
Errata Draft GFD-P-R.183 Ralf Nyrén, Aurenav1

OCCI-WG Andy Edmonds, Intel2

Alexander Papaspyrou, TU Dortmund University3

Thijs Metsch, Platform Computing4

April 7, 20115

Errata Update: October 1, 20126

Open Cloud Computing Interface - Core7

Status of this Document8

This document provides information to the community regarding the specification of the Open Cloud Com-9

puting Interface. Distribution is unlimited.10

Copyright Notice11

Copyright c© Open Grid Forum (2009-2012). All Rights Reserved.12

Trademarks13

OCCI is a trademark of the Open Grid Forum.14

Abstract15

This document, part of a document series, produced by the OCCI working group within the Open Grid Forum16

(OGF), provides a high-level definition of a Protocol and API. The document is based upon previously gathered17

requirements and focuses on the scope of important capabilities required to support modern service offerings.18



Errata Draft GFD-P-R.183 October 1, 2012

Contents19

1 Introduction 320

2 Notational Conventions 321

3 OCCI Core 322

4 OCCI Core Model 423

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

4.2 Terms and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

4.3 Mutability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

4.4 Classification and Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

4.4.1 Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628

4.4.2 Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

4.4.3 Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830

4.4.4 Mixin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931

4.4.5 Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032

4.4.6 Resource Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133

4.4.7 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134

4.4.8 Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135

4.4.9 Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236

4.5 The OCCI Core Base Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237

4.5.1 Entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238

4.5.2 Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1339

4.5.3 Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1440

4.6 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1441

4.6.1 Category instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1542

4.6.2 Sub-typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1543

4.6.3 Mix-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1544

5 Security Considerations 1545

6 Errata 1546

7 Glossary 1747

8 Contributors 1748

9 Intellectual Property Statement 1949

10 Disclaimer 1950

11 Full Copyright Notice 1951

occi-wg@ogf.org 2



Errata Draft GFD-P-R.183 October 1, 2012

1 Introduction52

The Open Cloud Computing Interface (OCCI) is a RESTful Protocol and API for all kinds of management53

tasks. OCCI was originally initiated to create a remote management API for IaaS1 model-based services,54

allowing for the development of interoperable tools for common tasks including deployment, autonomic scaling55

and monitoring. It has since evolved into a flexible API with a strong focus on interoperability while still offering56

a high degree of extensibility. The current release of the Open Cloud Computing Interface is suitable to serve57

many other models in addition to IaaS, including PaaS and SaaS.58

In order to be modular and extensible the current OCCI specification is released as a suite of complimentary59

documents, which together form the complete specification. The documents are divided into three categories60

consisting of the OCCI Core, the OCCI Renderings and the OCCI Extensions.61

• The OCCI Core specification consists of a single document defining the OCCI Core Model. The OCCI62

Core Model can be interacted with renderings (including associated behaviours) and expanded through63

extensions.64

• The OCCI Rendering specifications consist of multiple documents each describing a particular rendering65

of the OCCI Core Model. Multiple renderings can interact with the same instance of the OCCI Core66

Model and will automatically support any additions to the model which follow the extension rules defined67

in OCCI Core.68

• The OCCI Extension specifications consist of multiple documents each describing a particular extension69

of the OCCI Core Model. The extension documents describe additions to the OCCI Core Model defined70

within the OCCI specification suite. They do not require changes to the HTTP Rendering specifications71

as of this version of the specification.72

The current specification consists of three documents. This specification describes version 1.1 of OCCI. Future73

releases of OCCI may include additional rendering and extension specifications. The documents of the current74

OCCI specification suite are:75

OCCI Core describes the formal definition of the the OCCI Core Model [1].76

OCCI HTTP Rendering defines how to interact with the OCCI Core Model using the RESTful OCCI API77

[2]. The document defines how the OCCI Core Model can be communicated and thus serialised using78

the HTTP protocol.79

OCCI Infrastructure contains the definition of the OCCI Infrastructure extension for the IaaS domain [3].80

The document defines additional resource types, their attributes and the actions that can be taken on81

each resource type.82

2 Notational Conventions83

All these parts and the information within are mandatory for implementors (unless otherwise specified). The84

key words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”, ”SHOULD85

NOT”, ”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to be interpreted as described86

in RFC 2119 [4].87

3 OCCI Core88

The Open Cloud Computing Interface is a boundary protocol and API that acts as a service front-end to a89

provider’s internal management framework. Figure 1 shows OCCI’s place in a provider’s architecture.90

1Infrastructure as a Service

occi-wg@ogf.org 3



Errata Draft GFD-P-R.183 October 1, 2012

Service Provider
 Domain

Resource 
Management 
Framework

Resources

OCCI

Service 
Consumer

Comm. 
is HTTP

Comm. is 
related to IMF 
interface reqs

Comm. is 
internal

most 
interoperable

least
 interoperable

Proprietary
API

Figure 1. OCCI’s place in a provider’s architecture.

