copyright Notice 1563

occi-wg@ogf.org 3

GFD-R January 28, 2016

1 Introduction64

The Open Cloud Computing Interface (OCCI) is a RESTful Protocol and API for all kinds of management tasks.65

OCCI was originally initiated to create a remote management API for IaaS1 model-based services, allowing66

for the development of interoperable tools for common tasks including deployment, autonomic scaling and67

monitoring. It has since evolved into a flexible API with a strong focus on interoperability while still offering a68

high degree of extensibility. The current release of the Open Cloud Computing Interface is suitable to serve69

many other models in addition to IaaS, including PaaS and SaaS.70

In order to be modular and extensible the current OCCI specification is released as a suite of complementary71

documents, which together form the complete specification. The documents are divided into four categories72

consisting of the OCCI Core, the OCCI Protocols, the OCCI Renderings and the OCCI Extensions.73

• The OCCI Core specification consists of a single document defining the OCCI Core Model. The OCCI74

Core Model can be interacted with through renderings (including associated behaviors) and expanded75

through extensions.76

• The OCCI Protocol specifications consist of multiple documents, each describing how the model can be77

interacted with over a particular protocol (e.g. HTTP, AMQP, etc.). Multiple protocols can interact78

with the same instance of the OCCI Core Model.79

• The OCCI Rendering specifications consist of multiple documents, each describing a particular rendering80

of the OCCI Core Model. Multiple renderings can interact with the same instance of the OCCI Core81

Model and will automatically support any additions to the model which follow the extension rules defined82

in OCCI Core.83

• The OCCI Extension specifications consist of multiple documents, each describing a particular extension84

of the OCCI Core Model. The extension documents describe additions to the OCCI Core Model defined85

within the OCCI specification suite.86

The current specification consists of seven documents. This specification describes version 1.2 of OCCI and87

is backward compatible with 1.1. Future releases of OCCI may include additional protocol, rendering and88

extension specifications. The specifications to be implemented (MUST, SHOULD, MAY) are detailed in the89

table below.90

Table 1. What OCCI specifications must be implemented for the specific version.

Document OCCI 1.1 OCCI 1.2

Core Model MUST MUST
Infrastructure Model SHOULD SHOULD
Platform Model MAY MAY
SLA Model MAY MAY
HTTP Protocol MUST MUST
Text Rendering MUST MUST
JSON Rendering MAY MUST

2 Notational Conventions91

All these parts and the information within are mandatory for implementors (unless otherwise specified). The key92

words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”, ”SHOULD NOT”,93

”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to be interpreted as described in RFC94

2119 [?].95

The following terms [?] are used when referring to URL components:96

1Infrastructure as a Service

occi-wg@ogf.org 4

GFD-R January 28, 2016

http://example.com:8080/over/there?action=stop#xyz97

__/ ______________/_________/ _________/ _/98

| | | | |99

scheme authority path query fragment100

3 OCCI RESTful HTTP Protocol101

This document specifies the OCCI HTTP Protocol, a RESTful protocol for communication between OCCI102

server and OCCI client. The OCCI HTTP Protocol support multiple different data formats as payload. Data103

formats are specified an separate documents.104

4 Namespace105

The OCCI HTTP Protocol maps the OCCI Core model into the URL hierarchy by binding Kind and Mixin106

instances to unique URL paths. Such a URL path is called the location of the Kind or Mixin. A provider is free107

to choose the location as long as it is unique within the service provider’s URL namespace. For example, the108

Kind instance2 for the Compute type may be bound to /my/occi/api/compute/.109

Whenever a location is rendered it MUST be either a String or as defined in RFC6570 [?].110

A Kind instance whose associated type cannot be instantiated MUST NOT be bound to an URL path. This111

applies to the Kind instance for OCCI Entity which, according to OCCI Core, cannot be instantiated [?].112

4.1 Bound and Unbound Paths113

Since a limited set of URL paths are bound to Kind and Mixin instances the URL hierarchy consists of both114

bound and unbound paths. A bound URL path is the location of a Kind or Mixin collection.115

An unbound URL path MAY represent the union of all Kind and Mixin collection ‘below’ the unbound path.116

