
Describing a monitoring infrastructure with an

OCCI-compliant schema

Augusto Ciuffoletti - Dept. of Computer Science - Univ. of Pisa

December 19, 2012

Abstract

The OCCI Extension for the resource monitoring infrastructure describes the API needed
to inspect the operation of functional resources. The definition entails the introduction of
two further Kinds: the Sensor Resource, that processes metrics, and the Collector Link, that
extracts and transports metrics. They are defined as generic Kinds, that are specialized
using OCCI Mix-ins. Using this API, the user isprovided on demand with an amonitoring
infrastructure.

The provision of this API is considered as an option for the provider.
One relevant target of this document is the design of an API for SLA: under this light,

the API for the Resource Monitoring Infrastructure offers the tools to verify and implement
the Service Level Objectives (SLO).

The paper is divided into three parts: an introduction (20%) that gives the feeling of the
schema, a core part (50%) that defines the API, and finally an appendix with an example,
with reference to an HTTP rendering.

1 Introduction

This document describes the structure of a monitoring infrastructure using the OCCI restful
model. It is intended to be a first step towards the definition of a protocol to manage and
verify Service Level Agreement (SLA), but it can extend its application also outside SLA.

The purpose of a specification for the management interface of a monitoring infrastructure
is that of giving the possibility to arrange it in a way that suits user’s needs, instead of being
limited to the SLA provided by the server. The existence of a standard specification makes
it possible for the user to manage distinct cloud providers, possibly at the same time, using
the same interface.

The importance of a configurable monitoring infrastructure emerges in complex scenarios,
where the user is in fact an intermediate service provider, that provides SLA services to third
party users: in that case, the intermediate provider may decide to provide SLA options that
differ from that of the low level provider. In that case the intermediate provider may want to
perform measurements on the infrastructure leased by the low level provider(s).

The management capabilities should also extend to the adaptive, and dynamic configura-
tion of the components that contribute to the monitoring: the specification schema must allow
the user to explore the available functionalities in order to adaptively arrange a monitoring
infrastructure, and to modify them according with changing needs.

One relevant fact about monitoring infrastructures is that it is extremely difficult to give
a detailed framework for them that extends its validity to any reasonable use case or provider.
The reason is that each use case and provider exhibits local variants that do not fit a rigid
standard approach. Also, the metrics that are used to evaluate the performance of the system
are many, and subject to continuous changes due to the introduction of new technologies.
Thus we have made an effort to introduce a generic schema that can be adapted to effectively
describe the relevant aspects of a monitoring infrastructure, but that does not interfere with
details that depend on the specific environment.

The OCCI Core Model [3] is well suited for the task, since it embeds the tools needed to
extend a framework with provider specific details: this enables the specification of the abstract

1



model, leaving to the user the task of making explicit the details, targeting a specific provider
or technology. Furthermore, we claim that the specifications given in this document can find
an application in environments other than computing infrastructures, since we abstract from
the details that characterize cloud infrastructure resources.

The approach followed in this document is similar to that found in the infrastructure
document (GFD-P-R.184 [4]): the monitoring capability is associated with a new Kind, the
Sensor, that is related with the OCCI Core Model Resource type. A Sensor Resource instance
is a black box that collects metrics from its input side, and delivers aggregated metrics from
its output. The input and output channels are modeled with another Kind, called Collector,
that is related with the OCCI Core Model Link type. The role of a Collector Link instance
is twofold: on one side it indicates the way metrics are conveyed to the target Resource, on
the other it indicates a specific monitoring technique applied on the source Resource. Both
capabilities are controlled with Mix-inassociation. For instance, the provider may offer the
client a specific Ping Mixin that can be associated with a Collector Link originating from a
Network Resource: such a configuration will deliver metrics like the roundtrip time, and the
packet loss rate to the attached Sensor Resource. To enable the discovery of such Mix-ins,
they are gathered under specific collections.

Using these basic building blocks the designer is able to assemble complex, multilayer
monitoring infrastructures: for instance, a Sensor Resource can be used to aggregate a storage
throughput using the input from three Collector Links, one for the average response time,
one for the mean time between failures, and another for network delay, and provide the
results to an upstream Sensor Resource that aggregates the same results from other Sensor
Resources. On the other hand, the model is able to describe very simple scenarios, like a
compute Resourcethat logs its activity in a database hosted by a storage Resource: in that
case one Collector Link connects the compute resource to the storage, without the need of a
Sensor. Appropriate Mix-ins associated with the Collector Link describe the logging activity
and the database access mode.