Service consumers can be both end-users and other system instances. OCCI is suitable for both cases. The91

key feature is that OCCI can be used as a management API for all kinds of resources while at the same time92

maintaining a high level of interoperability.93

This document, the OCCI Core specification, defines the OCCI Core Model. This model is the core of the94

specification suite and it can be interacted with by renderings (including associated behaviours) and expanded95

through extensions. In itself, the core model is only useful for a very limited set of use cases. However, it96

provides the basis for renderings and extensions to build upon.97

4 OCCI Core Model98

The OCCI Core Model defines a representation of instance types which can be manipulated through an OCCI99

rendering implementation. It is an abstraction of real-world resources, including the means to identify, classify,100

associate and extend those resources.101

A fundamental feature of the OCCI Core Model is that it can be extended in such a way that any extension102

will be discoverable and visible to an OCCI client at run-time. An OCCI client can connect to an OCCI103

implementation using an extended OCCI Core Model, without knowing anything in advance, and still be104

able to discover and understand, at run-time, the various Resource and Link sub-types supported by that105

implementation. What Mixins are supported is also discoverable in the same fashion. For example, a web-106

based OCCI client could easily be reused as the management tool for a wide variety of services.107

The OCCI Core Model can be extended through inheritance but also using a “mix-in” like concept.108

Mixins first appeared in the Symbolics’ object-oriented Flavors [5] system (developed by Howard109

Cannon), which was an approach to object-orientation used in Lisp Machine Lisp.2110

The mix-in model only applies at the instance level, i.e. the “object level”, and thereby differs from the more111

common uses of the mix-in concept. A mix-in in OCCI can never be applied to a type, only to an instance.112

4.1 Overview113

The UML class diagram shown in figure 2 gives an overview of the OCCI Core Model. It must be noted that114

the UML diagram in itself is not a complete definition of the model. The diagram is merely provided as an115

overview to help understanding the model.116

2http://en.wikipedia.org/wiki/Mixin.

occi-wg@ogf.org 4



Errata Draft GFD-P-R.183 October 1, 2012

Category
scheme: URI
term: String
title: String [0..1]

Kind
 

Mixin
 

Action
 

Entity
 id: URI

Resource
 

Link
 

Attr ibute
name: String
type: String [0..1]
mutable: Boolean [0..1]
required: Boolean [0..1]
default: String [0..1]

0..1 *actions 1* actions

*
          mixins

* entit ies

1
          kind

*entit ies

1 target

1 source *links

      0..1
          related

*

  *
                          related

*

1 *attr ibutes

Figure 2. UML class diagram of the OCCI Core Model. The diagram provides an overview of the OCCI Core Model but is not
a standalone definition thereof.

The heart of the OCCI Core Model is the Resource type. Any resource exposed through OCCI is a Resource117

or a sub-type thereof. A resource can be e.g. a virtual machine, a job in a job submission system, a user, etc.118

The Resource type contains a number of common attributes that Resource sub-types inherit. The Resource119

type is complemented by the Link type which associates one Resource instance with another. The Link type120

contains a number of common attributes that Link sub-types inherit.121

Entity is an abstract type, which both Resource and Link inherit. Each sub-type of Entity is identified by a122

unique Kind instance.123

The Kind type is the core of the type classification system built into the OCCI Core Model. Kind is a124

specialisation of Category and introduces additional resource capabilities in terms of Actions. An Action125

identifies an invocable operation applicable to a resource instance.126

Attribute describe the name and properties of the OCCI Attributes found in Entity and its sub-types.127

The last type defined by the OCCI Core Model is the Mixin type. An instance of Mixin can be associated128

with a resource instance, i.e. a sub-type of Entity, to “mix-in” additional resource capabilities at run-time.129

For compliance with OCCI Core, all of the types defined in the OCCI Core Model MUST be implemented.130

The following sections of the specification contain the formal definition of the OCCI Core Model.131

4.2 Terms and definitions132

Section 7 provides a glossary of all terms and definitions with a specific meaning to the OCCI specification133

suite. However, for reader convenience, a sub-set of the glossary is provided here as well. The following134

terminology has specific meaning in the OCCI context:135

concrete type/sub-type A concrete sub-type is a type that can be instantiated.136

mix-in An instance of the Mixin type associated with a resource instance. The “mix-in” concept as used137

by OCCI only applies to instances, never to Entity types. See section 4.4.4.138

model attribute An internal attribute of a the Core Model which is not client discoverable. Examples are139

Entity.id, Link.source and Link.target. A model attribute is not identified by an Attribute instance.140

occi-wg@ogf.org 5



Errata Draft GFD-P-R.183 October 1, 2012

OCCI Attribute A client discoverable attribute identified by an instance of the Attribute type. Examples are141

occi.core.title and occi.core.summary. See section 4.4.2.142

OCCI base type(s) The OCCI base types are Entity, Resource and Link. See section 4.5.143

resource capabilities Resource capabilities refer to Attributes and Actions exposed by a resource instance.144

resource instance An instance of a sub-type of Entity. The OCCI model defines two sub-types of Entity,145

the Resource type and the Link type. However, the term resource instance is defined to include any146

instance of a sub-type of Resource or Link as well.147

template A mechanism to provide default values for a resource instance. See section 4.4.7.148

type A type refer to one of those defined by the OCCI Core Model. The OCCI Core Model types are Category,149

Attribute, Kind, Mixin, Action, Entity, Resource and Link.150

4.3 Mutability151

Attributes of an OCCI Core Model type instance are either client mutable or client immutable. If an attribute152

is noted to be mutable this MUST be interpreted that a client can create an instance that is parametrised by153

the attribute. Likewise, if an attribute is mutable, a client can update that instance’s mutable attribute value154

and the server side MUST support this. If an attribute is marked as immutable, it indicates that the server155

side implementation MUST manage these exclusively. Immutable attributes MUST NOT be modifiable by156

clients under any circumstance.157

4.4 Classification and Identification158

The OCCI Core Model provides a built-in type classification system allowing for safe extension towards domain-159

specific usage (e.g. infrastructure). This system is the OCCI type system and offers the means to be easily160

and transparently (i.e. no format translation required) exposed over either a text- or binary-based protocol.161