5 Headers and Status Codes117

OCCI clients and Servers MUST include a minimum set of mandatory HTTP headers in each request and118

response in order to be compliant. There is also a minimum set of HTTP status codes which MUST be119

supported by an implementation of the OCCI HTTP Protocol.120

5.1 Requests Headers121

Accept An OCCI client SHOULD specify the media types of the OCCI data formats it supports in the Accept122

header.123

Content-type If an OCCI client submits payload in a HTTP request the OCCI client MUST specify the media124

type of the OCCI data format in the Content-type header.125

User-Agent An OCCI client SHOULD specify the OCCI version number in the User-Agent header. See126

Section 5.3.127

2http://schemas.ogf.org/occi/infrastructure#compute

occi-wg@ogf.org 5

GFD-R January 28, 2016

5.2 Response Headers128

Accept An OCCI server SHOULD specify the media types of the OCCI data formats it supports in the Accept129

header.130

Content-type An OCCI server MUST specify the media type of the OCCI data format used in an HTTP131

response.132

Server An OCCI server MUST specify the OCCI version number in the Server header. See Section 5.3.133

5.3 Versioning134

Information about the OCCI version supported by a server implementation MUST be advertised to a client on135

each response. The version field in the response MUST include the value OCCI/X.Y, where X is the major136

version number and Y is the minor version number of the implemented OCCI version. The server response137

MUST relay versioning information using the HTTP ‘Server’ header.138

HTTP/1.1 200 OK139

Server: occi-server/1.1 (linux) OCCI/1.2140

[...]141

Complementing the server-side behavior of an OCCI implementation, a client SHOULD indicate the version it142

expects to interact with. In a client, this information SHOULD be advertised in all requests it issues. A client143

request SHOULD relay versioning information in the ‘User-Agent’ header. The ‘User-Agent’ header MUST144

include the same value (OCCI/X.Y) as advertised by the server.145

GET /-/ HTTP/1.1146

Host: example.com147

User-Agent: occi-client/1.1 (linux) libcurl/7.19.4 OCCI/1.2148

[...]149

If an OCCI implementation receives a request from a client that supplies a version number higher than the150

server supports, the server MUST respond back to the client with an HTTP status code indicating that the151

requested version is not implemented. The HTTP 501 Not Implemented status code MUST be used.152

OCCI implementations compliant with this version of the document MUST use the version string OCCI/1.2.153

Versioning of extensions is out of scope for this document.154

5.4 Status Codes155

The below list specifies the minimum set of HTTP status codes an OCCI client MUST understand. An OCCI156

server MAY return other HTTP status codes but the exact client behavior in such cases is not specified. The157

return codes are specified by [?] and [?].158

200 OK indicates that the request has succeeded.159

201 Created indicates that the request has been fulfilled and has resulted in one or more new resources being160

created.161

204 No Content indicates that the server has fulfilled the request but does not need to return a body, relevant162

headers MAY be present.163

400 Bad Request indicates that the server cannot or will not process the request due to something that is164

perceived to be a client error165

401 Unauthorized indicates that the request has not been applied because it lacks valid authentication166

credentials for the target resource.167

occi-wg@ogf.org 6

GFD-R January 28, 2016

403 Forbidden indicates that the server understood the request but refuses to authorize it.168

404 Not Found indicates that the origin server did not find a current representation for the target resource169

or is not willing to disclose that one exists170

405 Method Not Allowed indicates that the method received in the request-line is known by the origin171

server but not supported by the target resource.172

406 Not Acceptable indicates that the target resource does not have a current representation that would be173

acceptable to the user agent174

409 Conflict indicates that the request could not be completed due to a conflict with the current state of175

the resource176

413 Request Entity Too Large indicates that the request is larger than the server is willing or able to177

process.178

500 Internal Server Error indicates that the server encountered an unexpected condition that prevented it179

from fulfilling the request.180

501 Not Implemented indicates that the server does not support the functionality required to fulfill the181

request.182

503 Service Unavailable indicates that the server is currently unable to handle the request due to a temporary183

overload or maintenance of the server184

6 Pagination185

To request partial results of an otherwise large collection message response, pagination SHOULD be used to186

reduce the load on both the client and the service provider. This is done in the following manner.187

The HTTP GET verb is used when accessing a URL of a collection and the query parameters of page and188

number MUST be used. page is an indexed integer that refers to a sub-collection of the requested collection.189

number is an integer of items that SHOULD be displayed in one paged response.190

If number is too large for the provider to handle (policy, technical limitations) then an HTTP 413 Request191

Entity Too Large response status code MUST be issued to the requesting client.192