1

Note that the schema is transparent, in particular, to the existence of a standard for metric
identifiers: if one exists, the interoperability of distinct monitoring infrastructures is certainly
improved. We consider that the user that interacts with the monitoring infrastructures either
knows about the identifiers used by the provider, or uses an interface (e.g., a SLA negotiation
service) that translates provider specific identifiers into interoperable ones. This document
highlights further standardization issues.

Summarizing, the specification introduced in this document requires that the conformant
provider implements two Kinds: the Sensor Resource and the Collector Link. Three tagging
Mix-ins are also defined, namely ToolSet, CollectorSet and AggregatorSet, to identify the
collection of mixins that describe the specific capabilities associated with an instance of the
above Kinds.

1.1 Terminology shortcuts

We will use the term <mixin id> collection to indicate the set of Mix-ins that are associated
with the identified tagging Mix-in. The provider ensures that the Mix-ins in a given collection
have defined semantics, as explained in the rest of this paper.

To distinguish a Resource instance from its Kind, we will use the indeterminative article
for the instance (e.g., “a Resource”), and the determinative article for the Kind (e.g., “the
Resource”). The plural is reserved to instances (e.g., “the Resources”). In case of ambiguity
we will further specify “instance” or “Kind”.

1Remark by author: Why not a mixin to the monitored resource directly? I envision problems emerging with
the implementation. A resource can be “prepared” for monitoring, but the way in which the Monitoring Link will
interact with such preparation is not clear. In addition, consider that the same tool might be the target of several
links, with distinct configuration parameter. How can the control parameters of the mixin be exposed in such a
case? Instead, if the mixin is embedded in the link, it is the responsibility of the link implementation to configure
it, and to couple it with the publishing technology indicated in the link

2



Model attribute value
scheme http://ogf.schemas.sla/occi/monitoring#
term sensor tpl
attributes None

Model attribute value
scheme http://ogf.schemas.sla/occi/monitoring#
term tool tpl
attributes None

Model attribute value
scheme http://ogf.schemas.sla/occi/monitoring#
term publish tpl
attributes None

Table 1: Definition of the template Mix-ins

2 Specification of the compliant server

The compliant server MUST define the following Kinds:

Sensor Resource that describes how monitoring results are aggregated (see table 2);

Collector Link that describes how monitoring results are trasferred between Resources (see
table 3);

In addition, the compliant server MUST define the following Mixins (see table 1):

AggregatorSet that is used to tag the Mix-ins describing the aggregation function operated
by a Sensor Resource;

ToolSet that is used to tag Mix-ins describing Monitoring tools associated with a Collector
Link;

CollectorSet that is used to tag the Mix-ins that describe the technique used to transport
monitoring results in a Collector Link;

2.1 Constraints on instances

The constraints defined on the instances of the Kinds and Mixins defined in the previous
section are as follows:

• a Sensor Resource MUST be the target of at least one Collector Link and MUST be the
source of exactly one Collector Link;

• a Mix-inin the [ToolSet] collection can be associated ONLY with a Collector Link;

• a Mix-inin the [CollectorSet] collection can be associated ONLY with a Collector Link.

• a Mix-inin the [AggregatorSet] collection can be associated ONLY with a Sensor Link

2

2.2 The Sensor Resource

The Sensor Resource models the manager of a monitoring activity that encompasses the
collection of measurements, their aggregation in composite metrics, and their delivery to the
user.

A Sensor Resource is characterized by attributes that define the rate with which new
observations are produced, and by the scheduling times of its operation (see table 2). The
attributes with the req label MUST be assigned a legal value upon instantiation. The server
MUST reject an incomplete instantiation.

The execution rate is defined using three attributes: the rate itself, and an optional defi-
nition of the quality of the timing. This latter attribute contains a triple of numbers encoded
as a string, that define the granularity with which the rate is measured, and the accuracy

2Remark by author: The utilization of Mix-ins, instead of kind-specific attributes describing the operation,
has the purpose of allowing the discovery of the capabilities offered by the provider. Kind specific attr. might be
three, describing the tool id, and ohter two formatted strings for the input and output parameters

3



Model attribute value
scheme http://ogf.schemas.sla/occi/monitoring#
term Sensor Resource
attributes (see below)
related http://ogf.schemas.sla/occi/core#resource