The classification system can be summarised with the following key features:162

• Each OCCI base type and extension thereof is assigned a unique type identifier (a Kind instance), which163

allow for dynamic discovery of available types. All Entity sub-types, including core model extensions,164

are assigned a unique Kind instance.165

• The inheritance structure of Entity, Resource and Link is client discoverable. This also applies to any166

sub-type of Resource and Link and therefore an OCCI client can discover the type inheritance structure167

used by a particular OCCI implementation. The discovery of the inheritance structure is made possible168

through the relationship of Kind instances.169

• The classification system allows Mixin instances to be associated to resource instances in order to assign170

additional resource capabilities in terms of Attributes and Actions at run-time.171

• Tagging of resource instances is supported through the association of Mixin instances. A tag is simply172

a Mixin instance, which defines no additional resource capabilities.173

• A collection of associated resource instances is implicitly defined for each Kind and Mixin instance.174

That is, all resource instances associated with a particular Kind or Mixin instance form a collection.175

4.4.1 Category176

The Category type is the basis of the type identification mechanism used by the OCCI classification system.177

It MUST be implemented. There are no instances of the Category type itself in the OCCI Core Model. The178

Category type is only used through its sub-types Kind, Mixin and Action. Table 1 defines the model attributes179

the Category type MUST implement to be compliant.180

occi-wg@ogf.org 6



Errata Draft GFD-P-R.183 October 1, 2012

Table 1. Model attributes defined for the Category type.

Model attribute Type Multiplicity Client Mutability Description

term String 1 Immutable Unique identifier of the Category instance within the
categorisation scheme.

scheme URI 1 Immutable The categorisation scheme.
title String 0..1 Immutable The display name of an instance.
attributes Attribute 0..* Immutable Set of Attribute instances.

A Category instance is uniquely identified by concatenating the categorisation scheme with the category term,181

e.g. http://example.com/category/scheme#term. This is done to enable discovery of Category definitions in182

text-based renderings such as HTTP. All renderings MUST make use of and understand concatenated unique183

type identifiers of Category instances. Sub-types of Category such as Kind, Mixin and Action inherit this184

property.185

The categorisation schemes defined in the OCCI specification all use the http://schemas.ogf.org/occi/ base186

URL. This base URL is reserved for OCCI an MUST NOT be used by service provider extensions.187

A Category instance3 have zero or more associated Attribute instances. Each Attribute, see section 4.4.2,188

describes the name and properties of single attribute.189

4.4.2 Attribute190

The Attribute type has a composite relationship to Category and defines the name and properties of client191

discoverable OCCI Attributes. Table 2 defines the model attributes the Attribute type MUST implement to192

be compliant.193

Table 2. Model attributes defined for the Attribute type.

Model attribute Type Multiplicity Client Mutability Description

name String 1 Immutable OCCI Attribute name.
type Enum {string,

number, boolean}
0..1 Immutable OCCI Attribute type.

mutable Boolean 0..1 Immutable OCCI Attribute mutability.
required Boolean 0..1 Immutable Whether the OCCI Attribute must be supplied

by the client at resource creation-time.
default String 0..1 Immutable OCCI Attribute default value.

An OCCI Attribute name MUST be defined by Attribute.name. The OCCI Attribute namespace is flat and the194

“occi.” prefix is reserved for the OCCI specification. Domain-specific OCCI Attribute names MUST NOT195

contain the “occi.” prefix, instead they SHOULD use a prefix consisting of the provider’s reverse domain196

name. E.g. “com.example.”.197

An Attribute MAY specify the following properties in addition to the OCCI Attribute name. Attribute prop-198

erties MUST be client discoverable.199

type The type of the OCCI Attribute. The types supported are “String”, “Number” and “Boolean”.200

mutable Whether a OCCI client can change the OCCI Attribute value. See section 4.3.201

required If an OCCI Attribute is “required” a client MUST specify an value at resource creation-time.202

default The default value given to an OCCI Attribute if the client does not specify a value at resource203

creation-time. The default property is used to implement templates, see section 4.4.7.204

3Also applies to Kind, Mixin and Action instances.

occi-wg@ogf.org 7



Errata Draft GFD-P-R.183 October 1, 2012

4.4.3 Kind205

The Kind type, together with the Mixin type, defines the classification system of the OCCI Core Model. It206

MUST be implemented. The Kind type represents the type identification mechanism for all Entity types207

present in the model. Sub-types MUST NOT be derived from the Kind type.208

A unique Kind instance MUST be assigned to each and every Entity sub-type defined in an OCCI implemen-209

tation.210

Every instance of Kind represents a unique type identifier for a particular sub-type of Entity. Consequently,211

when an Entity sub-type is instantiated the resource instance MUST be associated with its type identifier,212

i.e. the Kind instance. A resource instance MUST remain associated with its Kind instance throughout its213

lifetime. For example an instance of Resource MUST always be associated with the Kind instance which214

identifies the Resource type.215

In the initial instantiation of the OCCI Core Model, with no core model extensions, three instances of Kind216

will be present: one for Entity, another for Resource and the last one for Link.217

Table 3. Model attributes defined for the Kind type.

Model attribute Type Multiplicity Client Mutability Description

actions Action 0..* Immutable Set of Action instances defined by the Kind instance.
related Kind 0..1 Immutable Another Kind instances which this Kind relates to.
entities Entity 0..* Immutable Set of resource instances, i.e. Entity sub-type instances.

Resources instantiated from the Entity sub-type which
is uniquely identified by this Kind instance.