If there is no more content to be served, the response status code issued to the requesting client MUST be an193

HTTP 200 OK and the response body MUST contain an empty collection.194

7 Filtering195

To request a sub-set of the given collection of Category instances or Entity sub-type instances, filtering SHOULD196

be used to specify the appropriate elements of the collection. Filtering can be performed via the HTTP GET197

verb on the Query Interface and on various Entity sub-type instance collections. The following specification198

of the filtering mechanism is in the process of being deprecated and will be replaced by a new mechanism in199

the next MAJOR release of the standard. In its current form, the availability of the filtering mechanism is200

restricted to rendering formats transportable in HTTP headers.201

7.1 Query Interface202

Filtering on the Query Interface SHOULD be performed via the HTTP GET verb by including a Category203

instance rendering in the HTTP request headers. If supported, the response MUST contain only Category204

instances related to the given Category instance. This includes Kinds, Actions and Mixins.205

occi-wg@ogf.org 7

GFD-R January 28, 2016

7.2 Entity Sub-type Instance Collection206

Filtering on Entity sub-type instance collections SHOULD be performed via the HTTP GET verb by including207

an Entity sub-type instance rendering in the HTTP request headers. If supported, the response MUST contain208

only Entity sub-type instances with Attribute values matching the given Entity sub-type instance Attribute209

values.210

Filtering Entity sub-type instances by assigned Mixin instances is implemented via Mixin-defined collections.211

8 HTTP Methods Overview212

Table 2 provides a brief overview of the HTTP verb usage. For details, please, see the sections below.213

Table 2. HTTP Verb Behavior Summary (* = Supports filtering mechanisms)

Path GET POST POST (Action) PUT DELETE

Entity sub-
type instance
(/compute/1).

Retrieve the En-
tity sub-type in-
stance representa-
tion.

Partial update of
the Entity sub-
type instance.

Perform an action
on the Entity sub-
type instance.

Create/Update
the Entity sub-
type instance,
supplying the full
representation of
the instance.

Delete the En-
tity sub-type in-
stance.

Entity sub-
type instance
collection
(/compute/).

Retrieve a collec-
tion of Entity sub-
type instances*.

Create a new En-
tity sub-type in-
stance in this col-
lection.

Perform actions
on a collection
of Entity sub-type
instances.

Not Defined. Remove Entity
sub-type in-
stances from the
collection.

Mixin-defined En-
tity sub-type in-
stance collection
(/my stuff/).

Retrieve a collec-
tion of Entity sub-
type instances*.

Add an Entity
sub-type instance
to this collection.

Perform actions
on a collection
of Entity sub-type
instances.

Update the collec-
tion supplying the
full representation
of the new collec-
tion. Including re-
moval and addi-
tion of Entity sub-
type instances.

Remove Entity
sub-type in-
stances from the
collection.

Query interface
(/-/).

Retrieve Category
instances*.

Add a user-
defined Mixin
instance.

Not Defined. Not Defined. Remove a user-
defined Mixin in-
stance.

9 HTTP Methods Applied to Query Interface214

This section describes HTTP methods used to retrieve and manipulate category instances. With the help of215

the query interface it is possible for the client to determine the capabilities of the OCCI implementation it216

refers to.217

The query interface MUST be implemented by all OCCI implementations. It MUST be found at:218

/-/219

Implementations MAY also adopt RFC5785 [?] compliance to advertise this location. Should implementations220

wish to advertise the Query Interface using the well-known mechanism then they MUST use the following221

path served from the authority:222

/.well-known/org/ogf/occi/-/223

The renderings for the Category instance and Category collection are defined in [?] and [?].224

occi-wg@ogf.org 8

GFD-R January 28, 2016

9.1 GET Method225

Client GET request226

The request MAY include a possible filter rendering.227

Server GET response228

The response MUST include a category collection rendering.229

Upon a successful request a 200 OK status code MUST be used.230

9.2 PUT Method231

N/A232

9.3 POST Method233

Client POST request234

The request MUST include at least one full category instance rendering. It MAY include a category collection235

rendering.236

Server POST response237

Upon a successful processing of the request, the 200 OK status code MUST be returned.238

9.4 DELETE Method239

Client DELETE request240

The request MUST include at least one full category instance rendering. It MAY include a category collection241

rendering.242

Server DELETE response243

Upon a successful processing of the request, the 200 OK status code MUST be returned.244