Set of Attributes for the Sensor Resource
name type mut. req. Description
occi.sensor.period number yes yes The time between two following measure-

ments
occi.sensor.periodspec string yes no granularity, accuracy, exponent of period

measument
occi.sensor.timebase number no yes The server time when the timestart and

timestop are modified
occi.sensor.timestart number yes yes The delay after which the session is

planned to start
occi.sensor.timestop number yes yes The delay after which the session is

planned to stop
occi.sensor.timespec string yes no granularity, accuracy, exponent of time

measurement

Table 2: Definition of the Sensor Resource Kind

of rate measurement, and the floating point exponent. By default periodspec is set to NaN,

NaN, 0.
The activation of a Sensor Resource is controlled by two attributes that describe the

scheduling of sensor activity: to schedule the execution of a sensor the user modifies the
starttime with a value indicating how far in the future the instance is going to start its
activity. A value of zero corresponds to the immediate start. The server sets the timebase

attribute corresponding to the reference time of the start time.
All time values are represented as numbers. The timebase corresponds to Unix seconds,

all timing values use a floating point notation. Also for time values there is a timespec

attribute analogous to periodspec.

2.3 The Mix-in in the AggregatorSet collection

A Mix-in instance in the AggregatorSet collection is meant to implement the computation
of an aggregated metric starting from raw metrics: it represents the function applied by a
Sensor Resource. In principle, each provider has a distinct offer of such Mix-ins, so here there
is ground for further standardization. If the provider does not adhere to a defined standard,
it MUST give an exhaustive documentation of the aggregation functions associated with a
Mix-in.

The attributes of a Mix-in in the AggregatorSet collection are divided into three groups:

• Input attributes: they bind a metric in the scope of the Sensor Resource with an input
of the aggregating function. The scope of a Sensor Resource consists of the names of all
the metric attributes of the incoming Collector Links. A metric indicated as the value
of an input attribute MUST be in the scope of the Sensor Resource. For instance, a
Sensor Resource that implements a EWMA may have an input attribute equal to

data="com.provider.monitoring.collector1.roundtrip"

where roundtrip is a metric delivered by an incoming Collector Link collector1.

• Control attributes: they control the operation of the aggregating function (for instance,
the gain of an EWMA);

• Metric attributes: they correspond to the metrics delivered through the outgoing Col-
lector Link.

To enable interoperabilty, the provider SHOULD follow a defined standard for the naming
of input, control and result attributes, but their specification falls outside the scope of this
document.

4



Model attribute value
scheme http://ogf.schemas.sla/occi/monitoring#
term Collector Link
source URI
target URI
attributes (see below)
related http://ogf.schemas.sla/occi/core#link

Set of Attributes for the Collector Link
name type mut. req. Description
occi.collector.period number yes yes The time between two following measure-

ments
occi.collector.periodspec string yes no granularity, accuracy, exponent of period

measument

Table 3: Definition of the Collector Link Kind

3 The Collector Link

The Collector Link models the transfer of metric measurements from one Resource to another.
The tranfer may be motivated, for instance, by the existence of specialized Resources, by
administrative reasons, or to cross inter-provider boundaries.

A Collector Link is characterized by two aspects: one is the activity that extracts metric
measurements from the source Resource, and the other is the transport of the measurements
to the target Resource. Both of them are defined by Mix-ins, respectively from the ToolSet
and from the CollectorSet collections.

Regarding the presence of an associated Mix-in in the above collections, we distinguish
two basic cases:

• if the target of the Collector Link is a Sensor Resource, then CollectorSet Mix-ins
SHOULD NOT be associated with the Collector Link instance, and the provider has
enough information to implement an appropriate channel;

• if the source of the Collector Link is a Sensor Resource, then ToolSet Mix-ins SHOULD
NOT be associated with the Collector Link instance, since it is not meaningful to monitor
a Sensor Resource.

The metric attributes of the Mix-ins associated to the Collector Link contribute to the
scope of the target Sensor Resource referenced in sect. 2.2.

3.1 The Mix-in in the ToolSet collection

The measurement activity is integrated in the Collector Link using a Mix-in in the ToolSet
collection. A Mix-in in the ToolSet collection implements a measurement activity on the
Resourcethat is the source of the Sensor Resource the Mix-in is associated with.

In principle, each provider may associate a different semantic to a given Mix-in, so here
there is ground for further standardization. If the provider does not adhere to a defined
standard, it MUST give an exhaustive documentation of the monitoring tool associated with
a Mix-in.