The Kind type inherits the Category type. To be compliant the Kind type MUST implement the model218

attributes defined in table 3 and the inherited model attributes defined in table 1. The following rules apply219

to all instances of the Kind type:220

• A unique Kind instance MUST be assigned to each and every sub-type of Entity, including Entity itself.221

• A Kind instance MUST expose the discoverable attributes defined for the Entity sub-type it identifies.222

The Entity attributes are described by Attribute instances stored in the “attributes” model attribute223

inherited from Category. E.g. the Kind instance identifying the Resource type has Kind.attributes224

populated with a single Attribute instance where Attribute.name is "occi.core.summary".225

• A Kind instance MUST expose the Actions defined for its Entity sub-type. Actions are exposed through226

the Kind.actions model attribute which represent the association between a Kind instance and the227

Action instances it defines.228

• A Kind instance MUST be related, either directly or indirectly, to the Kind instance of Entity, i.e.229

http://schemas.ogf.org/occi/core#entity. The Kind.related model attribute represent the relationship230

to another Kind instance.231

• If type B inherits type A, where A is a sub-type of Entity, the Kind instance of B MUST be directly232

related to the Kind instance of A. See Kind Relationships below.233

Kind Relationships Kind relationships are defined through the “related” model attribute present in every234

Kind instance. The “related” model attribute define which other Kind instances a particular Kind is related235

to.236

A Kind instance identifies a unique type, either the Entity type itself or a sub-type thereof. Each Kind instance237

MUST be related to the Kind of the parent type.238

The OCCI base types Resource and Link both extend Entity and therefore their identifying Kind instances239

MUST be related to Kind assigned to the Entity type.240

These rules imply a hierarchy of related Kind instances. The Kind relationships thus mirror the type inheritance241

structure of the OCCI Core Model and any extension thereof.242

occi-wg@ogf.org 8



Errata Draft GFD-P-R.183 October 1, 2012

compute : Kind
 term = compute
 scheme = http://schemas.ogf.org/occi/infrastructure#
 title = Compute Resource
 attributes: Attribute = [occi.compute.cores, occi.compute.memory, ...]
 actions: Action = [...]
 related: Kind = http://schemas.ogf.org/occi/core#resource
 entities: Compute = []

resource : Kind
 term = resource
 scheme = http://schemas.ogf.org/occi/core#
 title = Resource
 attributes: Attribute = [occi.core.summary]
 actions: Action = []
 related: Kind = http://schemas.ogf.org/occi/core#entity
 entities: Resource = []

entity : Kind
 term = entity
 scheme = http://schemas.ogf.org/occi/core#
 title = Entity
 attributes: Attribute = [occi.core.title]
 actions: Action = []

Figure 3. Object diagram illustrating the Kind instances involved for the Entity, Resource and Compute types. The Compute
type is an extension to the OCCI Core Model defined in the OCCI Infrastructure document [3].

Figure 3 illustrates the relationship of the Kind instances assigned to the Entity, Resource and Compute4
243

types. Compute inherits Resource and therefore the Kind instance assigned to Compute is related to the Kind244

instance of Resource. The same applies to the Resource type which inherit Entity.245

As can be seen in figure 3 the Kind instance relationships mirror the inheritance structure of the types.246

4.4.4 Mixin247

The Mixin type complements the Kind type in defining the OCCI Core Model type classification system.248

It MUST be implemented. The Mixin type represent an extension mechanism, which allows new resource249

capabilities to be added to resource instances both at creation-time and/or run-time. Sub-types MUST NOT250

be derived from the Mixin type.251

A Mixin instance can be associated with any existing resource instance and thereby identify new resource252

capabilities, i.e. Attributes and Actions, for the resource instance. However, a Mixin can never be applied to a253

type. In the initial instantiation of the OCCI Core Model, with no extensions, no Mixin instances are present.254

A Mixin instance MAY be associated with any resource instance, either at instance creation-time or at run-time.255

Although the OCCI Core Model has no such restrictions, an OCCI implementation MAY impose restrictions256

on which resource instances can be associated with a particular Mixin instance.257

When a client attempts to associate a Mixin instance to a resource at a stage not supported by a particular258

provider’s OCCI implementation, the provider MUST notify the client it has issued a bad request. For example259

a “geographical location” Mixin might be applicable to all resource instances while a “bandwidth” Mixin may260

only applicable to resources instantiated from the Network5 type. Such restrictions, if not otherwise stated,261

are up to the provider to implement.262

Table 4. Model attributes defined for the Mixin type.

Model attribute Type Multiplicity Client Mutability Description

actions Action 0..* Immutable Set of Action instances defined by the Mixin instance.
related Mixin 0..* Immutable Set of related Mixin instances.
entities Entity 0..* Mutable Set of resource instances, i.e. Entity sub-type instances,

associated with the Mixin instance.