10 HTTP Methods Applied to Entity Instances245

This section describes HTTP methods used to retrieve and manipulate individual entity instances. An entity246

instance refers to an instance of the OCCI Resource type, OCCI Link type or a sub-type thereof [?].247

Each HTTP method described is assumed to operate on an URL referring to a single element in a collection, a248

URL such as the following:249

http://example.com/compute/012d2b48-c334-47f2-9368-557e75249042250

The renderings for the entity and action instances are defined in [?] and [?].251

10.1 GET Method252

The HTTP GET method retrieves a rendering of a single (existing) entity instance.253

occi-wg@ogf.org 9

GFD-R January 28, 2016

Client GET request254

N/A255

Server GET response256

The response MUST contain an entity instance rendering.257

Upon a successful processing of the request, the 200 OK status code MUST be returned.258

10.2 PUT Method259

The HTTP PUT method either creates a new or replaces an existing entity instance at the specified URL.260

10.2.1 Create261

Client PUT request262

The request MUST contain an entity instance rendering.263

Server PUT response264

The OCCI implementation MAY return either the 201 Created or 200 OK status code. If the OCCI implemen-265

tation returns the 200 OK status code, an entity instance rendering MUST be included as well. In case of the266

201 Created status code, a location (as defined in RFC7231 [?]) MUST be included.267

10.2.2 Replace268

Any OCCI Links associated with an existing OCCI Resource MUST be left intact.269

Client PUT request270

The request MUST contain an entity instance rendering.271

Server PUT response272

The OCCI implementation MAY return either the 201 Created or 200 OK status code. If the OCCI implemen-273

tation returns the 200 OK status code, an entity instance rendering MUST be included as well. In case of the274

201 Created status code, a location (as defined in RFC7231 [?]) MUST be included.275

10.3 POST Method276

The HTTP POST method either partially updates an existing entity instance or triggers an action on an277

existing entity instance.278

10.3.1 Partial Update279

Client POST request280

The request MUST contain a partial entity instance rendering of the entity instance to be changed.281

Server POST response282

The OCCI implementation MAY return either the 201 Created or 200 OK status code. If the OCCI implemen-283

tation returns the 200 OK status code, an entity instance rendering MUST be included as well. In case of the284

201 Created status code, a location (as defined in RFC7231 [?]) MUST be included.285

occi-wg@ogf.org 10

GFD-R January 28, 2016

10.3.2 Trigger Action286

Actions are triggered using the HTTP POST verb and by adding a query string to the URL. This query MUST287

contain a key-value pair. The key MUST be ‘action’. The value MUST equal to the Action’s term.288

Client POST request289

The request MUST contain an action invocation rendering.290

Server POST response291

The HTTP GET response MAY contain an entity instance rendering or a Category instance rendering depending292

on the requirements of the specified Action.293

Upon a successful processing of the request, the 200 OK status code MUST be returned.294

10.4 DELETE Method295

The HTTP DELETE method deletes an entity instance296

Client DELETE request297

N/A298

Server DELETE response299

Upon a successful processing of the request, the 200 OK or 204 No Content status code MUST be returned.300

11 HTTP Methods Applied to Collections301

This section describes the HTTP methods used to retrieve and manipulate collections. A collection refers to a302

set of entity instances.303

Each HTTP method described is assumed to operate on an URL referring to a collection, an URL such as the304

following:305

http://example.com/compute/306

The renderings for the entity instance, entity collection and action instances are defined in [?] and [?].307

11.1 GET Method308

The HTTP GET method retrieves a rendering of a collection of existing entity instances.309

Client GET request310

The request MAY include a possible filter rendering.311

Server GET response312

The response MUST include an entity collection rendering.313

Upon a successful processing of the request, the 200 OK status code MUST be returned.314

occi-wg@ogf.org 11

GFD-R January 28, 2016

11.2 PUT Method315

The HTTP PUT is only defined for a collection defined by a Mixin. It makes replacing the collection possible.316

Client PUT request317

The request MUST include an entity collection rendering.318

Server PUT response319

The response MUST include an entity collection rendering.320

Upon a successful processing of the request, the 200 OK status code MUST be returned.321

11.3 POST Method322

The HTTP POST method is defined for creation of an entity instance, association of entity instance with a323