Similar to the case of the Mix-ins in the AggregatorSet, the attributes are divided into two
groups:

• Control attributes: they control the operation of the measurement activity. For instance
a Mix-in implementing a ping tool may have a control attribute defined as

name=size,type=string,mutable=1,required=0,default=84

The role of the attributes is part of the specification of the specific Mix-in.

• Metric attributes: they correspond to the metrics delivered to the target Sensor Re-
source, and SHOULD hold a reasonably updated value for those metrics. In principle,
each provider may associate a different semantic to a given Mix-in, so here there is
ground for further standardization. If the provider does not adhere to a defined stan-
dard, it MUST give an exhaustive documentation of the monitoring tool associated with
a Mix-in.

5



3.2 The Mix-in in the CollectorSet collection

How data are delivered is defined by a Mix-in in the CollectorSet collection.
In principle, each provider may associate a different semantic to similar Mix-ins, so here

there is ground for further standardization. If the provider does not adhere to a defined
standard, it MUST give an exhaustive documentation of the publishing mode associated with
this Mix-in.

Examples of measurement delivery modes are through a Unix pipe, on demand through a
TCP connection, pushed using UDP datagrams, persistently recorded in a database.

The attributes of a Mix-in in the CollectorSet are divided into two types:

• Input attributes: their value MUST correspond to the name of one of the output pa-
rameters of the source Sensor Resource.

• Control attributes alter the process used to publish input parameters;

To enable interoperability, the provider SHOULD follow a defined standard for the naming
of input and control attributes, but their specification falls outside the scope of this document.

4 Conformance levels

Since the management of a monitoring infrastructure is an optional capability of a cloud
service provision, the definition of conformance levels is appropriate.

Compatibility 0 The Collector Link and Sensor Resource Kind collections MUST NOT be
implemented: attempt of instantiating such Kinds fails. In an HTTP rendering a POST
and GET over these Resource collections returns 404 Notfound. The AggregatorSet,
ToolSet, and CollectorSet Mix-in collections MUST NOT be implemented: discovery
fails. In an HTTP rendering a GET over the mixins returns 404 Notfound;

Compatibility 1 The Collector Link and Sensor Resource Kind collections MUST be im-
plemented, and the user MUST be allowed to create new instances of such Kinds. In
an HTTP rendering a POST and GET over these Resource collections returns respec-
tively 201 and 200. In case of error, the server MUST NOT return404 Notfound. The
AggregatorSet, ToolSet, and CollectorSet Mix-in collections MUST be implemented, and
discovery is successful. The server does not allow the instantiation of new Mixins in the
AggregatorSet, ToolSet, and CollectorSet collections. In an HTTP rendering, a POST
over these mixins returns 405 Method Not allowed;

Compatibility 2 The Collector Link and Sensor Resource Kind collections MUST be im-
plemented, and the user MUST be allowed to create new instances of such Kinds. In
an HTTP rendering a POST and GET over these Resource collections returns respec-
tively 201 and 200. In case of error, the server MUST NOT return404 Notfound. The
AggregatorSet, ToolSet, and CollectorSet Mix-in collections MUST be implemented, and
discovery is successful. The user MUST be allowed to associate Mix-ininstances with the
AggregatorSet, ToolSet, and CollectorSet collections. In an HTTP rendering, a POST
over these mixins returns 200;

5 Related works (INPUT WELCOME)

The model is reminiscent of a monitoring infrastructure that I designed and implemented
in the CoreGRID EU-project [1], that in its turn is inspired by various other works (see the
bibliography in the paper). The reading of the CompatibleOne prototype [2] has been enlight-
ening concerning (among the rest) the need and possibility of modularizing the monitoring
part. The 2012 revision of the OCCI core model [3] has been used as a reference.

A An example

We want to dip the Monitoring Infrastructure Management schema explained in this document
into an Service Level Agreement (SLA) scenario, so let’s try to define a SLA in terms of OCCI
concepts.

6



Figure 1: The instance diagram of the monitoring infrastructure

An OCCI-SLA is a contract between a user and a provider: the terms of the contract are
in a form that may be provider-independent, and they are published as an OCCI-Resource
in a specific namespace ”occi/#sla” possibly refined with mixins. There are two basic flavors
for a SLA contract:

• The provider offers a SLA: the providers offers the user the ability to monitor the
conformance to SLA contract

• The user offers a SLA: the provider offers the User the tools to implement resource
monitoring to meet internal SLA requirements.

Both of them are compatible with the monitoring infrastructure management schema
illustrated in this paper, but are otherwise quite different.