The Mixin type inherits the Category type. To be compliant the Mixin type MUST implement the model263

attributes defined in table 4 and the inherited model attributes defined in table 1. The following rules apply264

to all instances of the Mixin type:265

4The Compute type is defined in the OCCI Infrastructure document [3].
5The Network type is defined in OCCI Infrastructure [3].

occi-wg@ogf.org 9



Errata Draft GFD-P-R.183 October 1, 2012

• A Mixin instance MUST only be associated with resource instances, not types, either at creation-time266

or run-time.267

• A Mixin instance is only a type identifier. It MUST NOT provide the implementation of the new resource268

capabilities it introduces. For example, a Mixin instance never contains the value of an OCCI Attribute.269

• A Mixin instance MAY introduce additional Attributes when applied to a resource instance. The270

name and properties of those OCCI Attributes MUST be exposed through Mixin.attributes in-271

herited from Category. E.g. a Location Mixin defining the “com.example.location” OCCI Attribute272

MUST have Location.attributes populated with a single Attribute instance where Attribute.name is273

"com.example.location".274

• A Mixin instance MAY define Action instances that will identify additional invocable operations on275

any resource instance associated with the Mixin. Actions defined by a Mixin are exposed through the276

Mixin.actions model attribute that represent the association between a Mixin instance and the Action277

instances it defines.278

• A Mixin instance MAY be related to another Mixin instance. If Mixin B is related to Mixin A, any279

resource instance associated with Mixin B will receive the resource capabilities defined by both Mixin280

B and Mixin A. See Mixin Relationships below.281

• A Mixin instance defining no additional resource capabilities is considered to be a tag.282

• A Mixin instance MAY be used as a resource template. A template define default values for OCCI283

Attributes to be applied at resource creation-time. See section 4.4.7.284

Mixin Relationships A Mixin instance MAY be related to another Mixin instance for type classification285

purposes. For example a set of operating system templates, implemented as Mixin instances, could be related286

to an “OS-template” Mixin in order to help identification.287

Attributes and Actions defined by different Mixin instances are combined when Mixin relationships are present.288

Therefore a resource instance associated with a particular Mixin will receive the additional capabilities defined289

by any related Mixin instances as well as those defined by the Mixin associated.290

4.4.5 Action291

The Action type is the final part of the OCCI type classification system and identifies invocable operations292

on resource instances and collections. It MUST be implemented. Each Action instance identifies a single293

invocable operation. The Action instance is only an identifier and does not represent the implementation of294

the operation.295

The Action type inherit the Category type. To be compliant the Action type MUST implement the inherited296

model attributes defined in table 1.297

Table 5. Example of an Action instance which identifies a “resize” operation.

Model attribute Value

term resize
scheme http://schemas.ogf.org/occi/infrastructure/storage/action#

title Resize virtual disk
attributes Attribute("resize")

An Action instance MUST always bound to either a Kind or a Mixin instance through a composite association.298

An Action is considered to be a capability of the Kind or Mixin instance it is associated with. The operation299

identified by an Action MAY be invoked on any resource instance associated with the Kind or Mixin instance300

defining the Action. An OCCI implementation MAY however refuse an the operation from being invoked if301

currently not applicable.302

occi-wg@ogf.org 10



Errata Draft GFD-P-R.183 October 1, 2012

The operation identified by an Action instance MAY be invoked on a collection of Entity sub-type instances.303

The Action is only considered valid if all resource instances of the collection are associated with the Kind or304

Mixin defining the Action instance.305

An Action instance MAY identify OCCI Attributes which correspond to parameters of the invocable operation.306

The mechanism to define OCCI Attributes is inherited from Category and follow the same semantics. The307

namespace restrictions imposed on resource instance attributes (see 4.4.2) does however not apply to Actions.308

Table 5 shows an example of a “resize” operation defined for a storage resource could have a “size” parameter309

which represent the size argument of the resize operation. In that example the identifying Action instance310

would have Action.attributes populated with an Attribute instance where Attribute.name = "size".311

4.4.6 Resource Instantiation312

To create a resource instance a client MUST supply the concrete Entity sub-type by a submitting a reference313

to the type-identifying Kind. The reference MUST consist of the term and categorisation scheme which314

uniquely identify the Kind instance, see section 4.4.1. All OCCI implementations MUST understand these315

requests.316

A client MAY also submit any number of references to Mixin instances to be associated with the resource to317

be created. A Mixin reference submitted by a client MUST consist of the term and categorisation scheme318

which identify the Mixin instance, see section 4.4.1.319

4.4.7 Templates320

A template is a mechanism to provide default values for resource instances. OCCI supports templates through321

Mixins.322

A Mixin instance associated at resource creation-time MAY provide default values for OCCI Attributes. Each323

default value is specified through Attribute.default.324

A Mixin instance MAY provide default values for OCCI Attributes already defined by a Kind. A Mixin.s325

Attribute.default overrides the default specified by the Kind.326

4.4.8 Collections327

One or more resource instances associated with the same Kind or Mixin instance, automatically form a328

collection. Each Kind and Mixin instance in the system identifies a collection consisting of all different329

resource instances associated with the same Kind or Mixin.330

A resource instance is always a member of the collection indicated by the Entity sub-type’s unique Kind331

instance. A Kind instance maintains the collection of all resource instances (of the type identified by the332

Kind).333

Since a Mixin instance can be associated to any resource instance, a collection can contain resource instances334

of different Entity sub-types. For example, an instance of the Resource type will always be associated to the335

Kind instance http://scheme.ogf.org/occi/core#resource and thus part of the collection implied by that Kind336

instance.337

Adding a resource instance to a collection is accomplished by associating the resource instance to the338

corresponding Mixin instance.339

Removing a resource instance from a collection is accomplished by disassociating the resource instance340

from the corresponding Mixin instance.341

An OCCI implementation MUST allow a client to navigate collections. The following basic navigation oper-342

ations MUST be supported:343

• Retrieve the whole collection.344

occi-wg@ogf.org 11



Errata Draft GFD-P-R.183 October 1, 2012

• Retrieve a specific item in a collection.345

• Retrieve a subset of a collection.346

The details of collection navigation is rendering specific.347

4.4.9 Discovery348

An OCCI client MUST be able to discover all instances of Kind, Mixin and Category a particular service349

provider’s OCCI implementation has defined. By examining these instances a client MUST be able to, at a350

minimum, deduce the following information:351

• The Entity sub-types available from the service provider, including core model extensions. This infor-352

mation is provided through the Kind instances of the OCCI implementation.353

• The attributes defined for each Entity sub-type. The identifying Kind instance provide this information.354