Mixin and triggering actions.324

11.3.1 Create Entity Instance325

Client POST request326

The request MUST include at least one full entity instance rendering. It MAY include an entity collection327

rendering.328

Server POST response329

The OCCI implementation MAY return either the 201 Created or 200 OK status code. If the OCCI implemen-330

tation returns the 200 OK status code, an entity instance rendering or collection rendering MUST be included331

as well. In case of the 201 Created status code, an entity instance location (as defined in RFC7231 [?]) or a332

list of entity instance locations MUST be included.333

11.3.2 Associate Mixin with Entity Instance334

This operation MUST only be available for collections defined by a Mixin.335

Client POST request336

The request MUST include an entity collection rendering which require the Mixin to be applied.337

Server POST response338

On successful operation the server replies with the 200 OK HTTP status code it MUST include an entity339

collection rendering.340

11.3.3 Trigger Action341

Actions are triggered using the HTTP POST verb and by adding a query string to the URL. This query MUST342

contain a key-value pair. The key MUST be ‘action’. The value MUST equal to the Action’s term.343

Client POST request344

The request MUST contain an action invocation rendering.345

occi-wg@ogf.org 12

GFD-R January 28, 2016

Server POST response346

The HTTP GET response MAY contain an entity collection rendering or a Category collection rendering347

depending on the requirements of the specified Action.348

Upon a successful processing of the request, the 200 OK status code MUST be returned.349

11.4 DELETE Method350

The HTTP delete method is used to either delete all entity instances in a collection or disassociate entity351

instance from a collection defined by a Mixin.352

11.4.1 Delete Entity Instances353

Client DELETE request354

N/A355

Server DELETE response356

Upon a successful processing of the request, the 200 OK or 204 No Content status code MUST be returned.357

11.4.2 Disassociate Mixin from Entity Instances358

This operation MUST only be available for collections defined by a Mixin.359

Client DELETE request360

The request MAY include entity collection rendering which requires the Mixin to be disassociated.361

Server DELETE response362

Upon a successful processing of the request, the 200 OK status code MUST be returned.363

12 Security Considerations364

The OCCI HTTP rendering assumes HTTP or HTTP-related mechanisms for security. As such, implementations365

SHOULD support TLS3 for transport layer security.366

Authentication SHOULD be realized by HTTP authentication mechanisms, namely HTTP Basic or Digest367

Auth [?], with the former as default. Additional profiles MAY specify other methods and should ensure that368

the selected authentication scheme can be rendered over the HTTP or HTTP-related protocols.369

Authorization is not enforced on the protocol level, but SHOULD be performed by the implementation. For370

the authorization decision, the authentication information as provided by the mechanisms described above371

MUST be used.372

Protection against potential Denial-of-Service scenarios is out of scope of this document; the OCCI HTTP373

Protocol specification assumes cooperative clients that SHOULD use selection and filtering as provided by374

the Category mechanism wherever possible. Additional profiles to this document, however, MAY specifically375

address such scenarios; in that case, best practices from the HTTP ecosystem and appropriate mechanisms as376

part of the HTTP protocol specification SHOULD be preferred.377

As long as specific extensions of the OCCI Core and Model specification do not impose additional security378

requirements on top of the OCCI Core and Model specification itself, the security considerations documented379

above apply to all (existing and future) extensions. Otherwise, an additional profile to this specification MUST380

be provided; this profile MUST express all additional security considerations using HTTP mechanisms.381

3http://datatracker.ietf.org/wg/tls/

occi-wg@ogf.org 13

GFD-R January 28, 2016

13 Glossary382

Term Description
Action An OCCI base type. Represents an invocable operation on an Entity sub-type

instance or collection thereof.
Attribute A type in the OCCI Core Model. Describes the name and properties of attributes

found in Entity types.
Category A type in the OCCI Core Model and the basis of the OCCI type identification

mechanism. The parent type of Kind.
capabilities In the context of Entity sub-types capabilities refer to the Attributes and Actions

exposed by an entity instance.
Collection A set of Entity sub-type instances all associated to a particular Kind or Mixin

instance.
Entity An OCCI base type. The parent type of Resource and Link.
entity instance An instance of a sub-type of Entity but not an instance of the Entity type itself. The

OCCI model defines two sub-types of Entity: the Resource type and the Link type.
However, the term entity instance is defined to include any instance of a sub-type
of Resource or Link as well.

Kind A type in the OCCI Core Model. A core component of the OCCI classification
system.