The Service Level Agreement is an aggregate of many Resource that describe financial,
administrative, security aspects and much more. Among such Resource there are the Service
Objectives (SLO). Their function is to specify the meaning of ”quality of service” for the
specific infrastructure. This concept is translated in a function of system parameters of
operation, or metrics. The SLA resource contains the instructions to associate an action to a
given SLO pattern.

A user that wants to instantiate a monitoring infrastructure starts from identifying the
Resources and the metrics of interest. Next the basic monitoring infrastructure is instantiated,
assembling generic Sensor Resources and Collector Links. The following step consists of
browsing the ToolSet Mix-in collection finding a Mix-inthat offers the right metrics, and the
first stage Collector Link is associated with it. Note that a given monitoring technology may
require more than one Collector Link to operate (e.g., consider iperf). Another Mix-in for the
Sensor Resource is discovered inside the AggregatorSet collection, and the Sensor Resource is
associated with it. Finally, a publishing technology is selectd from the CollectorSet Mix-in
collection, and the second stage Collector Link is associated with it.

Note that the first stage collector is not associated with a CollectorSet Mix-in, since the
coupling between the Sensor Resource and the monitored Resource is managed internally,
while the second stage collector is not associated with a Mix-in in the ToolSet collection since
it has no monitoring activity.

The following example gives a more detailed insight of the process: it illustrates a Sensor
Resource that measures processor utilization for a given virtual machine vm1, and triggers an
alarm when the idle time becomes less than 10%. The alarm message is pushed as a UDP
packet injected in a VLAN. We refer to the HTTP rendering to give a better insight of the
operation. The object diagram is in figure 1

The user starts instantiating a new Sensor Resource, and a Collector Link connecting vm1

to the sensor. The new Sensor Resource:

> POST /sensor/ HTTP/1.1

> Category: sensor;

scheme:"http://schemas.ogf.org/occi/monitoring#";

class="kind"

7



...

< HTTP/1.1 201 OK

< Location: "http://provider.com/monitoring/sensor1

the input Collector Link:

> POST /collector/ HTTP/1.1

> Category: collector;

> scheme="http://schemas.ogf.org/occi/monitoring#";

> class="kind";

> X-OCCI-Attribute: occi.core.target="http://provider.com/monitoring/sensor1

> X-OCCI-Attribute: occi.core.source="http://provider.com/vms/vm1

> ...

...

< HTTP/1.1 201 OK

< Location: "http://provider.com/monitoring/collector1

and the input Collector Link:

> POST /collector/ HTTP/1.1

> Category: collector;

> scheme="http://schemas.ogf.org/occi/monitoring#";

> class="kind";

> X-OCCI-Attribute: occi.core.target="http://provider.com/net/vlan1

> X-OCCI-Attribute: occi.core.source="http://provider.com/monitoring/sensor1

> ...

...

< HTTP/1.1 201 OK

< Location: "http://provider.com/monitoring/collector2

The timing attribuites of the three instances are filled in

POST /monitoring/sensor1/ HTTP/1.1

> ...

> X-OCCI-Attribute: occi.sensor.period=10;

> X-OCCI-Attribute: occi.sensor.periodspec="1,0.1,1";

> X-OCCI-Attribute: occi.sensor.timestart=10

> X-OCCI-Attribute: occi.sensor.timestop=3600;

> X-OCCI-Attribute: occi.sensor.timegranularity="1,0.1,1";

POST /monitoring/collector1/ HTTP/1.1

> ...

> X-OCCI-Attribute: occi.collector.period=10;

> X-OCCI-Attribute: occi.collector.periodspec="1,0.1,1";

POST /monitoring/collector2/ HTTP/1.1

> ...

> X-OCCI-Attribute: occi.collector.period=10;

> X-OCCI-Attribute: occi.collector.periodspec="1,0.1,1";

The monitoring activity will start in 10 seconds and last for 1 hour, performing one
measurement every 10 seconds. Granularity and accuracy are just consistent with the timing
requirements.

Next, the user browses the ToolSet collection looking for a tool that measures processor
idle time: the search pattern comes from outside our scenario. It finally finds mpstat, defined
as in table 4 in the provider’s namespace http://provider.com/monitoring/.

Then it associates link1 with the mpstat Mix-in:

> POST /toolset/mpstat/ HTTP/1.1

> X-OCCI-Location: http://provider.com/monitoring/collector1

This latter operation is critical, and may give rise to a number of errors, that result in
4xx and 5xx error codes. For instance, the server may return 403 Forbidden in the case the
MonitoringTool Mix-inis not legal for the target resource.

8



Model attribute value
scheme http://provider.com/monitoring#
term mpstat
attributes (see table below)

Set of Attributes for the mpstat Mix-in
name type mut. req. Description
com.provider.tool.port number yes yes The port where to send a measurement

trigger (control)
com.provider.tool.ncpu number no yes The number of processors (metric)
com.provider.tool.idletimecpu number no yes Total percent of idle time (metric)
com.provider.tool.usertimecpu number no yes Total percent of user time (metric)
com.provider.tool.systimecpu number no yes Total percent of system time (metric)

Table 4: Attributes defined for the mpstat mixin

Model attribute value
scheme http://provider.com/monitoring#
term threshold
attributes (see table below)

Set of Attributes for the threshold
name type mut. req. Description
com.provider.sensor.threshold number yes yes The threshold value (control)
com.provider.sensor.mode Once,Continuous yes yes How frequent the warning message (con-

trol)
com.provider.sensor.fallmsg String yes yes The falling edge message
com.provider.sensor.risemsg String yes yes The rising edge message
com.provider.sensor.input URI no yes The input value (input)

Table 5: Attributes defined for the threshold mixin

In the general case, the above steps are repeated for every metric that the user needs to
measure to compute the application-denpendent metric. Here we proceed to the next step.

The user now searches a Mix-in in the AggregatorSet collection that returns a threshold
signal: it finds the Threshold defined in table 5

The next step of the user is to associate the Sensor Resource to the Mix-in,

> POST /computetool/threshold/ HTTP/1.1

> ...

> X-OCCI-Location: http://provider.com/monitoring/sensor1

and fills in the attributes as appropriate:

POST /monitoring/sensor1/ HTTP/1.1

> ...

> X-OCCI-Attribute: com.provider.sensor.threshold=10

> X-OCCI-Attribute: com.provider.sensor.mode="Once"

> X-OCCI-Attribute: com.provider.sensor.fallmgs="Warning: vm1 overloaded"

> X-OCCI-Attribute: com.provider.sensor.risemgs="vm1 load below 90%"

> X-OCCI-Attribute: com.provider.sensor.input="com.provider.monitoring.tool1.idletimecpu"

The server here responds with a 404 Not found if the input attribute does not exist, or
401 Unauthorized if the user is not allowed to operate on that Resource(e.g., the metric is
outside its scope).

Finally the user associates a way to publish the result: a UDP datagram on a network. It
looks in the CollectorSet collection the Mix-in that applies, and finds the one described in
figure 6, that sends a string as a UDP datagram.

It then associates that Mix-into the outgoing Collector Link:

> POST /collectorset/udptxtdgm/ HTTP/1.1
> ...
> X-OCCI-Location: http://provider.com/monitoring/collector2

and fills in the attributes as appropriate:

POST /monitoring/collector2/ HTTP/1.1

> ...

> X-OCCI-Attribute: com.provider.schema.destination="ctr1.provider.com";

> X-OCCI-Attribute: com.provider.schema.port="10222";

> X-OCCI-Attribute: com.provider.schema.mode="nonempty";

> X-OCCI-Attribute: com.provider.schema.input="http://provider.com/monitoring/sensor1/compoutput";

9



Model attribute value
scheme http://provider.com/monitoring#
term udptxtdgm
attributes (see table below)

Set of Attributes for the udptxtdgm
name type mut. req. Description
com.provider.sensor.dest String yes yes The destination of the message (control)
com.provider.sensor.port number yes yes The destination port (control)
com.provider.sensor.mode all,nonempty yes yes Indicate whether only non empty msg are

sent (control)
com.provider.sensor.input URI yes yes The msg to be sent

Table 6: Attributes defined for the udptxtdgm mixin

References

[1] Augusto Ciuffoletti, Yari Marchetti, Antonis Papadogiannakis, and Michalis Polychron-
akis. Prototype implementation of a demand driven network monitoring architecture. In
Proceedings of the CoreGRID Integration Workshop, Hersonissos (Greece), April 2008.
Available through www.slideshare.net.

[2] Iain James Marshall and Jean-Pierre Laisn. CompatibleOne Resource Description System,
2012.

[3] Open Grid Forum. Open Cloud Computing Interface - Core, June 2011. Available from
www.ogf.org.

[4] Open Grid Forum. Open Cloud Computing Interface - Infrastructure, June 2011. Available
from www.ogf.org.

10