• The invocable operations, i.e. Actions, defined for each Entity sub-type. The identifying Kind instance355

provide this information.356

• Any Mixin instances that can be associated to resource instances.357

• Additional capabilities defined by a particular Mixin instance, i.e. Attributes and Actions.358

The above requirements comprise the OCCI discovery mechanism. It MUST be implemented.359

The details of exactly how the Category, Kind and Mixin instances are exposed to an OCCI client is specific360

to the particular rendering used. The relevant details can be found in the OCCI Rendering documents.361

4.5 The OCCI Core Base Types362

The following sections describe the OCCI base types defined by the OCCI Core Model. The base types are363

Entity, Resource, Link. All base types MUST be implemented.364

An instance of the Resource type, the Link type or one of their sub-types is called a resource instance. Each365

resource instance within an OCCI system MUST have a unique identifier6 stored in the id model attribute366

of the Entity type, as defined in table 6. The structure of these identifiers is opaque and the system should367

not assume a static, pre-determined scheme for their structure other than the rules imposed by the Uniform368

Resource Identifier (URI) [6] syntax.369

Although every unique resource instance identifier MUST be valid URI it is RECOMMENDED to use the370

Uniform Resource Name (URN) [7] syntax.371

For example Entity.id could be urn:uuid:de7335a7-07e0-4487-9cbd-ed51be7f2ce4.372

4.5.1 Entity373

The Entity type is an abstract type of the Resource type and the Link type. It MUST be implemented.374

Table 6 defines the model attributes the Entity type MUST implement to be compliant.375

Entity enforces for all sub-types an optional OCCI Attribute named occi.core.title, see table 7.376

Every sub-type of Entity MUST be assigned a Kind instance, see section 4.4.3. Entity itself is assigned the377

Kind instance http://schemas.ogf.org/occi/core#entity for type identification, see table 8. Being an abstract378

type Entity itself can never be instantiated.379

An Entity sub-type instance, also referred to as a resource instance, MAY be associated with one or more380

Mixin instances.381

An Entity sub-type instance MUST expose its identifying Kind instance and any associated Mixin instances382

together with the Attributes and Actions defined by them.383

6A resource instance identifier MUST be unique within the service provider’s name-space. It is RECOMMENDED to use
globally unique identifiers.

occi-wg@ogf.org 12



Errata Draft GFD-P-R.183 October 1, 2012

Table 6. Model attributes defined for the Entity type.

Model attribute Type Multiplicity Client
Mutability

Discover-
able

Description

id URI 1 Immutable Yes A unique identifier (within the service provider’s name-
space) of the Entity sub-type instance.

kind Kind 1 Immutable No The Kind instance uniquely identifying the Entity sub-
type of the resource instance.

mixins Kind 0..* Mutable No The Mixin instances associated to this resource instance.
Consumers can expect the Attributes and Actions of the
associated Mixins to be exposed by the instance.

Table 7. OCCI Attributes defined by the Entity type.

OCCI Attribute Type Multiplicity Client
Mutability

Discover-
able

Description

occi.core.title String 0..1 Mutable Yes The display name of the instance.

Table 8. The Kind instance assigned to the Entity type.

Model attribute Value

term entity
scheme http://schemas.ogf.org/occi/core#

title Entity type
attributes Attribute("occi.core.title")
actions –

4.5.2 Resource384

The Resource type inherits Entity and describes a concrete resource that can be inspected and manipulated.385

It represents a general object in the OCCI model and MUST be implemented. A Resource is suitable to386

represent real world resources, e.g. virtual machines, networks, services, etc. through specialisation.387

Table 9. Model attributes defined for the Resource type.

Model attribute Type Multiplicity Client Mutability Description

links Link 0..* Mutable A set of Link compositions. Being a composite relation the re-
moval of a Link from the set MUST also remove the Link in-
stance.

The Resource type MUST implement all model attributes and OCCI Attributes inherited from Entity as well388

as the model and OCCI Attributes defined in table 9 and 10 in order to be compliant.389

Table 10. OCCI Attributes defined for the Resource type.

OCCI Attribute Type Multiplicity Client Mutability Description

occi.core.summary String 0..1 Mutable A summarising description of the Resource instance.

The Resource type is assigned the Kind instance http://schemas.ogf.org/occi/core#resource, see table 11.390

Resource enforces the inheritance of a set of common attributes into sub-types. Moreover, it introduces391

relationships to other Resource instances through instances of the Link type.392

The Resource type is the first of three entry points to extend the OCCI Core Model, see section 4.6.393

occi-wg@ogf.org 13



Errata Draft GFD-P-R.183 October 1, 2012

Table 11. The Kind instance assigned to the Resource type.

Model attribute Value

term resource
scheme http://schemas.ogf.org/occi/core#

title Resource
attributes Attribute(occi.core.summary)
actions –

4.5.3 Link394

An instance of the Link type defines a base association between two Resource instances. It MUST be395

implemented. A Link instance indicates that one Resource instance is connected to another.396

The Link type MUST implement all attributes inherited from the Entity type together with the model attributes397

defined in table 12 in order to be compliant.398

Table 12. Model attributes defined for the Link type.

Model attribute Type Multiplicity Client Mutability Description

source Resource 1 Mutable The Resource instances the Link instance originates from.
target Resource 1 Mutable The Resource instances the Link instance points to.

The Link type is assigned the Kind instance http://schemas.ogf.org/occi/core#link.399

Table 13. The Kind instance assigned to the Link type.

Model attribute Value

term link
scheme http://schemas.ogf.org/occi/core#

title Link
attributes –
actions –

The source and target attribute of a Link instance MUST refer to resource instances within the service400

provider’s namespace. A Link MAY refer to an external resource, i.e. a resource of which the service provider401

has no direct control, if and only if that external resource is mapped into a Entity sub-type instance.402

A provider MAY however introduce a sub-type of Link with different semantics, e.g. having a target attribute403

containing an URI and thus the ability of linking with external resources.404

The Link type is the second of three entry points to extend the OCCI Core Model, see section 4.6.405

4.6 Extensibility406

The OCCI Core Model has a flexible yet fairly simple extension mechanism based on the type classification407

system described in section 4.4.408

The OCCI Core Model can be extended using two different methods, sub-typing and mix-in. Custom sub-409

typing require provider-specific Kind instances and custom mix-ins require provider-specific Mixin instances.410

Both methods MAY involve the use of provider-specific Action instances. The following sections define the411

rules for extending the OCCI Core Model.412

The rules defined in section 4.4 and 4.5 are REQUIRED for all extensions of the OCCI Core Model.413

occi-wg@ogf.org 14



Errata Draft GFD-P-R.183 October 1, 2012

4.6.1 Category instances414

Provider-specific instances of Category, Kind and Mixin MAY be introduced by an OCCI implementation.415

Since Kind and Mixin both inherit Category the extension rules for Category, defined below, applies to them416

as well.417

A Category instance defined outside of the OCCI specification MUST use a Category scheme unique to the418

provider, e.g. http://example.com/occi#. The term of a provider-specific Category instance can be any419

string corresponding to a “token” as defined by the OCCI Rendering documents.420

An OCCI Attribute introduced by a provider-specific Category MUST use an attribute name prefix. This421

prefix MUST NOT be the “occi.” prefix which is reserved for the OCCI specification. Domain-specific OCCI422

Attribute names SHOULD use a prefix consisting of the provider’s reverse domain name, e.g. “com.example.”.423

4.6.2 Sub-typing424

The OCCI Core Model MAY be extended through sub-typing. Two OCCI Core Model types MAY be sub-typed,425

those are Resource and Link.426

In order to define a sub-type of Resource or Link a provider-specific Kind instance MUST be defined and427

assigned to the sub-type. This Kind instance MUST be directly related to the Kind instance of the type428

extended.429

4.6.3 Mix-ins430

The OCCI Core Model MAY be extended using a “mix-in” like concept by defining provider-specific Mixin431

instances. A Mixin instance can be associated with any resource instance although a provider MAY apply432

restrictions.433

In order to support user-defined tags7 an OCCI implementation must allow custom Mixin instances to be434

created and destroyed by request of a client. There is no limitation in the OCCI Core Model from doing435

so but it is RECOMMENDED to assign a separate Category scheme for each user’s Mixin instances (e.g.436

per-user schemes).437

5 Security Considerations438

Since the OCCI Core and Model specification describes a model, not an interface or protocol, no specific439

security mechanisms are described as part of this document. However, the elements described by this specifi-440

cation, namely type instance attribute mutability, Category, Kind, and Mixin instantiations; Entity, Resource,441

and Link subtypes, whether direct or indirect; resource or collection manipulation; and the discovery mecha-442

nism need to implement a proper authorization scheme, which MUST be part of a concrete OCCI rendering443

specification, part of an OCCI specification profile, or part of the specific OCCI implementation.444

Concrete security mechanisms and protection against attacks SHOULD be specified by OCCI rendering speci-445

fication. In any case, OCCI rendering specifications MUST address transport level security and authentication446

on the protocol level.447

All security considerations listed above apply to all (existing and future) extensions of the OCCI Core and448

Model specification.449

6 Errata450

The October 1, 2012 errata update contains the following corrections:451

7A tag is a Mixin instance, which does not introduce additional resource capabilities.

occi-wg@ogf.org 15



Errata Draft GFD-P-R.183 October 1, 2012

• Introduce an explicit Attribute type to expose the discoverable attribute properties already defined for452

the OCCI base types Entity, Resource, Link and their sub-types.453

• Distinguish between discoverable OCCI Attributes and internal model attributes.454

• Correct the previously unclear definition of OCCI Action. The Action type inherits Category and is only455

an identifier of an invocable operation. It does not represent the operation itself. The Action definition456

now aligns with its use in the OCCI HTTP Rendering [2].457

• Clarify the format of the unique resource instance identifier defined in OCCI Entity. Incorporate the458

description and recommendations from the OCCI HTTP Rendering [2].459

• Clarify that an OCCI Mixin instance is only a type identifier. The Core Model does not specify how a460

mixed-in attribute is implemented. The Mixin instance only states that the attribute exists.461

occi-wg@ogf.org 16



Errata Draft GFD-P-R.183 October 1, 2012

7 Glossary462

Term Description
Action An OCCI base type. Represent an invocable operation on a Entity sub-type instance

or collection thereof.
Attribute A type in the OCCI Core Model. Describes the name and properties of attributes

found in Entity types.
Category A type in the OCCI Core Model and the basis of the OCCI type identification

mechanism. The parent type of Kind.
Client An OCCI client.
Collection A set of Entity sub-type instances all associated to a particular Kind or Mixin

instance.
Entity An OCCI base type. The parent type of Resource and Link.
Kind A type in the OCCI Core Model. A core component of the OCCI classification

system.
Link An OCCI base type. A Link instance associate one Resource instance with another.
mixin An instance of the Mixin type associated with a resource instance. The “mixin”

concept as used by OCCI only applies to instances, never to Entity types.
Mixin A type in the OCCI Core Model. A core component of the OCCI classification

system.
OCCI Open Cloud Computing Interface.
OCCI base type One of Entity, Resource, Link or Action.
OCCI Action see Action.
OCCI Attribute A client discoverable attribute identified by an instance of the Attribute type.

Examples are occi.core.title and occi.core.summary.
OCCI Category see Category.
OCCI Entity see Entity.
OCCI Kind see Kind.
OCCI Link see Link.
OCCI Mixin see Mixin.
OGF Open Grid Forum.
Resource An OCCI base type. The parent type for all domain-specific resource types.
resource instance An instance of a sub-type of Entity. The OCCI Core Model defines two sub-types of

Entity, the Resource type and the Link type. However, the term resource instance
is defined to include any instance of a sub-type of Resource or Link as well.

Tag A Mixin instance with no attributes or actions defined.
Template A Mixin instance which if associated at resource instantiation time pre-populate

certain attributes.
type One of the types defined by the OCCI Core Model. The Core Model types are

Category, Attribute, Kind, Mixin, Action, Entity, Resource and Link.
concrete type/sub-type A concrete type/sub-type is a type that can be instantiated.
URI Uniform Resource Identifier.
URL Uniform Resource Locator.
URN Uniform Resource Name.

463

464

8 Contributors465

occi-wg@ogf.org 17



Errata Draft GFD-P-R.183 October 1, 2012

We would like to thank the following people who contributed to this document:466

Name Affiliation Contact
Michael Behrens R2AD behrens.cloud at r2ad.com
Mark Carlson Oracle mark.carlson at oracle.com
Andy Edmonds Intel - SLA@SOI project andy at edmonds.be
Sam Johnston Google samj at samj.net
Gary Mazzaferro OCCI Counselour - AlloyCloud, Inc. garymazzaferro at gmail.com
Thijs Metsch Platform Computing, Sun Mi-

crosystems
tmetsch at platform.com

Ralf Nyrén Aurenav ralf at nyren.net
Alexander Papaspyrou TU Dortmund University alexander.papaspyrou at tu-

dortmund.de
Alexis Richardson RabbitMQ alexis at rabbitmq.com
Shlomo Swidler Orchestratus shlomo.swidler at orchestratus.com
Florian Feldhaus GWDG florian.feldhaus at gwdg.com

467

Next to these individual contributions we value the contributions from the OCCI working group.468

occi-wg@ogf.org 18



Errata Draft GFD-P-R.183 October 1, 2012

9 Intellectual Property Statement469

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that470

might be claimed to pertain to the implementation or use of the technology described in this document or the471

extent to which any license under such rights might or might not be available; neither does it represent that472

it has made any effort to identify any such rights. Copies of claims of rights made available for publication473

and any assurances of licenses to be made available, or the result of an attempt made to obtain a general474

license or permission for the use of such proprietary rights by implementers or users of this specification can475

be obtained from the OGF Secretariat.476

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,477

or other proprietary rights which may cover technology that may be required to practice this recommendation.478

Please address the information to the OGF Executive Director.479

10 Disclaimer480

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all481

warranties, express or implied, including but not limited to any warranty that the use of the information herein482

will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.483

11 Full Copyright Notice484

Copyright c© Open Grid Forum (2009-2011). All Rights Reserved.485

This document and translations of it may be copied and furnished to others, and derivative works that comment486

on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in487

whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph488

are included on all such copies and derivative works. However, this document itself may not be modified in489

any way, such as by removing the copyright notice or references to the OGF or other organizations, except490

as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights491

defined in the OGF Document process must be followed, or as required to translate it into languages other492

than English.493

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or494

assignees.495

References496

[1] R. Nyrén, A. Edmonds, A. Papaspyrou, and T. Metsch, “Open Cloud Computing Interface – Core,”497

GFD-P-R.183, April 2011. [Online]. Available: http://ogf.org/documents/GFD.183.pdf498

[2] T. Metsch and A. Edmonds, “Open Cloud Computing Interface – HTTP Rendering,” GFD-P-R.185,499

April 2011. [Online]. Available: http://ogf.org/documents/GFD.185.pdf500

[3] ——, “Open Cloud Computing Interface – Infrastructure,” GFD-P-R.184, April 2011. [Online]. Available:501

http://ogf.org/documents/GFD.184.pdf502

[4] S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels,” RFC 2119503

(Best Current Practice), Internet Engineering Task Force, Mar. 1997. [Online]. Available:504

http://www.ietf.org/rfc/rfc2119.txt505

[5] D. A. Moon, “Object-oriented programming with flavors,” SIGPLAN Not., vol. 21, pp. 1–8, June 1986.506

[Online]. Available: http://doi.acm.org/10.1145/960112.28698507

occi-wg@ogf.org 19



Errata Draft GFD-P-R.183 October 1, 2012

[6] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifier (URI): Generic508

Syntax,” RFC 3986 (Standard), Internet Engineering Task Force, Jan. 2005. [Online]. Available:509

http://www.ietf.org/rfc/rfc3986.txt510

[7] R. Moats, “URN Syntax,” RFC 2141 (Proposed Standard), Internet Engineering Task Force, May 1997.511

[Online]. Available: http://www.ietf.org/rfc/rfc2141.txt512

occi-wg@ogf.org 20