Link An OCCI base type. A Link instance associates one Resource instance with another.
Mixin A type in the OCCI Core Model. A core component of the OCCI classification

system.
mix-in An instance of the Mixin type associated with an entity instance. The “mix-in”

concept as used by OCCI only applies to instances, never to Entity types.
OCCI Open Cloud Computing Interface.
OGF Open Grid Forum.
Resource An OCCI base type. The parent type for all domain-specific Resource sub-types.
resource instance See entity instance. This term is considered obsolete.
tag A Mixin instance with no attributes or actions defined. Used for taxonomic organi-

sation of entity instances.
template A Mixin instance which if associated at instance creation-time pre-populate certain

attributes.
type One of the types defined by the OCCI Core Model. The Core Model types are

Category, Attribute, Kind, Mixin, Action, Entity, Resource and Link.
concrete type/sub-type A concrete type/sub-type is a type that can be instantiated.
URI Uniform Resource Identifier.
URL Uniform Resource Locator.
URN Uniform Resource Name.

383

384

14 Contributors385

We would like to thank the following people who contributed to this document:386

occi-wg@ogf.org 14

GFD-R January 28, 2016

Name Affiliation Contact
Michael Behrens R2AD behrens.cloud at r2ad.com
Mark Carlson Toshiba mark at carlson.net
Augusto Ciuffoletti University of Pisa augusto.ciuffoletti at gmail.com
Andy Edmonds ICCLab, ZHAW edmo at zhaw.ch
Sam Johnston Google samj at samj.net
Gary Mazzaferro Independent garymazzaferro at gmail.com
Thijs Metsch Intel thijs.metsch at intel.com
Ralf Nyrén Independent ralf at nyren.net
Alexander Papaspyrou Adesso alexander at papaspyrou.name
Boris Parák CESNET parak at cesnet.cz
Alexis Richardson Weaveworks alexis.richardson at gmail.com
Shlomo Swidler Orchestratus shlomo.swidler at orchestratus.com
Florian Feldhaus Independent florian.feldhaus at gmail.com
Zdeněk Šustr CESNET zdenek.sustr at cesnet.cz
Jean Parpaillon Inria jean.parpaillon at inria.fr
Philippe Merle Inria philippe.merle@inria.fr

387

Next to these individual contributions we value the contributions from the OCCI working group.388

15 Intellectual Property Statement389

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that390

might be claimed to pertain to the implementation or use of the technology described in this document or the391

extent to which any license under such rights might or might not be available; neither does it represent that392

it has made any effort to identify any such rights. Copies of claims of rights made available for publication393

and any assurances of licenses to be made available, or the result of an attempt made to obtain a general394

license or permission for the use of such proprietary rights by implementers or users of this specification can be395

obtained from the OGF Secretariat.396

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,397

or other proprietary rights which may cover technology that may be required to practice this recommendation.398

Please address the information to the OGF Executive Director.399

16 Disclaimer400

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all401

warranties, express or implied, including but not limited to any warranty that the use of the information herein402

will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.403

17 Full Copyright Notice404

Copyright c© Open Grid Forum (2009-2015). All Rights Reserved.405

This document and translations of it may be copied and furnished to others, and derivative works that comment406

on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in407

whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph408

are included on all such copies and derivative works. However, this document itself may not be modified in409

any way, such as by removing the copyright notice or references to the OGF or other organizations, except410

as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights411

defined in the OGF Document process must be followed, or as required to translate it into languages other412

than English.413

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or414

assignees.415

occi-wg@ogf.org 15

	Introduction
	Notational Conventions
	OCCI RESTful HTTP Protocol
	Namespace
	Bound and Unbound Paths

	Headers and Status Codes
	Requests Headers
	Response Headers
	Versioning
	Status Codes

	Pagination
	Filtering
	Query Interface
	Entity Sub-type Instance Collection

	HTTP Methods Overview
	HTTP Methods Applied to Query Interface
	GET Method
	PUT Method
	POST Method
	DELETE Method

	HTTP Methods Applied to Entity Instances
	GET Method
	PUT Method
	Create
	Replace

	POST Method
	Partial Update
	Trigger Action

	DELETE Method

	HTTP Methods Applied to Collections
	GET Method
	PUT Method
	POST Method
	Create Entity Instance
	Associate Mixin with Entity Instance
	Trigger Action

	DELETE Method
	Delete Entity Instances
	Disassociate Mixin from Entity Instances

	Security Considerations
	Glossary
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice

